
On the Use of Graph Transformation in the
Modeling and Verification of Dynamic Behavior

in UML Models

Elhillali Kerkouche
Department of Computer Science, University of Oum El Bouaghi, Algeria

elhillalik@yahoo.fr

Allaoua Chaoui
MISC Laboratory, Department of Computer Science, University of Constantine, Algeria

a_chaoui2001@yahoo.com

El Bay Bourennane and Ouassila Labbani
University of Bourgogne, LE2I Laboratoire, Dijon, France

{ebourenn, Ouassila.Labbani}@u-bourgogne.fr

Abstract— The use of the UML specification language for
modelling dynamic behaviors of systems is very widespread.
UML Statecharts and Collaboration diagrams are widely
used to model dynamic behaviors of systems. However, the
lack of firm semantics for the UML modeling notations
makes the detection of behavioral inconsistencies difficult in
the initial phases of development. The use of formal methods
makes such error detection possible but the learning cost is
high. Integrating UML with a suitable formal notation is a
promising approach that makes UML more precise and
amenable to rigorous analysis. In this paper, we present the
benefits of a similar approach that is the integration of UML
Statechart and Collaboration diagrams and Colored Petri
Nets models. The result is an automated approach and a tool
environment that formally transforms dynamic behaviors of
systems expressed using UML models into their equivalent
Colored Petri Nets models for analysis purposes. To make
the analysis easier, the obtained models are used to generate
automatically their equivalent description in the input
language of the INA Petri net analyzer. The approach is
based on Graph Transformation and the Meta-Modeling
tool ATOM3 is used. The approach is illustrated through an
example.

Index Terms—UML; CPN; INA Analyzer; Meta-Modeling;
Graph Grammars; Graph Transformation; Models
Transformation; AToM3

I. INTRODUCTION

The Unified Modeling Language (UML) [6] is
considered nowadays as a standard modeling language in
the software development process of systems based on
the Object-Oriented Paradigm. It consists of many
diagrams. Some diagrams are used to model the structure
of a system while others are used to model the behavior
of a system. UML Statecharts and Collaboration
diagrams are widely used to model dynamic behavior of
complex and concurrent systems in UML [20]. UML
Statechart diagram models the lifetime (states life cycle)
of an object in response to events, whereas a UML

Collaboration diagram models the interaction between a
set of objects through the messages (or events) that may
be dispatched among them [6].

However, despite its success as being a unified and
visual notation, UML diagrams still lack a precise formal
semantics, which hinders the formal analysis and
verification of system design. On the other hand, models
established in many mathematical domains (such as Petri
Nets, process algebras, transition systems, etc.) are
precise and could be analyzed and verified by using
various tools in these domains. Integrating UML with
these models is a promising approach that makes UML
more precise and amenable to rigorous analysis. Due to
its understandability and abundant analysis techniques,
Petri Nets (PNs) [28] are appropriate for modeling
systems with concurrency. Colored Petri Nets (CPNs)
[22] are a generalization of ordinary PNs, allowing
convenient definition and manipulation of data values.
CPNs also have a formal, mathematical representation
with a well-defined syntax and semantics. Thus
developing a tool support for modeling and analysis of
complex concurrent systems is significant to modelers
who use UML to model their systems. UML behavioral
models are projected automatically into CPN models for
analysis and verification to detect behavioral
inconsistencies like deadlock, livelock, imperfect
termination, etc. Then, the results of the formal analysis
can be back-annotated to the UML models to hide the
mathematics from modelers.

Building a modeling tool from the scratch is a
prohibitive task. Meta-Modeling approach is useful to
deal with this problem, as it allows (possibly in a
graphical way) the modeling of the formalisms
themselves [9]. A model of formalism should contain
enough information to permit the automatic generation of
a tool to check and build models subject to the described
formalism’s syntax. If this specification is done
graphically, the time to develop a modeling tool can be

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1279

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.11.1279-1291

drastically reduced to a few hours. Since meta-model and
model are graphs, further manipulations of the models
can be described (modeled) graphically and formally as
Graph Grammars [32], thus they become high-level
modes, reducing the need for coding to a minimum. Some
of these manipulations are model simulation or
animation, model optimization, for example, to reduce its
complexity, model transformation into another model
(equivalent in behavior but expressed in a different
formalism), and the generation of textual model
representations for use by existing simulators or tools.
These ideas presented above are implemented in ATOM3
(A Tool for Multi-formalism and Meta-Modeling). It is
developed at the Modeling, Simulation and Design Lab in
the School of Computer Science of McGill University
[2].

