
Control Flow Complexity Metrics for Petri Net-
based Web Service Composition

Chengying Mao

School of Software and Communication Engineering,
Jiangxi University of Finance and Economics, 330013 Nanchang, China

Email: maochy@yeah.net

Abstract—Web services technology is an effort to build a
distributed computing platform over the network, and it can
implement systematic application-to-application interaction
on the Web. In recent years, this new technology has been
widely adopted for constructing distributed applications.
However, how to precisely measure the controlling
complexity of Web service composition (WSC) is a very
difficult task due to its characters such as heterogeneity,
distributed and loose-coupling. In the paper, we mainly
concern on the complexity measurement of Petri net-based
business process in Web service composition. Two metric
sets are presented through analyzing the WSC’s execution
logics and dependency relations in workflow. The first one is
count-based metric set, and includes seven metrics such as
number of place, average degree of transition, transfer
number per service and cyclomatic complexity. The second
is an execution path-based metric set, which includes
average execution path complexity (AEPC) and its extension
based on cognitive informatics. In addition, two real-world
WSCs are used to validate our measurement methods. The
results show that our metrics are effective and rational, and
have high practical value for WSC analysis and
maintenance.

Index Terms—complexity analysis, Petri net, Web service
composition, execution path, cognitive informatics

I. INTRODUCTION
With the rapid development of network technology,

distributed computing has become the important and
mainstreaming pattern for designing and executing
software system. Compared with the traditional
techniques such as CORBA, RPC and DCOM, service-
oriented architecture (SOA [1]) provide better
interoperability for data exchange and application
invocation. In this new software development pattern,
Web service [2,3] is the typical technique and puts this
new idea into practice.

Web services technology [3] is an effort to build a
distributed computing platform over the network, and can
implement systematic application-to-application
interaction on the Web. Although it can bring lots of
benefits for building a flexible and open-accessing
software system, the related problems of system
comprehension, testing and maintenance are still open
issues. Due to the characters of Web service composition
(WSC), such as heterogeneity, distributed and loose-
coupling, how to measure system’s complexity is a

challenging task in the research community of software
measurement [4].

Web service components don’t work disorderly in
WSC, contrarily they are well regulated according to the
system business process. In general, such process is
described in the form of workflow. Petri-Net [5,6] is a
well-known model to represent the workflow both in
business activities and computer systems. Of course, it
also can be used to model the interaction relations
between Web services. Until today, Petri net-based
business activity modeling has been explored by some
researchers [7,8], and has become one of important
process representation techniques in WSC. In this paper,
some complexity metrics for Web services workflow
described by Petri-Net will be proposed. At first, we
analyze the basic elements of business process and the
corresponding Petri-Net representations. Then, the
metrics about information flow (especially control flow)
in WSC will be addressed. In addition, in order to
validate the feasibility and effectiveness of our proposed
metrics, two real-world Web service compositions are
used as a subject system in our case studies. The analysis
results show that our metrics can reasonably reflect the
complexity feature of Web service-based system.

The remainder of this paper is organized as follows. In
Section 2, we analyze the basic characters of Web service
composition. Meanwhile, a running-example service
composition is introduced to demonstrate the following
measurements. The metrics about information flow in
Web service composition, i.e., count-based metrics and
execution path-based metrics, are presented in Section 3
and 4 respectively. In Section 5, two cases about real-
world Web service compositions are studied to confirm
the effectiveness of our proposed metrics. The related
work is addressed in Section 6, and Section 7 concludes
the paper.

II. BACKGROUND
In this section, we firstly review the basic features of

Web service composition, and then give the atomic Petri-
Net model for the basic composition logic. In order to
address our complexity measurement methods, a service
composition example is introduced here.

A. Basic Logics in WSC
In fact, Web services technology provides a way to

integrate some distributed service units over the network

1292 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.11.1292-1299

into a coordinative system. To ensure such services can
correctly work together, the whole system should be run
under the constraint of its specific business process. In
general, the business process is a workflow which can be
represented in the form of Petri-Net, BPEL [9] or BPMN
[10]. In this paper, we mainly concern on the Petri net-
based representation. Here, let us review the Petri-Net
definition [6,7,11] at first.

Definition 1 (Petri-Net). A Petri net is a triple
(,PN P= ,)T F , where P is a finite set of places, T is

a finite set of transitions representing the operations, and
()F P T⊆ × U ()T P× is a set of directed arcs. Tokens

are contained in the places, and the distributions of tokens
reflect different system statuses.

