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Abstract— The use of the UML specification language for 
modelling dynamic behaviors of systems is very widespread. 
UML Statecharts and Collaboration diagrams are widely 
used to model dynamic behaviors of systems. However, the 
lack of firm semantics for the UML modeling notations 
makes the detection of behavioral inconsistencies difficult in 
the initial phases of development. The use of formal methods 
makes such error detection possible but the learning cost is 
high. Integrating UML with a suitable formal notation is a 
promising approach that makes UML more precise and 
amenable to rigorous analysis. In this paper, we present the 
benefits of a similar approach that is the integration of UML 
Statechart and Collaboration diagrams and Colored Petri 
Nets models. The result is an automated approach and a tool 
environment that formally transforms dynamic behaviors of 
systems expressed using UML models into their equivalent 
Colored Petri Nets models for analysis purposes. To make 
the analysis easier, the obtained models are used to generate 
automatically their equivalent description in the input 
language of the INA Petri net analyzer. The approach is 
based on Graph Transformation and the Meta-Modeling 
tool ATOM3 is used. The approach is illustrated through an 
example. 
 
Index Terms—UML; CPN; INA Analyzer; Meta-Modeling; 
Graph Grammars; Graph Transformation; Models 
Transformation; AToM3 

I.  INTRODUCTION 

The Unified Modeling Language (UML) [6] is 
considered nowadays as a standard modeling language in 
the software development process of systems based on 
the Object-Oriented Paradigm. It consists of many 
diagrams. Some diagrams are used to model the structure 
of a system while others are used to model the behavior 
of a system. UML Statecharts and Collaboration 
diagrams are widely used to model dynamic behavior of 
complex and concurrent systems in UML [20]. UML 
Statechart diagram models the lifetime (states life cycle) 
of an object in response to events, whereas a UML 

Collaboration diagram models the interaction between a 
set of objects through the messages (or events) that may 
be dispatched among them [6]. 

However, despite its success as being a unified and 
visual notation, UML diagrams still lack a precise formal 
semantics, which hinders the formal analysis and 
verification of system design. On the other hand, models 
established in many mathematical domains (such as Petri 
Nets, process algebras, transition systems, etc.) are 
precise and could be analyzed and verified by using 
various tools in these domains. Integrating UML with 
these models is a promising approach that makes UML 
more precise and amenable to rigorous analysis. Due to 
its understandability and abundant analysis techniques, 
Petri Nets (PNs) [28] are appropriate for modeling 
systems with concurrency. Colored Petri Nets (CPNs) 
[22] are a generalization of ordinary PNs, allowing 
convenient definition and manipulation of data values. 
CPNs also have a formal, mathematical representation 
with a well-defined syntax and semantics. Thus 
developing a tool support for modeling and analysis of 
complex concurrent systems is significant to modelers 
who use UML to model their systems. UML behavioral 
models are projected automatically into CPN models for 
analysis and verification to detect behavioral 
inconsistencies like deadlock, livelock, imperfect 
termination, etc. Then, the results of the formal analysis 
can be back-annotated to the UML models to hide the 
mathematics from modelers. 

Building a modeling tool from the scratch is a 
prohibitive task. Meta-Modeling approach is useful to 
deal with this problem, as it allows (possibly in a 
graphical way) the modeling of the formalisms 
themselves [9]. A model of formalism should contain 
enough information to permit the automatic generation of 
a tool to check and build models subject to the described 
formalism’s syntax. If this specification is done 
graphically, the time to develop a modeling tool can be 
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drastically reduced to a few hours. Since meta-model and 
model are graphs, further manipulations of the models 
can be described (modeled) graphically and formally as 
Graph Grammars [32], thus they become high-level 
modes, reducing the need for coding to a minimum. Some 
of these manipulations are model simulation or 
animation, model optimization, for example, to reduce its 
complexity, model transformation into another model 
(equivalent in behavior but expressed in a different 
formalism), and the generation of textual model 
representations for use by existing simulators or tools. 
These ideas presented above are implemented in ATOM3 
(A Tool for Multi-formalism and Meta-Modeling). It is 
developed at the Modeling, Simulation and Design Lab in 
the School of Computer Science of McGill University 
[2].  