In this paper, we propose a Graph Transformation
approach and tools for modeling and verification of
dynamic behavior in UML models using CPN formalism.
In order to get a more general transformation approach
between UML and CPN, we research the transformation
at the Meta-Model level. And for reaching an automatic
and correct process, we use Graph Transformation
Grammars and Systems to define and implement the
transformation. Using our approach, the modelers specify
the dynamics of a system by means of a set of Statechart
diagrams and Collaboration diagram. Then the modelers
transform automatically their behavioral specification
into its equivalent single system-level CPN model. From
this intermediate representation they can generate
automatically the equivalent description in the input
language of the INA analysis tool [21] for formal analysis
and verification purposes.

With this end, we have defined simplified Meta-
Models for UML Statechart diagram, Collaboration
diagram and CPN formalism using AToM3 tool. Than we
have used this Meta-Modeling tool AToM3 to
automatically generate a visual modeling tool for each
formalism according to its proposed meta-model. For the
transformation process, we have defined three graph
grammars. The first one converts the Statechart diagrams
to Flat State Machine (FlatSM) [34] models. The second
graph grammar transforms the obtained FlatSM models
into CPN-like models and relates each other according to
the message passing described in the Collaboration
diagram. The resulting model of this step is a single
system-level CPN model which is a form of Object Petri
Nets called Object Net Models [33] (discussed in Section
IV). The last graph grammar rebuilds the obtained CPN
model in the input language of the INA analysis tool.

This paper is organized as follows. Section II outlines
the major related work. In section III, we give an
overview of the AToM3 tool. Section IV summarizes
briefly the pertinent concepts for formalizing UML using
CPN which we require in our approach. In section V, we
present our Graph Transformation approach. In section
VI, we illustrate our framework with an example. Finally,
section VII concludes the paper.

II. RELATED WORKS

In addition to AToM3, there are several visual tools to
describe formalisms using Meta-Modeling such as the
Generic Modeling Environment (GME) [17], MetaEdit+
[23], KerMeta [26] and other tools from the Eclipse
Generative Modeling Tools (GMT) project such as the
Eclipse Modeling Framework (EMF) [13], the Graphical
Editing Framework (GEF) [15] and the Graphical
Modeling Framework (GMF) [18]. In most of these tools,
model manipulations (transformation, simulation or code
generation) have to be described textually, and user
friendly support for visual analysis and testing is
generally missing. In AToM3, the user expresses such
transformations by means of Graph Grammar models.
Graph Grammars are a natural, declarative, and general
way to express these manipulations.

There are also similar tools which manipulate models
by means of Graph Grammars, such as PROGRES [30],
GReAT [19], FUJABA [14], TIGER [35] and AGG [1].
However, none of these has its own Meta-Modeling
layer. Some of them are complemented with support for
Meta-Modeling (for example, The GReAT model
transformation engine is combined with GME).

The combined use of Meta-Modeling and Graph
Grammars taken in AToM3 allow users not only to
benefit from the advantages of both (Meta-Modeling and
Graph Grammars) but also to model with Multi-Paradigm
Modeling [7]. The AToM3 tool has been proven to be
very powerful, allowing the Meta-Modeling and the
transformations of known formalisms.

In [8] the authors presented a transformation between
Statecharts (without hierarchy) and Petri Nets. In [12], we
have provided the INA Petri net tool [21] with a graphical
environment. In [24], we have presented a formal
framework (a tool) based on the combined use of Meta-
Modeling and Graph Grammars for the specification and
the analysis of complex software systems using G-Nets
formalism. G-Nets [10] formalism is a kind of high level
Petri Nets for the modular design of distributed systems.
Our framework allows a developer to draw a G-Nets
model and transform it into its equivalent
Predicate/Transition Nets (PrT-nets) [16] model
automatically. In order to perform the analysis using the
PROD analyzer [29], our framework allows a developer
to translate automatically each resulted PrT-Nets model
into PROD’s net description language.