In the Web service-based system, the activities in the
corresponding business process can be classified into two
types: basic activities and structure activities. The basic
activity is atomic, such as receive, reply, invoke,
assign, throw and exit. The structure activity
includes sequence, if, while, repeatuntil, pick
and flow. It should be noted that, the flow (<flow>)
activity provides concurrency and synchronization, and is
used to define a set of activities that will be invoked in
parallel. In order to represent the structure activities in
business process in WSC, the following four basic logic
models should be adopted.

Figure 1. Four basic logic models for structure activity representation

It’s not hard to find that, structure activities in WSC
can be summarized into the following four categories:
sequence, branch, loop and parallel. Based on the above
four basic logic models, the Petri-Net representations of
four basic activities can be illustrated in Figure 2.

Although the business process in real executing
scenarios is very complex, it can be represented by the
above four basic activity structures in the way of nested
composition. While comparing Web service composition
specifications with Petri-Net notation, it is obviously that
the transitions in Petri-Net model represent the operations
in business process, such as value assignment, message
reply and service invocation. On the other hand, the place
in Petri-Net can be condition judgment or connector
between two operations.

B. Running Example
In order to describe our complexity measurement

methods for Web service composition, an OnlineOrder

example [11] is introduced here. It is a typical business to
business (B2B) application, and its business process is
described in Figure 3. This application firstly receives an
order form, then checks it and queries the credit record of
the ordering customer. If the customer has a good credit
record and the order form is approved, system will
perform production planning and arrange product freight.
Otherwise, the order form will be rejected directly.

Figure 2. Petri-Nets for the four basic activities in WSC

t1

i

t2

t4

t5

t3

o

t9

p1

p2 p3

p4 p5

p6

t6

t7

p7p8

p9p10

t8

t10

Figure 3. Petri net-based business process of OnlineOrder application

In the above business process, the corresponding Petri
net has 12 places (including the start place i and the end
place o) and 10 transitions. The meanings of these
components are addressed in the following table. It is
noteworthy that the places which are not explained in
Table 1 have no specific function and are merely for the
connection purpose.

TABLE I. MEANINGS OF THE SYMBOLS IN ONLINEORDER PETRI NET

Symbol Operation Comment

t1 receive order information basic activity (receive)

t2 <flow> flow activity

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1293

© 2010 ACADEMY PUBLISHER

t3 credit checking service invoking

t4 order checking service invoking

t5 </flow> end of flow

p6 if condition branch activity

t6 reject order basic activity (reply)

t7 <flow> flow activity

t8 production planning service invoking

t9 freight arrangement service invoking

t10 </flow> end of flow

o end of if condition join node

According to the above description, we can know that
four Web services are invoked in this Web service
composition, which are denoted by transition 3 4 8, , t t t
and 9t , respectively. In addition, there are two parallel
execution bodies (i.e., 2 5t t− and 7 10t t−) and one branch
sub-structure (i.e., 6p o−) in the business process of this
WSC.

In this paper, we will provide two kinds of complexity
metrics, i.e., count-based metric and execution path-based
metric. The former is the issues reflecting static features
of business process and the latter is dynamic complexity
metric.

III. COUNT-BASED MEASUREMENT
Count-based metric is the most naïve approach to scale

the complex degree of constructs in program, process or
network. In this paper, we adopt it as a basic method to
measure the structure complexity of business process
represented by Petri-Net in Web service composition.

(1) Number of Places
This issue is the total number of places in Petri net-

based business process, and it reflects the data exchange
times in whole Web service composition. According to
the definition 1, it can be easily measured by the
following formula.

| |PN P= , where P is the place set in Petri net. (1)
It is not hard to find that, the larger value of PN , the

more frequent data storage, transfer or exchange will
appear in the business process of WSC. As mentioned in
Section 2.B, 12PN = in the example application.

(2) Number of Transitions
In Petri net-based business process, a transition usually

stands for an operation or parallel control logic in Web
service composition. Hence, the number of transitions can
reflect the activity number in system. Similarly, it also
can be calculated as shown in formula (2).

| |TN T= , where T is the transition set in Petri net. (2)
In general, if a service process contains more activities,

it must be more complex than the process with fewer
activities. Therefore, the Petri net-based process with
higher TN means higher structure complexity. Obviously,

10TN = in the OnlineOrder B2B system.
(3) Number of Services

In a Web service-based system, the number of invoked
services directly reflects interaction complexity with
external system. This item can be expressed as follows.

| | |{ } |S iN S s= = (3)
Where S T⊂ is invoked service set in Web service
composition, and is refers the specific service used in the
service invocation site in the Petri net-based business
process.