In this paper, we propose a Graph Transformation 
approach and tools for modeling and verification of 
dynamic behavior in UML models using CPN formalism. 
In order to get a more general transformation approach 
between UML and CPN, we research the transformation 
at the Meta-Model level. And for reaching an automatic 
and correct process, we use Graph Transformation 
Grammars and Systems to define and implement the 
transformation. Using our approach, the modelers specify 
the dynamics of a system by means of a set of Statechart 
diagrams and Collaboration diagram. Then the modelers 
transform automatically their behavioral specification 
into its equivalent single system-level CPN model. From 
this intermediate representation they can generate 
automatically the equivalent description in the input 
language of the INA analysis tool [21] for formal analysis 
and verification purposes. 

With this end, we have defined simplified Meta-
Models for UML Statechart diagram, Collaboration 
diagram and CPN formalism using AToM3 tool. Than we 
have used this Meta-Modeling tool AToM3 to 
automatically generate a visual modeling tool for each 
formalism according to its proposed meta-model. For the 
transformation process, we have defined three graph 
grammars. The first one converts the Statechart diagrams 
to Flat State Machine (FlatSM) [34] models. The second 
graph grammar transforms the obtained FlatSM models 
into CPN-like models and relates each other according to 
the message passing described in the Collaboration 
diagram. The resulting model of this step is a single 
system-level CPN model which is a form of Object Petri 
Nets called Object Net Models [33] (discussed in Section 
IV). The last graph grammar rebuilds the obtained CPN 
model in the input language of the INA analysis tool.  

This paper is organized as follows. Section II outlines 
the major related work. In section III, we give an 
overview of the AToM3 tool. Section IV summarizes 
briefly the pertinent concepts for formalizing UML using 
CPN which we require in our approach. In section V, we 
present our Graph Transformation approach. In section 
VI, we illustrate our framework with an example. Finally, 
section VII concludes the paper. 

 

II.  RELATED WORKS 

In addition to AToM3, there are several visual tools to 
describe formalisms using Meta-Modeling such as the 
Generic Modeling Environment (GME) [17], MetaEdit+ 
[23], KerMeta [26] and other tools from the Eclipse 
Generative Modeling Tools (GMT) project such as the 
Eclipse Modeling Framework (EMF) [13], the Graphical 
Editing Framework (GEF) [15] and the Graphical 
Modeling Framework (GMF) [18]. In most of these tools, 
model manipulations (transformation, simulation or code 
generation) have to be described textually, and user 
friendly support for visual analysis and testing is 
generally missing. In AToM3, the user expresses such 
transformations by means of Graph Grammar models. 
Graph Grammars are a natural, declarative, and general 
way to express these manipulations.  

There are also similar tools which manipulate models 
by means of Graph Grammars, such as PROGRES [30], 
GReAT [19], FUJABA [14], TIGER [35] and AGG [1]. 
However, none of these has its own Meta-Modeling 
layer. Some of them are complemented with support for 
Meta-Modeling (for example, The GReAT model 
transformation engine is combined with GME).  

The combined use of Meta-Modeling and Graph 
Grammars taken in AToM3 allow users not only to 
benefit from the advantages of both (Meta-Modeling and 
Graph Grammars) but also to model with Multi-Paradigm 
Modeling [7]. The AToM3 tool has been proven to be 
very powerful, allowing the Meta-Modeling and the 
transformations of known formalisms.  

In [8] the authors presented a transformation between 
Statecharts (without hierarchy) and Petri Nets. In [12], we 
have provided the INA Petri net tool [21] with a graphical 
environment. In [24], we have presented a formal 
framework (a tool) based on the combined use of Meta-
Modeling and Graph Grammars for the specification and 
the analysis of complex software systems using G-Nets 
formalism. G-Nets [10] formalism is a kind of high level 
Petri Nets for the modular design of distributed systems. 
Our framework allows a developer to draw a G-Nets 
model and transform it into its equivalent 
Predicate/Transition Nets (PrT-nets) [16] model 
automatically. In order to perform the analysis using the 
PROD analyzer [29], our framework allows a developer 
to translate automatically each resulted PrT-Nets model 
into PROD’s net description language.  