In this paper we propose an extended version of our
paper published in [25]. It consists of an approach for
transforming UML Statechart and Collaboration diagrams
to colored Petri nets models. More precisely, we have
proposed an automated approach and a tool environment
that formally transforms dynamic behaviors of systems
expressed using UML models into their equivalent
colored Petri Nets (CPN) models for analysis purposes.

III. GRAPH GRAMMAR AND ATOM3

AToM3 [2] is a visual tool for Multi-formalism
Modeling and Meta-Modeling. Being implemented in

1280 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

Python [3], it is able to run without any change on all
platforms for which an interpreter for Python is available.

By means of Meta-Modeling, we can describe or
model the different kinds of formalisms needed in the
specification and design of systems. The AToM3 meta-
layer allows a high-level description of models using
Entity Relationship (ER) formalism or UML Class
Diagram formalism extended with the ability to express
constraints. Based on these descriptions, AToM3 can
automatically generate tools to manipulate (create and
edit) models in the formalisms of interest [9].

AToM3’s capabilities are not restricted to these
manipulations. AToM3 also supports graph rewriting
system, which uses Graph Grammar to visually guide the
procedure of model transformation. Model transformation
refers to the (automatic) process of converting,
translating, or modifying a model of a given formalism
into another model that might or might not be in the same
formalism.

Graph Grammar [3] is a generalization of Chomsky
grammar for graphs. It is a formalism in which the
transformation of graph structures can be modeled and
studied. The main idea of graph transformation is the
rule-based modification of graphs as shown in Fig.1.

Figure 1. Rule-based Modification of Graphs.

Graph Grammars are composed of production rules,
each having graphs in their left and right hand sides (LHS
and RHS). Rules are compared with an input graph called
host graph. If a matching is found between the LHS of a
rule and a subgraph in the host graph, then the rule can be
applied and the matching subgraph of the host graph is
replaced by the RHS of the rule. Furthermore, rules may
also have a condition that must be satisfied in order for
the rule to be applied, as well as actions to be performed
when the rule is executed. A graph rewriting system
iteratively applies matching rules in the grammar to the
host graph, until no more rules are applicable.

The use of a model in the form of a graph grammar of
graph transformations has several advantages over
embedding the computation in a lower-level, textual
language [5]:
• Graph grammars are a natural, graphical, formal and

high-level formalism.
• The theoretical foundations of graph rewriting

systems can help in demonstrating the termination
and correctness of the computation model.

IV. UML & CPN

The intuitive and graphical notations of Statechart
diagrams provide the necessary expressive power for
modeling dynamic aspects of complex and concurrent
systems in the framework of UML [20]. However, the

lack of a formal dynamic semantics for Statechart
diagrams limits its capability to apply mathematical
techniques analysis and verification. To overcome this
limitation, several projects discuss transforming these
diagrams into a formal model. Different types of PNs
have been applied to this end. Despite new concepts
(such as color, hierarchy, stochastic concepts) are fused
into PNs, the essence of its syntax and its dynamic
behavior properties never changes. In [11], Dong, et al.
convert UML state machines into a type of Petri net
called Hierarchical Predicate Transition Net (HPrTN). In
[4], Merseguer et al. propose a formalization for a subset
of UML Statecharts in terms of another type of Petri net
call Generalized Stochastic Petri Net (GSPN). In [33]
Saldhana et al. propose an approach to transform a set of
Statechart diagrams into CPN model.

We note that these approaches have different strengths,
but the latter approach provides a design strategy based
on separation of concerns. This approach suggests that
the Statechart diagrams are first converted into a Shlaer-
Mellor object life cycle [34], which is a Flat state
machine (FlatSM) model that only contains simple states
and transitions. Since Statechart diagrams may contain
hierarchical or nested states, effective conversion to
CPNs requires that the nested states be "flattened". These
FlatSM models are then converted to a form of Object
Petri Nets (OPN) [27] called Object Net Models (ONM)
[33]. Finally, the UML Collaboration diagram is used to
connect these object Net models (ONMs) to derive a
single system-level model for the system under study (see
Fig.2.).

Figure 2. Architecture of Saldhana’s approach [33].