Generally speaking, if a Web service composition
involves more service units, it means that such
application has more frequent interaction with external
services supplied by service providers. While consider
the running example application, there are four external
services in its business process. Thus, |{ } |S iN s= =
|{credit checking, order checking, production planning,
freight arrangement} | 4= .

(4) Average Degree of Place
From the perspective of network, the information of

node degree in network reflects the interaction strength
between nodes. In general, the more average degree
means the higher interaction strength in network. There
are two kinds of nodes in the Petri net-based business
process, so we consider the interactions for place and
transition respectively.

The average degree of place (ADP) can be computed
via the following formula.

() [() ()]
| | | |

i i ii ideg p indeg p outdeg p
ADP

P P
+

= =∑ ∑ (4)

Where ip P∈ is the ith place in Petri net, and ()ideg p is
the degree of node corresponding place ip in network. It
can be divided into two parts: ()iindeg p and ()ioutdeg p .

As mentioned above, place in the Petri net-based
business process refers to data storage or branch
judgment, so the item ADP can be used to reflect the
data transfer complexity in WSC.

For the example application OnlineOrder, the value
of ADP can be calculated as below.

() 24() 2
| | 12

ii deg p
ADP OnlineOrder

P
= = =∑

From the results we can find that, the data interaction
in this application is not so complex. The current value
means that each place has one input data port and one
output port from the average sense.

(5) Average Degree of Transition
Another node in Petri net-based business process is

transition node. Similarly, its average degree (ADT for
short) can be yielded according to formula (5).

() [() ()]
| | | |

i i ii ideg t indeg t outdeg t
ADT

T T
+

= =∑ ∑ (5)

Where it T∈ is the ith transition in Petri net, and ()ideg t
is the node degree of transition it in network.

It is not hard to find that, the average degree of
transition can reflect the parallel complexity of business
process, i.e., the parallel execution ability of Web
services in application. The value of this issue for the

1294 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

example Web service composition can be computed as
follows.

() 24() 2.4
| | 10

ii deg t
ADT OnlineOrder

T
= = =∑

Since the ADT value is greater than 2, it means that
the example business process has parallel execution
ability for service units, that is, some parallel execution
bodies should exist in the process.

(6) Transfer Number per Service
Edges in Petri net-based business process represents

the data and control logic transfers in Web service-based
system. Web service composition can be viewed as a
collection of service units. Consequently, the number of
transfers used to integrate a Web service into the system
should be concern. The small number means the current
WSC has good composition structure, otherwise not. So
the item of transfer number per service (i.e. TNS) can be
used as an indication of optimization degree of WSC’s
structure, and it can be calculated by formula (6).

[() ()] 2| | i ii

S S

deg p deg tFTNS
N N

+
= = ∑ (6)

Where F is a set of directed arcs in Petri net.
For the OnlineOrder example, there are four

external services are integrated into system, and the
number of arcs in Petri net-based business process is 24.
As a consequence, the TNS value of this example system
can be expressed as

| | 24() 6
4S

FTNS OnlineOrder
N

= = = .

(7) Cyclomatic Complexity
McCabe cyclomatic complexity (CC) [12] is one of

the most widely used software metrics. It is also suitable
for weight the structure complexity of business process in
Web service-based system [13]. For the business process
denoted by Petri net, its cyclomatic complexity can be
calculated as below.

| | | | | | 2CC F P T= − − + (7)
Similar to the traditional program, the value of this

item reflects the complexity of control structure in
business process. The higher value means more complex
control relation between Web services. For the running
example, its CC value is 24 12 10 2 4− − + = .

IV. EXECUTION PATH-BASED MEASUREMENT
Count-based measurement can only reflect the static

feature of Web service composition, so it needs another
way to describe the dynamic character of Web services.
In this section, we will address execution path-based
metrics to scale the dynamic execution complexity of
WSC. At first, the basic execution path-based metric is
introduced. Then, an extension is proposed through
adopting the knowledge of cognitive informatics.

A. Basic Execution Path-based Metric
During the execution of Web service-based system, the

computing time is determined by the execution path in
the current scenario. On the other hand, all possible
execution paths should be considered when a maintainer

attempt to understand such system. Therefore, the
complexity of execution path can be used as an indication
of dynamic execution behaviors of Web service-based
system.

Generally speaking, WSC is not great different from
the traditional program. The significant difference lies in
the parallel structure in the business process of WSC. In
order to identify the execution paths in WSC, the concept
of parallel execution relation is defined firstly. In the
following context, the place and transition in Petri net-
based business process is uniformly referred to as node.