In this paper we propose an extended version of our 
paper published in [25]. It consists of an approach for 
transforming UML Statechart and Collaboration diagrams 
to colored Petri nets models. More precisely, we have 
proposed an automated approach and a tool environment 
that formally transforms dynamic behaviors of systems 
expressed using UML models into their equivalent 
colored Petri Nets (CPN) models for analysis purposes.  

III.  GRAPH GRAMMAR AND ATOM3 

AToM3 [2] is a visual tool for Multi-formalism 
Modeling and Meta-Modeling. Being implemented in 

1280 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER



Python [3], it is able to run without any change on all 
platforms for which an interpreter for Python is available. 

By means of Meta-Modeling, we can describe or 
model the different kinds of formalisms needed in the 
specification and design of systems. The AToM3 meta-
layer allows a high-level description of models using 
Entity Relationship (ER) formalism or UML Class 
Diagram formalism extended with the ability to express 
constraints. Based on these descriptions, AToM3 can 
automatically generate tools to manipulate (create and 
edit) models in the formalisms of interest [9]. 

AToM3’s capabilities are not restricted to these 
manipulations. AToM3 also supports graph rewriting 
system, which uses Graph Grammar to visually guide the 
procedure of model transformation. Model transformation 
refers to the (automatic) process of converting, 
translating, or modifying a model of a given formalism 
into another model that might or might not be in the same 
formalism. 

Graph Grammar [3] is a generalization of Chomsky 
grammar for graphs. It is a formalism in which the 
transformation of graph structures can be modeled and 
studied. The main idea of graph transformation is the 
rule-based modification of graphs as shown in Fig.1. 

 
Figure 1. Rule-based Modification of Graphs. 

Graph Grammars are composed of production rules, 
each having graphs in their left and right hand sides (LHS 
and RHS). Rules are compared with an input graph called 
host graph. If a matching is found between the LHS of a 
rule and a subgraph in the host graph, then the rule can be 
applied and the matching subgraph of the host graph is 
replaced by the RHS of the rule. Furthermore, rules may 
also have a condition that must be satisfied in order for 
the rule to be applied, as well as actions to be performed 
when the rule is executed. A graph rewriting system 
iteratively applies matching rules in the grammar to the 
host graph, until no more rules are applicable. 

The use of a model in the form of a graph grammar of 
graph transformations has several advantages over 
embedding the computation in a lower-level, textual 
language [5]: 
• Graph grammars are a natural, graphical, formal and 

high-level formalism.  
• The theoretical foundations of graph rewriting 

systems can help in demonstrating the termination 
and correctness of the computation model.  

IV.  UML & CPN 

The intuitive and graphical notations of Statechart 
diagrams provide the necessary expressive power for 
modeling dynamic aspects of complex and concurrent 
systems in the framework of UML [20]. However, the 

lack of a formal dynamic semantics for Statechart 
diagrams limits its capability to apply mathematical 
techniques analysis and verification. To overcome this 
limitation, several projects discuss transforming these 
diagrams into a formal model. Different types of PNs 
have been applied to this end. Despite new concepts 
(such as color, hierarchy, stochastic concepts) are fused 
into PNs, the essence of its syntax and its dynamic 
behavior properties never changes. In [11], Dong, et al. 
convert UML state machines into a type of Petri net 
called Hierarchical Predicate Transition Net (HPrTN). In 
[4], Merseguer et al. propose a formalization for a subset 
of UML Statecharts in terms of another type of Petri net 
call Generalized Stochastic Petri Net (GSPN). In [33] 
Saldhana et al. propose an approach to transform a set of 
Statechart diagrams into CPN model. 

We note that these approaches have different strengths, 
but the latter approach provides a design strategy based 
on separation of concerns. This approach suggests that 
the Statechart diagrams are first converted into a Shlaer-
Mellor object life cycle [34], which is a Flat state 
machine (FlatSM) model that only contains simple states 
and transitions. Since Statechart diagrams may contain 
hierarchical or nested states, effective conversion to 
CPNs requires that the nested states be "flattened". These 
FlatSM models are then converted to a form of Object 
Petri Nets (OPN) [27] called Object Net Models (ONM) 
[33]. Finally, the UML Collaboration diagram is used to 
connect these object Net models (ONMs) to derive a 
single system-level model for the system under study (see 
Fig.2.). 