The structure of ONM model consists of a lifetime
behavior model (LM) and a token routing structure as
shown in Fig.3. LM represents a CPN-like model that is
derived from the Statechart of an object. Basically, the
transformation from a Statechart to a CPN accomplished
by the following mappings: a state is mapped to a place; a
transition is mapped to a CPN transition. The concept of
events is a key factor in defining the semantic of
Statechart, the actions of creating, routing and
dispatching of events determine its execution semantics.
So, events are mapped to CPN tokens which define its
data types.

The token routing structure defines three places (in-
place (IP), out-place (OP) and event-dispatcher place
(ED)) and four transitions (T1, T2, input transition arc
(ITA) and output transition arc (OTA)). Since events are
modeled by tokens, we refer to the tokens derived from
Statecharts events by event-tokens. The IP place of the
object holds the event-tokens that will be consumed by
the object. Thus, arcs will connect the IP place to all
transitions in the LM model that Statecharts transitions
initiated by events. The ED place holds the event-tokens

Statechart

Collaboration
Diagram

UML Models
Flat
State

Machines

Object
Net

Models
Single

System-level
Model

RHS LHS Host Graph

LHS RHS

Host Graph

Apply R1

Transformation Rule R1

::=

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1281

© 2010 ACADEMY PUBLISHER

that are generated by the object. So, for each transition in
LM, if this transition generates a new event-token, there
will be an arc targeting ED place. The generated event-
token can have a type of either external or internal. If it is
internal, it will be routed to IP place via transition T2.
Otherwise, it will be routed to OP place via transition T1.
The OP place of the object holds the event-tokens that
will be routed to other objects. In order to define the
communication between the objects, a special place
(Internal Linking Place (ILP)) is used to route event-
tokens between the ONM models. For precise detail see
[33].

Figure 3. The structure of an Object Net Model [33].

We note that the transformation in this approach is
performed manually. We propose in the next section our
Graph Transformation approach to perform the
transformation automatically. Since UML diagrams and
CPN models are based on the graphical notations, there
comes a possibility of depicting them by the common
graph concepts, and with it the possibility of transforming
UML models into CPN from the aspect of graph theory.
Thereby, this is another reason for selecting PNs as the
target formal model and considering the graph
transformation as the foundation theory and highly
automated mechanism for transformation.

V. OUR APPROACH

In this section, we describe our automated approach
and tools environment that formally transform dynamic
behaviors of systems expressed using UML models into
their equivalent CPN models for systems analysis using
the INA Petri Nets analyzer. The approach is based on the
combined use of Meta-Modeling and Graph Grammar. In
this work, we assume that the behavior of the system is
specified as a set of Statechart diagrams and that the
Collaboration diagram is used to represent objects
interaction. In order to derive the system-level CPN
model from this behavioral specification, we have
automated the approach proposed by Saldhana et al. [33].
To make the analysis easier, we have also automated the
generation of the equivalent description of the obtained
single CPN model in the input language of the INA
analyzer (see Fig.4.).

Our approach consists of a process with two steps:
The first step consists of Meta-Modeling used UML

diagrams and formalisms. More precisely, we have
redefined meta-models for a basic category of UML
Statechart and Collaboration diagram using the Meta-
Modeling tool AToM3. Likewise, we have also defined
meta-models for FlatSM formalism and ONM formalism.

Then, we have used AToM3 tool to automatically
generate a visual modeling tool for each of them
according to their proposed Meta-Models.

The second step is to define the models transformation.
In order to reach an automatic and correct process of
transformation, we have proposed to use Graph
Transformation Grammars and Systems to define and
implement the transformation. So, we have defined three
Graph Grammars:

1st GG: converts the Statechart diagrams to FlatSM
models.

2nd GG: transforms the obtained FlatSM models into a
form of CPN called ONM models and relates each other
according to the message passing described in
Collaboration diagram. The resulted model of this step is
a single CPN model for the system under study.

3rd GG: rebuilds the single CPN model in the input
language of the INA Petri nets analyzer tool.

Figure 4. The proposed approach.

A. Meta-Modeling of Used UML Diagrams and
Formalisms

To define a modeling language, one has to provide
abstract syntax (denoting constructs, their attributes,
relationships and constraints) as well as concrete
graphical syntax information (the appearance of
constructs and relationships in the visual tool). The meta-
formalism used in our work is the UML Class Diagram
and the constraints are expressed in Python code.