Definition 2 (Parallel Execution Relation). Suppose
1seq and 2seq are two sequences immediately following

an “and split” transition node in Petri net-based business
process, these sequence will execute at the same time
when the WSC is running in some specific scenario,
denoted as 1 2||seq seq . Meanwhile, the nodes (e.g., 1n
and 2n) in parallel sequences also have such relation in
Petri net, i.e., 1 2||n n .

For example, the sequence 2 3 3p t p→ → has the
parallel execution relation with 4 4 5p t p→ → in Figure 3.
Similarly, the sequence 7 8 8p t p→ → and 9 9p t→ →

10p also have the parallel execution relation. Based on
the above definition, we can introduce a concept of
execution path here.

Definition 3 (Execution Path). In the execution of
Web service composition, the sequence composed of
place nodes and transition nodes is called execution path.
Obviously, an execution path perhaps contains serial sub-
sequences and parallel sub-sequences.

For the serial sub-sequence, we can denote it in the
form of i j kn n n→ → →L . By contrast, the parallel
execution sub-sequences in execution path can be
expressed in the following form: (, , u vn n→ →L L

)x yn n→ →L . Accordingly, an execution path can be
formed by nested combination of such sub-sequences.

Take the OnlineOrder application for an example,
there are two execution paths in its business process.
According to the notation provided in the above
definitions, these paths can be expressed as below.

1 1 2 2 3 3 4 41 (, Path i t p t p t p p t= → → → → → → → →
5 5 6 6)p t p t o→ → → →

1 1 2 2 3 3 4 42 (, Path i t p t p t p p t= → → → → → → → →
5 5 6 7 7 8 8 9 9) (, p t p t p t p p t→ → → → → → →

10 10)p t o→ → →
In this section, we evaluate the complexity of whole

Web service composition through analyzing the
execution path complexity. For the above execution paths,
their complexities can be defined in the following style.

Definition 4 (Execution Path Complexity). Given an
execution path Pt , the control complexity of Pt can be
defined as the sum of complexities of all places and
transitions in this execution path. Formally,

() () ()i ji jC Pt C p C t= +∑ ∑ (8)
Where ip is the place node in path Pt , and jt is
transition node in this path.

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1295

© 2010 ACADEMY PUBLISHER

For the purpose of simplicity, the complexity of each
place or transition node is assigned with the weight 1, i.e.,

() 1iC p = and () 1jC t = . Hence, the complexity of an
execution path can viewed as the node (including place
and transition) number in the path. While considering the
above two example paths, their complexities are 14 and
21 respectively.

After getting complexities of all execution paths, the
dynamic complexity of the corresponding WSC can be
scaled by average execution path complexity (AEPC).
Given a Web service composition, the execution path set
in it is denoted as 1 2{ , , , }kPS Pt Pt Pt= L , and the
execution probability of each path is denoted as

()iprob Pt , then the AEPC can be measured by the
following formula.

1
() ()

k
i i

i
AEPC prob Pt C Pt

=
= ⋅∑

1 1() () () ()k kprob Pt C Pt prob Pt C Pt= ⋅ + + ⋅L (9)
It should be noted that, if the execution probability of

each path is not addressed in system specifications, we
can treat it in the basic manner, i.e., () 1iprob Pt k= ,
where k is the number of execution paths in WSC.

For the running B2B application, we suppose the
probabilities of 1Path and 2Path are 0.3 and 0.7
respectively. Then, the AEPC value of whole application
can be calculated as

() 0.3 14 0.7 21 18.9AEPC OnlineOrder = × + × =
From the result we can find that, the frequently used

paths play more important role for weighting the dynamic
execution complexity of whole Web service-based
system. Therefore, the profile information is very useful
for the complexity measurement of Web service
composition.

B. Extension Based on Cognitive Informatics
In the above basic measurement, all place and

transition nodes are assigned with the same weight. In
fact, different place or transition node has different
complexity for executing or understanding. For example,
the “and split” and “and join” node are more complex
than the common transition nodes in Petri net-based
business process. Similarly, the “or split” and “or join”
node are more complex than the place nodes for the
general purpose of data transferring. Therefore, the above
basic metric should be extended by assigning different
types of nodes to different weights. In order to fulfill this
task, an effective way is to measure the complexity of
place or transition node from the perspective of cognitive
informatics.