 
Figure 2. Architecture of Saldhana’s approach [33]. 

The structure of ONM model consists of a lifetime 
behavior model (LM) and a token routing structure as 
shown in Fig.3. LM represents a CPN-like model that is 
derived from the Statechart of an object. Basically, the 
transformation from a Statechart to a CPN accomplished 
by the following mappings: a state is mapped to a place; a 
transition is mapped to a CPN transition. The concept of 
events is a key factor in defining the semantic of 
Statechart, the actions of creating, routing and 
dispatching of events determine its execution semantics. 
So, events are mapped to CPN tokens which define its 
data types.  

The token routing structure defines three places (in-
place (IP), out-place (OP) and event-dispatcher place 
(ED)) and four transitions (T1, T2, input transition arc 
(ITA) and output transition arc (OTA)). Since events are 
modeled by tokens, we refer to the tokens derived from 
Statecharts events by event-tokens. The IP place of the 
object holds the event-tokens that will be consumed by 
the object. Thus, arcs will connect the IP place to all 
transitions in the LM model that Statecharts transitions 
initiated by events. The ED place holds the event-tokens 
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that are generated by the object. So, for each transition in 
LM, if this transition generates a new event-token, there 
will be an arc targeting ED place. The generated event-
token can have a type of either external or internal. If it is 
internal, it will be routed to IP place via transition T2. 
Otherwise, it will be routed to OP place via transition T1. 
The OP place of the object holds the event-tokens that 
will be routed to other objects. In order to define the 
communication between the objects, a special place 
(Internal Linking Place (ILP)) is used to route event-
tokens between the ONM models. For precise detail see 
[33]. 

 
Figure 3. The structure of an Object Net Model [33]. 

We note that the transformation in this approach is 
performed manually. We propose in the next section our 
Graph Transformation approach to perform the 
transformation automatically. Since UML diagrams and 
CPN models are based on the graphical notations, there 
comes a possibility of depicting them by the common 
graph concepts, and with it the possibility of transforming 
UML models into CPN from the aspect of graph theory. 
Thereby, this is another reason for selecting PNs as the 
target formal model and considering the graph 
transformation as the foundation theory and highly 
automated mechanism for transformation.  

V. OUR APPROACH 

In this section, we describe our automated approach 
and tools environment that formally transform dynamic 
behaviors of systems expressed using UML models into 
their equivalent CPN models for systems analysis using 
the INA Petri Nets analyzer. The approach is based on the 
combined use of Meta-Modeling and Graph Grammar. In 
this work, we assume that the behavior of the system is 
specified as a set of Statechart diagrams and that the 
Collaboration diagram is used to represent objects 
interaction. In order to derive the system-level CPN 
model from this behavioral specification, we have 
automated the approach proposed by Saldhana et al. [33]. 
To make the analysis easier, we have also automated the 
generation of the equivalent description of the obtained 
single CPN model in the input language of the INA 
analyzer (see Fig.4.). 

Our approach consists of a process with two steps: 
The first step consists of Meta-Modeling used UML 

diagrams and formalisms. More precisely, we have 
redefined meta-models for a basic category of UML 
Statechart and Collaboration diagram using the Meta-
Modeling tool AToM3. Likewise, we have also defined 
meta-models for FlatSM formalism and ONM formalism. 

Then, we have used AToM3 tool to automatically 
generate a visual modeling tool for each of them 
according to their proposed Meta-Models.  

The second step is to define the models transformation. 
In order to reach an automatic and correct process of 
transformation, we have proposed to use Graph 
Transformation Grammars and Systems to define and 
implement the transformation. So, we have defined three 
Graph Grammars:  

1st GG: converts the Statechart diagrams to FlatSM 
models.  

2nd GG: transforms the obtained FlatSM models into a 
form of CPN called ONM models and relates each other 
according to the message passing described in 
Collaboration diagram. The resulted model of this step is 
a single CPN model for the system under study. 

3rd GG: rebuilds the single CPN model in the input 
language of the INA Petri nets analyzer tool.  

 
Figure 4. The proposed approach. 