In this paper, we deal with a subset of UML Statechart
[6] which consists of states (simple and composite),
transitions, events, actions that generate events, and
initial and final states. Composite states have nested
structure of states which can be sequential or concurrent.
The proposed meta-model for UML Statecharts diagram
(see Fig.5 (a)) is composed of the following classes:
Statechart: This has a Name and represents a Statechart
in the diagram.
SC_State: This class describes simple states and has tree
attributes, namely Name, EntryAction and ExitAction.
SC_CompositeState: This class represents composite
states. It inherits from SC_State all its attributes,
multiplicities and associations.
SC_Initial: These kinds of entities mark the initial state of
a Statechart or the initial state/states when reaching a
composite state.
SC_Final: Represents the final state of a Statechart (if
any).

ITA
LM

Lifetime Model

T1 T2

OP

ED

IP

<type, in>

Newly generated
event-tokens

event-tokens
to be consumed

internal

event-tokens

<type, ex>

incoming
external events

outgoing
external events

OTA
<type, ex> <type, ex>

external

event-tokens

Object

INA
Description

UML
Meta-Models

UML Tools

Transformation

 using
 2nd GG

 ONM Tool

Single
System -level
CPN Model

&

Code
Gene-
ration

using
3rd GG

ONM
Meta-model

FlatSM
Meta-model

StateChart

Collaboration
Diagram

Conversion

 using
 1st GG

FlatSM Tool

FlatSM
Models StateCharts

UML Models

Collaboration
Diagram

Generate Tool Generate Tool
Generate Tools

1282 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

Figure 5. Meta-models of Used UML Diagrams and Formalisms.

The following associations are also included in the
meta-model:
StatechartStart: This association allows the connection of
a Statechart and its initial state.
SC_InitialConnection: This association allows the
connection of an initial state and a state.
SC_FinalConnection: This association allows the
connection of a state and a final state.
SC_Transition: This association represents the transition
from source state to destination state (which may be the
same state). It contains two attributes: event and Action.
has_Inside: This is an association between a composite
state and a state (which may be in it turn composite). It
expresses the notion of hierarchy: states are inside
composite state.
has_Initial: This association expresses the notion of
hierarchy between a composite state and its initial state.
has_Final: This association expresses the notion of
hierarchy between a composite state and its final state.

Since UML Collaboration diagram consists of objects
that interact by sending each other messages (or events),
we propose to meta-model UML Collaboration diagram
with one class named CollaborationObject for
representing objects and one association named
CollaborationLink for representing communication
between two objects through a list of events as shown in
Fig.5 (b). A FlatSM is a State Machine without composite
states. States in FlatSM are denoted by rounded boxes,
while transitions between states are represented with arcs.
The Fig.5 (c) presents our meta-model for FlatSM
formalism. It consists of one class to represent FlatSM
states and one association for representing FlatSM

transitions. The last formalism used in our work is ONM.
ONM is a form of Object Petri Net which uses places and
transitions to make up models. In order to define meta-
model for ONM we propose two classes: ONMPlace
class to describe places and ONMTransition to describe
transitions. These classes are related with two
associations named InputArc and OutputArc which
represent input arcs and output arcs as shown in Fig.5 (d).

To fully define our meta-models, we have also
specified the graphical appearance of each entity of the
formalisms according to its appropriate graphical
notation. Since the associations: has_Inside, has_Initial
and has_Final in the Statechart Meta-model are a means
to express hierarchy, they are drawn as invisible links.

Given our meta-models, we have used AToM3 to
generate for each formalism a palate of buttons allowing
the user to create the entities defined in its meta-model.
Since AToM3 is a visual tool for multi-formalism
modeling, we can show in the user interface of AToM3 all
generated tools at the same time (see Fig.11).