In cognitive informatics, it is found that the functional
complexity of software in design and comprehension is
dependent on internal architecture of the software [14].
The cognitive weight of software is the extent of
difficulty or relative time and effort for understanding a
given software control structure. Some previous
researches in [14-16] provide the reference weights for
the basic control structures. It is not hard to find that,
there exists similar feature between the traditional
program and Petri net-based business process from the

perspective of cognitive comprehension. Here, we assign
the complexity weights for the place and transition nodes
in business process described by Petri net in the similar
way.

TABLE II. COMPLEXITY WEIGHTS OF KEY STRUCTURE NODES

Type
No. Type Name Basic Structure Weight

1.1 or split (two-way) 2

1.2 or split (many-way) 3

1.3 or join (two-way) 2
1 Branch

1.4 or join (many-way) 3

2.1 while 3

2.2 repeatUntil 3 2 Iteration

2.3 forEach 3

3.1 flow 4
3 Concurrency

3.2 join node </flow> 4

4 Service
Invocation 4.1 external service invoking 2

5.1 exception handler 3
5 Interrupt

5.2 event handler 3

According to the above weight definitions, we can
analyze the complexities of place nodes and transition
nodes as follows. Place 6p is an “or split” node and place
o is an “or join” node, so the complexities of both them
are 2, i.e., 6() 2C p = and () 2C o = . Meanwhile, other
place nodes are all basic ones, so their weights are all 1.

The complexity weights of transition nodes are more
complicated here. Among them, 2t and 7t are “and split”
nodes, thus 2 7() () 4C t C t= = . Accordingly, 5t and 10t
are all “and join” nodes, so 5 10() () 4C t C t= = . Moreover,
node 3t , 4t , 8t and 9t are not the common operations,
but the service invocation nodes. Therefore, their
complexities can be expressed as 3 4 7() () ()C t C t C t= = =

8() 2C t = .
Based on the above analysis for each node’s

complexity, the complexities of 1Path and 2Path can be
calculated according to formula (8). Hence,

(1) 6 1 2 2 2 1 2 4 2 2 24C Path = × + × + × + × + × = , and
(2) 10 1 2 2 1 1 4 4 4 2 39C Path = × + × + × + × + × = .

Then, the average execution path complexity based on
cognitive informatics (here denoted as CIAEPC) can be
computed as follows.

() (1) (1)CIAEPC OnlineOrder prob Path C Path= ⋅ +
(2) (2)prob Path C Path⋅ 0.3 24 0.7 39 34.5= × + × =

In our point of view, the path complexity based on
cognitive informatics is more reasonable than the basic
form. From the perspective of system execution, the logic
judgment node and service invoking node perhaps will
consume more computing time than the common nodes
for data transferring or atomic operation, so these kinds
of nodes should be assigned to high weights. Form the
perspective of process comprehension, the nodes with
complicated logic or external service invocation are much
harder to be understood than the common node in the
process model. Therefore, CIAEPC can precisely

1296 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

describe the dynamic execution complexity or
comprehension difficulty of the Petri net-based process
used in Web service composition.

In the above complexity weights of key structure nodes,
two cases (i.e., n-way branch or parallel structure, 2n >)
should be considered deeply. Here, take the n-way
<flow> structure for example, its weight is assigned to 4
in this section. However, considering two-way flow and
n-way (2n >) flow, cognitively the latter would have
higher weight than the former. Thus for n-way flow, n
could also be one factor in deciding the weight of <flow>
node.

For the n-way <flow> structure, its weight can be
refined in the following formula.

2() 4 (1)floww N log n〈 〉 = + − , (2n ≥) (10)
Where flowN 〈 〉 represents the parallel structure node,

and n is the out-degree or in-degree of parallel execution
node. In the above formula, we use a logarithm function
to describe the cognitive difficulty for the massive
parallel execution relations. While considering the branch
structure, its weight also can be derived in the similar
way.

V. CASE STUDIES
In this section, we will analyze two real-world Web

service compositions to validate the feasibility and
effectiveness of our measurement methods. The first case
named Online Shop [17] is a typical composite service,
whose business process is described by Figure 4.

Figure 4. Two versions of business processes for the example

application Online Shop

The figure provides two continuous versions of its
business process. In the first version, it receives the login
message from customer and identifies his/her type. If the
message is from an old customer, the process receives the
order, and sends an invoicing request to invoicing service.
If the message is from a new customer, the process
initiates two tasks concurrently. In the first task the
process receives the order and then confirms it. In the

second task, the process receives the terms of payment
before it sends invoicing request to the invoicing service.
In the Petri net-based business process, 3t , 6t and 8t are
the external service nodes. In the second version, the
process of old customer is divided into two concurrent
tasks. In the first task the process receives the order and
then confirms it. In the second task, the process receives
which gift is chosen before it sends request to invoicing
service. In this new version, 4t , 6t , 10t and 12t are the
external service nodes.