A.  Meta-Modeling of Used UML Diagrams and 
Formalisms 

To define a modeling language, one has to provide 
abstract syntax (denoting constructs, their attributes, 
relationships and constraints) as well as concrete 
graphical syntax information (the appearance of 
constructs and relationships in the visual tool). The meta-
formalism used in our work is the UML Class Diagram 
and the constraints are expressed in Python code.  

In this paper, we deal with a subset of UML Statechart 
[6] which consists of states (simple and composite), 
transitions, events, actions that generate events, and 
initial and final states. Composite states have nested 
structure of states which can be sequential or concurrent. 
The proposed meta-model for UML Statecharts diagram 
(see Fig.5 (a)) is composed of the following classes:  
Statechart: This has a Name and represents a Statechart 
in the diagram. 
SC_State: This class describes simple states and has tree 
attributes, namely Name, EntryAction and ExitAction. 
SC_CompositeState: This class represents composite 
states. It inherits from SC_State all its attributes, 
multiplicities and associations.   
SC_Initial: These kinds of entities mark the initial state of 
a Statechart or the initial state/states when reaching a 
composite state. 
SC_Final: Represents the final state of a Statechart (if 
any).  
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Figure 5. Meta-models of Used UML Diagrams and Formalisms. 

The following associations are also included in the 
meta-model: 
StatechartStart: This association allows the connection of 
a Statechart and its initial state. 
SC_InitialConnection: This association allows the 
connection of an initial state and a state. 
SC_FinalConnection: This association allows the 
connection of a state and a final state. 
SC_Transition: This association represents the transition 
from source state to destination state (which may be the 
same state). It contains two attributes: event and Action. 
has_Inside: This is an association between a composite 
state and a state (which may be in it turn composite). It 
expresses the notion of hierarchy: states are inside 
composite state. 
has_Initial: This association expresses the notion of 
hierarchy between a composite state and its initial state. 
has_Final: This association expresses the notion of 
hierarchy between a composite state and its final state. 

Since UML Collaboration diagram consists of objects 
that interact by sending each other messages (or events), 
we propose to meta-model UML Collaboration diagram 
with one class named CollaborationObject for 
representing objects and one association named 
CollaborationLink for representing communication 
between two objects through a list of events as shown in 
Fig.5 (b). A FlatSM is a State Machine without composite 
states. States in FlatSM are denoted by rounded boxes, 
while transitions between states are represented with arcs. 
The Fig.5 (c) presents our meta-model for FlatSM 
formalism. It consists of one class to represent FlatSM 
states and one association for representing FlatSM 

transitions. The last formalism used in our work is ONM. 
ONM is a form of Object Petri Net which uses places and 
transitions to make up models. In order to define meta-
model for ONM we propose two classes: ONMPlace 
class to describe places and ONMTransition to describe 
transitions. These classes are related with two 
associations named InputArc and OutputArc which 
represent input arcs and output arcs as shown in Fig.5 (d).  

To fully define our meta-models, we have also 
specified the graphical appearance of each entity of the 
formalisms according to its appropriate graphical 
notation. Since the associations: has_Inside, has_Initial 
and has_Final in the Statechart Meta-model are a means 
to express hierarchy, they are drawn as invisible links. 

Given our meta-models, we have used AToM3 to 
generate for each formalism a palate of buttons allowing 
the user to create the entities defined in its meta-model. 
Since AToM3 is a visual tool for multi-formalism 
modeling, we can show in the user interface of AToM3 all 
generated tools at the same time (see Fig.11).  

B. Graph Transformation Grammars 
As we mentioned earlier, graph rewriting systems 

iteratively apply a list of rules to the host graph. In 
AToM3, rules are ordered according to a user-assigned 
priority, and are checked from higher to lower priority. In 
the LHS of rules, the attributes of the nodes must be 
provided with attribute values which will be compared 
with the nodes attributes of the host graph during the 
matching process. These attributes can be set to <ANY> or 
have specific values. In order to specify the mapping 
between LHS and RHS, Nodes in both LHS and RHS are 
identified by means of labels (numbers). If a node label 
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appears in the LHS of a rule, but not in the RHS, then the 
node is deleted when the rule is applied. Conversely, if a 
node label appears in the RHS but not in the LHS, then 
the node is created when the rule is applied. Finally, if a 
node label appears both in the LHS and in the RHS of a 
rule, the node is not deleted. If a node is created or 
maintained by a rule, we must specify in the RHS the 
attributes' values after the rule application. In AToM3 
there are several possibilities. If the node label is already 
present in the LHS, the attribute value can be copied 
(<COPIED>). We also have the option to give it a specific 
value or assign it a Python program to calculate the value 
(<SPECIFIED>), possibly using the value of other 
attributes. 