In this case, we suppose the probabilities for old
customer and new customer are the same and equal to 0.5.
Thus, the metric value of such measurement issues can be
calculated and listed in Table 3.

TABLE III. VALUE OF COMPLEXITY METRICS FOR ONLINE SHOP

Metric Value
No. Metrics

1st Version 2nd Version
1 PN 11 16

2 TN 10 14

3 SN 3 4

4 ADP 2 2

5 ADT 2.2 2.29

6 TNS 7.33 8

7 CC 3 4

8 AEPC 13.5 18

9 CIAEPC 20 28

From the results in the above table we can find that,
most metrics (except for ADP) of the second version are
greater than those of the first version. In fact, the business
process in Figure 4(b) is the evolved version, so it has
more complex control logic than the earlier version. The
metric value calculated by our complexity measurement
methods can obviously reflects this evolvement feature.
That is, our metrics can distinguish the business processes
with different complex degree easily. For the complex
item of average degree of place (ADP), it mainly shows
the complexity of data transferring or branch judgment.
However, for the business processes in Figure 4(a) and
4(b), they have the same complex degree of branch
judgment. Therefore, both of them have the same ADP
value for two different versions of Online Shop
application.

As shown in Figure 5, the second example application
is a composite service for travel booking (Here called
Travel Booking) [18]. At first, it receives the
message from customer (i.e., 1t) and checks customer’s
status by invoking an external service (2t). Then, it can
synchronously call three external services denoted via 4t ,

6t and 7t for booking car, hotel and flight. Otherwise, it
performs the follow-up treatment for the unregistered
users. Finally, the booking will be successful with
probability of 0.8. Accordingly, the failed probability is
0.2.

For this application, the three basic metrics, i.e., PN ,
TN and SN , are 14, 14 and 4 respectively. In addition,

other metrics can be calculated as follows.

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1297

© 2010 ACADEMY PUBLISHER

() 31() 2.21
14

ii

P

deg p
ADP Travel

N
= = =∑ ,

() 33() 2.36
14

ii

T

deg t
ADT Travel

N
= = =∑ ,

Figure 5. The business process for the composite service of travel

booking

| | 32() 8
4S

FTNS Travel
N

= = = ,

() 32 14 14 2 6CC Travel = − − + = .

While considering the paths in application Travel
Booking, there is a loop body between 3p and 5t . The
execution of this loop body can be analyzed in two cases:
one time and more than one time. Accordingly, two sub-
paths exist from place 3p to transition 8t : 3 4p t→ →

4 5 8p t t→ → and 3 4 4 5 3 4 4p t p t p t p→ → → → → → →
5 8t t→ . Here, we use the 2-time loop to represent the

case of more than one time execution.
On the other hand, the execution profile of each branch

condition is denoted as a label on the corresponding edge,
that is,

2 3() 0.9prob p t→ = , 2 9() 0.1prob p t→ = ,
12 13() 0.8prob p t→ = , 12 14() 0.8prob p t→ = .

Furthermore, we suppose 5 3 5() (prob t p prob t→ = →
8)t 0.5= for the loop control condition.

There are six possible paths in the Petri net-based
business process, so we can yield the final execution
path-based metrics as below.

() 22 0.9 0.5 0.8 22 0.9 0.5APEC Travel = × × × + × × ×
0.2 26 0.9 0.5 0.8 26 0.9 0.5 0.2 15 0.1+ × × × + × × × + ×

0.8 15 0.1 0.2 23.1× + × × = ,
() 38 0.9 0.5 0.8 38 0.9 0.5CIAPEC Travel = × × × + × × ×

0.2 45 0.9 0.5 0.8 45 0.9 0.5 0.2 20 0.1+ × × × + × × × + ×
0.8 20 0.1 0.2 39.35× + × × = .

While comparing the metric results of Online Shop
with those of Travel Booking, we can find that all
metric values of the latter application are higher than
those of the former. This means that our metrics can
reflect the actual situation, because the business process
of application Travel Booking is more complex than

that of Online Shop. Therefore, we can claim that our
measurement methods are effective and rational.

VI. RELATED WORK
In recent years, complexity analysis work for Web

services or their composition has received a lot of
attention and there are a number of discussions dedicated
to this field. In reference [13,19], J. Cardoso and V.
Gruhn et al. have surveyed several contributions for
measuring business process models. Here, we only briefly
address the existing methods which have closed relations
with our work.

At present, BPEL, BPMN and Petri-Net are three
main-stream methods to describe the business workflow
in WSC. J. Cardoso designed a process complexity metric
named control-flow complexity (CFC) to analyze tri-
logic workflow [20] through borrowing some ideas from
McCabe’s cyclomatic complexity. Then, for the BPEL-
based process code, he extended his previous work and
developed several metrics to characterize some specific
perspectives of business process in WSCs. For example,
he analyzed the special nodes in BPEL code and assigned
different weights to these logic constructs. Compared
with their metrics, our work mainly concerns on the
complexity analysis for workflow represented by Petri-
Net.

BPMN is a widely-adopted denotation to visualize the
business process in Web service composition.
Accordingly, to analyze the complexity of business
workflow expressed by BPMN has cause researcher’s
attention. Typically, E. Rolón et al. argued several
metrics for business process modeled in BPMN [21].
Their metrics are an adaptation and extension of the
framework for the modeling and evaluation of software
processes (FMESP). In addition, Reijers and
Vanderfeesten introduced a heuristic rule to control the
proper size of individual activities in business process,
and defined a process cohesion and a process coupling
metric [22]. Different from their works, we only consider
the control flow complexity (i.e., count-based complexity
and execution path-based complexity) for Petri net-based
process in Web service composition. At present, we have
not considered the aspects about cohesion and coupling.

Petri net-based business process representation is
firstly proposed by R. Hamadi and B. Benatallah [7].
Compared with BPMN, Petri net is more concise and can
express complex parallel execution behaviors. However,
parallel is a significant feature of Web service-based
system. So using Petri net to describe the composite and
dynamic behaviors is very suitable. For example, Zhong
et al. used stochastic Petri nets as a solution to the
problems of predicting the reliability of web service
composition [23]. To the best of our knowledge, our work
is the first attempt to assess the complexity of Petri net-
based business process in WSC.

From the perspective of program maintainers,
complexity can be defined as “difficulty to understand a
program or model”. Therefore, cognitive informatics can
be adopted to understand and measure the fundamental
characteristics of program. Using results from cognitive

1298 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

sciences, Cant et al. come up with a set of tentative
complexity metrics for software programs [15]. Wang
and Shao [16] defined the cognitive weight as a metric to
measure the effort required for comprehending a piece of
software. Based on empirical studies, they defined
cognitive weights for basic control structures. But, their
works are both for the traditional programs, and Web
service composition has some differences from them. In
this paper, we adopt the cognitive weights for some
typical constructs to analyze the execution complexity of
some specific path in WSC.

VII. CONCLUSIONS
Web service is a new technology to build distributed

applications over the Internet. Although it can greatly
increase the reusability of service unit and reduce the
coupling between software modules. However, how to
analyze and understand Web service-based system with
characters such as heterogeneity, distributed and loose-
coupling is a difficult task for software maintainers.
Therefore, it is very necessary to exploit some precise
and reasonable metrics for such system.

In the paper, we adopt Petri net as a graphic notation
with formal semantics to describe the control dependence
relations between Web services in WSC. Based on this
business process representation, two metric set for
measuring the control structure complexity of Web
service composition is proposed. The fist one is based on
the basic count of elements in Petri net-based business
process, such as place number, external service number,
transfer number per service and so on. The merit of this
metric set lies in its simpleness and practicability. The
second is execution path-based metric set. We firstly
presented the concept of parallel execution relation, and
then the execution paths in WSC’s process can be
deduced. Combined with the execution profile
information, path-based complexity metric is addressed.
Then, an extension based on cognitive informatics is also
discussed. Furthermore, two real applied WSCs are used
to confirm the effectiveness and practical value of our
metric sets.

ACKNOWLEDGMENT

This work was supported in part by the National
Natural Science Foundation of China (NSFC) under
Grant No. 60803046, and the Science Foundation of
Jiangxi Educational Committee under Grant No. JJ10433.
The paper is an extension of the early short version [24]
in proceedings of SOSE 2010.

REFERENCES
[1] W. T. Tsai, X. Bai, and Y. Chen. “On Service-Oriented

Software Engineering,” Tsinghua University Press, 2008,
pp.1-11. (in Chinese)

[2] IBM. “Web Services: Taking e-Business to the Next
Level,” White Paper, 2000, available from: http://www.
ibm.com/developerworks/cn/websphere/download/pdf/e-
businessj.pdf

[3] W3C Web Services Activity, available from: http://www.
w3.org/2002/ws/, accessed on October 2009.