In this subsection, we use AToM3 to define the three 
Graph Grammars for our approach.   

1St GG: Converting Statechart diagrams into FlatSM 
models 

We have named this graph grammar Statechart2FlatSM. 
To convert a Statechart into its equivalent FlatSM model 
using our Statechart2FlatSM grammar, we have proposed 
twenty three rules which will be applied in ascending 
order. Due to lack of space, only some representative 
rules are shown in Fig.6 and Fig.7. 

The graph grammar has an initial Action which 
decorates all the composite state and transition elements 
in the Statechart model with temporary attributes to be 
used in the matching conditions of rules. In composite 
state elements, we use two attributes: Traversed and 
Processed. The Traversed attribute is used for indicating 
if the composite state has already been traversed by the 
grammar, whereas the Processed attribute indicate 
whether the composite state has been processed yet. In 
transition elements, we use also an attribute (Converted) 
which indicates if the transition has already been 
converted by the grammar. All these temporary attributes 
are initialized to 0. 

The strategy of the conversion in Statechart2FlatSM 
grammar can be summarized by the following main steps:  

The first step is to select a Statechart form the set of 
Statechart diagrams and to convert its initial state into a 
FlatSM state (rule N°22 ), More precisely, this rule 
consists in associating a FlatSM state to the Statechart 
initial state by a generic link that permit to connect model 
elements from different language in AToM3. 

The second step is to traverse the selected Statechart 
through its transitions from the initial state to next states 
and so forth. The next states can be simple or composite 
states. For the simple states, these states and the incoming 
transitions are converted into FlateSM states and FlateSM 
transitions respectively (rule N°5 and N°6). In the case 
where the next simple state has been previously 
processed, it will not be converted more than once. For 
this raison the rule N°5 has a higher priority than the rule 
N°6. When the next state is composite state, 
Statechart2FlatSM grammar sets this state as traversed 
(Traversed = 1) without converting the incoming 
transition as shown in rule N°7. At the end of this step, all 
Statechart states of the first level of hierarchy are 

traversed. The simple states are converted, whereas the 
composite ones are not yet. 

In third step, the traversed composite states (if any) 
will be converted. The conversion strategy is the same for 
Statechart diagrams which is based on same traversing 
process recursively (rule N°1). The last step is to relate 
the equivalent FlatSM segments of the composite states 
to FlatSM model. For example, rule N°14 converts exit 
transiotion (not previousely Converted) from composite 
state to simple state into its equivalent transition in 
FlatSM model, and so forth for all other levels of 
hierarchy.  

In order to convert a concurrent composite state, the 
Statechart2FlatSM graph creates two spatial FlatSM 
states (Fork and Joint states) which mimic the semantic 
of the concurrence (rule N°20). The Fork state denotes 
parallel activation of all immediate successor states, 
whereas the Join state denotes synchronized activation of 
an immediate successor state, with respect to join state’s 
source states. The conversion of nested states is 
performed as described in the first and second steps. 
Then, all initial nested states will be related to Fork state 
(rule N°18) and all final nested states will be related to 
Join state (rule N°17). For the sequential composite 
states, the graph grammar locates the initial nested state 
and creates an equivalent FlatSM state and converted 
next nested states according the traversing process as 
described below (in the second step). In Fig.8, we show 
the conversion of a concurrent composite state into 
FlatSM form. 

 
Figure 6. 1st  GG Rules: N° 1, N°5 and N°6. 
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Figure 7.  1st GG Rules: N°7, N°14, N°17, N°18, N°20 and 22. 

 
Figure 8. The Conversion of a concurrent composte state (X) to FlatSM 

form and ONM form. 

2nd GG: Constructing Intermediate system-level model 

We have named the second graph grammar 
FlatSM2ONMs. When the FlatSM2ONMs graph grammar 
execution finishes, the resulting model is the CPN 
system-level model. Fig.9 shows the important proposed 
rules.  

The idea behind the transformation can be described in 
the following steps. In the first one, the graph grammar 
selects a Statechart and creates both the token routing 
structure (IP, ED and OP places and OTA, ITA , T1 and 
T2 transitions) and an equivalent ONM place for its 
initial state (rule N°14). The second step consists of 
creating the LM for the selected Statechart based on its 
equivalent FlatSM model generated in the first graph 
grammar. The transformation process is based on 
traversing FlatSM model in the same manner used in the 
first graph grammar. An ONM place is created for each 
FlatSM state, and an ONM transition is for each FlatSM 
Transition (for example, rules N°2). We note that the 
Fork or Join states in the FlatSM model will be 
transformed into ONM transitions (see Fig.8).  

At this point, LM should be linked to the token routing 
structure. For each FlatSM transition that generates 
events, an output arc will be created from the associated 
ONM transition to ED place in the token routing 
structure. If the event is an external event that will be sent 
to other objects, the created output arc will have an 
inscription as “ex”. The external events of object are 
specified in the Collaboration diagram (rule N°8). 
Otherwise, the event will be considered as an internal 
event (rule N°9). Linking IP place to LM will be 
processed in same way as for the ED place but with input 
arc. Then, ITA and OTA transitions are related to ILP 
place (rule N°11). 

Finally, Statechart2FlatSM graph grammar deletes all 
elements of Statechart diagrams, Collaboration diagram 
and FlatSM formalism in order to have only the system-
level model in ONM formalism (for example, rule N°17 
for deleting Statechart state).  
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Figure 9.  2nd  GG Rules: N°2, N°8, N°9, N°11, N°14 and N°17. 

3rd GG: Generating the INA description 

We have named the last graph grammar ONMs2INA. 
This grammar generates the INA description file (the .cnt 
file) of the whole system. The .cnt file consists of the 
unfolded net structure (which describes the places colors 
(sub-places), their initial markings, and the relations with 
the transition colors (sub-transitions)), and the folding 
information.  

The ONMs2INA graph grammar has an initial Action 
which opens the file where the INA code will be 
generated and decorates all the Place and Transition 
elements in the model with temporary attributes to be 
used in the conditions specified in the rules. In place 
elements, we use two attributes C (Current) and V 
(Visited). The C attribute is used to identify the place in 
the model whose code has to be generated (C ==1), 
whereas the V attribute is used to indicate whether code 
for the place has been generated yet (V == 1: for 
unfolded net structure, V == 2: for sub-places 
information section and V == 3: for the aggregation 
section). In Transition elements, we use three attributes 
PRE, POST and V (Visited). The PRE attribute is used to 
indicate whether this transition is processed as pre-
transition for the current sub-place, whereas the POST 
attribute is used to indicate if this transition is processed 
as post-transition. The V attribute is used to indicate 
whether code for the transition has been generated yet (V 
== 1: for sub-transitions information section and V == 
2: for the aggregation section). All these temporary 
attributes are initialized to 0.  

The ONMs2INA graph grammar is composed of ten 
rules. We are concerned here by code generation, so none 
of these rules will change the input model as shown in 
Fig.10. The main steps of the Automatic code generation 
can be described as follows: 

The first step is to select a place and assign a number 
for it identification which is unique, and marks it as 
current. For the sub-places of the selected place, the 
graph grammar assigns also a number for each of its sub-
places (ruleN°6).  

The second step consists in generating the unfolded net 
structure. For each sub-place in the current place, one line 
will be generated. Each such line starts with the number 
of the sub-place, followed by one blank and the number 
of tokens in the initial marking (ruleN°4). If the sub-place 
has pre-transitions, these are generated as elements of list 
separated by blanks (ruleN°1). Likewise, if the sub-place 
has post-transitions then the graph grammar generates a 
similar list which is preceded by "," (ruleN°2). We note 
that rule N°3 is used to initializes POST and PRE 
attributes of all transitions for the processing of the next 
sub-place. Whereas, rule N°5 is used to locate the current 
place whose processing has been terminated (for all its 
sub-places), and mark it as Visited (V == 1). This process 
will be repeated for all others not visited places in the 
CPN model (ruleN°6 for selecting anther not visited 
place). 