[4] M. Aoyama, S. Weerawarana, H. Maruyama and et al.
“Web Services Engineering: Promises and Chanllenges,”
Proc. of ICSE’02, Orlando, Florida, USA, ACM Press, 19-
25 May 2002, pp. 647-648.

[5] C. Petri. “Kommunikation mit Automaten,” PhD Thesis,
University of Bonn, Germany, 1962.

[6] J. Peterson. “Petri Net Theory and the Modeling of
Systems,” Prentice Hall, Englewood Cliffs, 1981.

[7] R. Hamadi and B. Benatallah. “A Petri Net-based Model
for Web Service Composition,” Proc. of the 14th Aus-
tralasian Database Conference (ADC’03), Adelaide,
Australia, 2003, pp.191-200.

[8] S. Narayanan and S. McIlraith. “Analysis and Simulation
of Web Services,” Computer Networks, 2003, Vol. 42, pp.
675-693.

[9] OASIS WSBPEL Technical Committee. Web Services
Business Process Execution Language, Version 2.0,
available at http://docs.oasis-open.org/wsbpel/2.0/wsbpel
v2.0.pdf

[10] S. A. White. “Introduction to BPMN,” March, 2004.
Available at http://www.bpmn.org/Documents/Introduction
to BPMN.pdf

[11] Z. Yan and Q. Ding. “Web Service Flow Model ing Based
on Petri Net,” Computer Applications, 2003, Vol. 23, No.
12, pp. 55-57. (in Chinese)

[12] T. J. McCabe. “A Complexity Measure,” IEEE Trans. on
Software Engineering, 1976, Vol. 2, No. 4, pp. 308-320.

[13] J. Cardoso, J. Mendling, G. Neumann, and H.A. Reijers.
“A Discourse on Complexity of Process Models,” Proc. of
the 4th Int’l Conference on Business Process Management
(BPM’06) Workshops, LNCS 4103, 2006, pp. 117-128.

[14] S. Misra. “A Complexity Measure Based on Cognitive
Weights,” International Journal of Theoretical and Applied
Computer Sciences, Vol. 1, No. 1, 2006, pp. 1-10.

[15] S. N. Cant, D. R. Jeffery and B. Henderson-Sellers. “A
Conceptual Model of Cognitive Complexity of Elements of
the Programming Process,” Information and Software
Technology, 1995, Vol.37, No.7, pp. 351-362.

[16] Y. Wang and J. Shao. “A New Measure of Software
Complexity Based on Cognitive Weights,” Can. J. Elect.
Comput. Eng., 2003, Vol.28, No.2, pp.69-74.

[17] D. Wang, B. Li and J. Cai. “Regression Testing of
Composite Service: An XBFG-based Approach,” Proc. of
2008 IEEE Congress on Services Part II, 6-11 July, 2008,
pp. 112-119.

[18] S. A. White. Using BPMN to Model a BPEL Process, 2005,
pp.1-18.

[19] V. Gruhn and R. Laue. “Complexity Metrics for Business
Process Models,” Proc of BIS’06, Klagenfurt, Austria,
May 31-June 2, Lecture Notes in Informatics (LNI) 85, GI
2006, 2006, pp. 1-12.

[20] J. Cardoso. “Control-flow Complexity Measurement of
Processes and Weyuker’s Properties,” Transactions on
Enformatika, Systems Sciences and Engineering, 2005,
Vol. 8, pp. 213-218.

[21] E. Rolón, F. Ruiz, F. García and M. Piattini. “Applying
Software Metrics to Evaluate Business Process Models,”
CLEI Electronic Journal, 2006, Vol.9, No. 1, pp. 1-15.

[22] H. A. Reijers and I. T. P. Vanderfeesten. “Cohesion and
Coupling Metrics for Workflow Process Design,” Proc. of
BPM’04, LNCS 3080, 2004, pp. 290-305.

[23] D. Zhong, Z. Qi, and X. Xu. “Reliability Prediction and
Sensitivity Analysis of Web Services Composition,” Petri
Net: Theory and Applications, 2008, pp. 459-470.

[24] C. Mao. “Complexity Analysis for Petri Net-based
Business Process in Web Service Composition,” Proc. of
the 5th IEEE International Symposium on Service-
Oriented System Engineering (SOSE’10), Nanjing, China,
4-5 June, 2010, 4 pages.

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1299

© 2010 ACADEMY PUBLISHER