The last step is to generate the folding information, i.e., 
the information which colored places and transitions 
exist, and what their colors are. The rules N°7 and N°8 
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generate the sub-places and sub-transitions information 
sections respectively. The assigned number followed by 
the color which represents the event-name are generated 
for all sup-places and for all sub-transitions. Whereas, the 
rules N°9 and N°10 generate the places and transitions 
aggregations information section respectively. Each place 
will be defined by generating its number, name and color 
set which is a set of its sub-places numbers. For every 
transition, the number, name and color set will be also 
generated.   

 

 
Figure 10.  3rd GG: Generating INA specification. 

VI.   CASE STUDY: ATM MACHINE 

We consider an example of an ATM machine, 
dispensing cash to a user [6]. The Statechart diagrams 
and the Collaboration diagram created in our tools are 
shown in Fig.11 (in the top of the canvas tool). The 
description of the problem is as follows: An ATM 
machine has three basic states: Idle (waiting for customer 
interaction), Active (handling a customer transaction) and 
Maintenance (perhaps having a cash store replenished). 
While active, the behavior of the ATM follows a simple 
path: Validate the customer, select a transaction, process 
the transaction and then print a receipt. After printing, the 
ATM returns to the idle state. While in the active state, 
the user might any time cancel the transaction, returning 
to the ATM to the idle state. The Statechert diagram of 
ATM user shows the different user’s actions. All named 
events in the Statechart diagrams, which do not show up 
on the collaboration diagram, form the internal events of 
that respective object. 

In order to analyze this behavioral specification of the 
ATM Machine, we have to transform this specification 
into its equivalent system-level CPN model. To realize 
this transformation in our tools, we have to execute the 
Statechart2FlatSM graph grammar to obtain flattened 
FlatSM models from composite Statechart diagrams as 
shown in Fig.11 (in the bottom of the canvas tool). Then 
we have to execute also the FlatSM2ONMs graph 
grammar to synthesize the system-level CPN model from 
the obtained FlatSM models and Collaboration diagram. 
The resulted CPN model of the automatic transformation 
is shown in Fig.12. 

In order to perform the analysis of the resulted CPN 
model using the INA analyzer we have to generate its 
equivalent INA description. To generate INA description 
in our tool, we have to execute the ONMs2INA graph 
grammar defined in the previous section. A part of the 
automatic generated file SYSTEM-LEVEL_MODEL.cnt 
which contains the INA description of ATM machine is 
shown in Fig.13. 

To analyze the properties of the behavioral 
specification of the ATM Machine, we have invoked the 
INA tool with the generated INA specification file as 
input. Then, the INA tool provides the properties of the 
Petri Net as shown in Fig.14. We can see from INA 
screen that the net is not bounded, not live, not safe and 
the deadlock-trap property is not valid.  
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Figure 11.   Behavioral specification of ATM Machine. 
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Figure 12.  System-level CPN model of ATM Machine. 
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Figure 13.   Generated INA specification. 

 
Figure 14.   Analysis of the obtained System-level CPN model. 

VII.   CONCLUSION 

In this paper we have proposed a Graph transformation 
approach for transforming UML Statechart and 
Collaboration diagrams to Colored Petri nets models. 
More precisely, we have proposed an automated 
approach and tool environment that formally transform 
dynamic behaviors of systems expressed using UML 
models into their equivalent Colored Petri Nets (CPN) 
models for analysis purposes. This transformation aimed 
to bridge the gap between informal notation (UML 
diagrams) and more formal notation (colored Petri nets 
models). It produces highly-structured, graphical, and 
rigorously-analyzable models that facilitates early 
detection of errors like deadlock, live-lock, … .To make 
the analysis easier, we have used the obtained CPN 
models to generate automatically their equivalent 
description in the input language of the INA Petri net 
analyzer. Our approach is based on graph transformation 
and the meta-modeling tool ATOM3 was used. We have 
illustrated our approach through an example. 

In future work we plan to transform other UML 
diagrams to colored Petri nets and use the well known 
reduction technique on the obtained models before 
performing the analysis in order to optimize the models. 
We plan also to back-annotate the analysis results into the 
UML diagrams to reach the complete automation of the 
transformation.  
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