B. Graph Transformation Grammars
As we mentioned earlier, graph rewriting systems

iteratively apply a list of rules to the host graph. In
AToM3, rules are ordered according to a user-assigned
priority, and are checked from higher to lower priority. In
the LHS of rules, the attributes of the nodes must be
provided with attribute values which will be compared
with the nodes attributes of the host graph during the
matching process. These attributes can be set to <ANY> or
have specific values. In order to specify the mapping
between LHS and RHS, Nodes in both LHS and RHS are
identified by means of labels (numbers). If a node label

FlatSMTransition
Attributes:
 - event :: String
 - actions :: List
Multiplicities:
 - To FlatSMState : 1 to 1
 - From FlatSMState: 1 to 1

FlatSMState
Attributes:
 - Name :: string
Multiplicities:
 - To FlatSMTransition: 0 to N
 - From FlatSMTransition: 0 to N

c) FlatSM Meta-model

State State Event/Action01
 Action02

CollaborationObject
Attributes:
 - Name :: string
Multiplicities:
 - To CollaborationLink: 0 to N
 - From CollaborationLink: 0 to N

CollaborationLink

Attributes:
 - events :: List
Multiplicities:
 - To CollaborationObject: 1 to 1
 - From CollaborationObject: 1 to 1

Object Object 1: event01
2: event02

b) Collaboration Diagram Meta-model

a) StateChart Meta-model

Initial state

Final state

StateChart : Name

State

Entry/Action
Exit/ Action

State

Entry/ Action
Exit/ Action

State

Entry/ Action
Exit/ Action

State

Entry/ Action
Exit/ Action

Entry/ Action
Exit/ Action

CompositeState

Event/Action

E/A

E/A

E/A

SC_Initial
Multiplicities:
 - To SC_lnitialConnection : 1 to 1
 - From has _lnitial : 1 to 1

- From state chart start : 1 to 1

SC_Final

Multiplicities:
 - From SC_FinalConnection: 0 to 1
 - From has_Final: 0 to N

SC_State
Attributes:
 - Name :: String
 - EntryAction :: String
 - ExitAction :: String
Multiplicities:
 - To SC_Transition: 0 to N
 - From SC_ Transition: 0 to N
 - From SC_InitialConnection: 0 to 1
 - To SC_FinalConnection: 0 to 1
 - From has_Inside: 0 to 1

SC_FinalConnection

Multiplicities :
 - To SC_Final :1 to 1
 - From SC_State:1 to 1

SC_InitialConnection

Multiplicities :
 - To SC_State :1 to 1
 - From SC_Inital:1 to 1

has_Final
Constraints:
 > addInnerFinal
Multiplicities:
 - To SC_Final: 1 to 1
 - From SC_CompositeState: 1 to 1

has_Initial
Constraints:
 > addInnerInitial
Multiplicities:
 - To SC_Initial: 1 to 1
 - From SC_CompositeState: 1 to 1

has_Inside
Constraints:
 > addInnerState
Multiplicities:
 - To SC_State: 1 to 1
 - From SC_CompositeState: 1 to 1

SC_Transition
Attributes:
 - event :: String
 - action :: String
Multiplicities:
 - To SC_State: 1 to 1
 - From SC_State: 1 to 1

SC_CompositeState
Constraints:
 > InitializeObject
 > MovelnnerPlacesDRAG
 > MovelnnerPlacesMOVE
Multiplicities:
 - To has_Inside: 0 to N
 - To has_Initial: 1 to N
 - To has_Final : 0 to N

StateChartStart

Multiplicities :
 - to SC_lnitial :1 to 1
 - from StateChart :1 to 1

Attributes:
 - Name :: string
Multiplicities:
-To StateChartStart: 1to 1

StateChart

Place Place Transition

arcInscription

arcInscription
d) ONM Meta-model

ONMPlace

Attributes:
 - Name :: string
 - tokens :: List
Multiplicities:
 - To InputArc: 0 to N
 - From OutputArc: 0 to N

OutputArc
Attributes:
 - arcInscription:: String
Multiplicities:
 - To ONMPlace : 1 to 1
 - From ONMTransition: 1 to 1

Attributes:
 - arcInscription:: String
Multiplicities:
 - From ONMPlace : 1 to 1
 - To ONMTransition: 1 to 1

InputArc

ONMTransition

Attributes:
 - Name :: string
Multiplicities:
 - From InputArc: 0 to N
 - To OutputArc: 0 to N

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1283

© 2010 ACADEMY PUBLISHER

appears in the LHS of a rule, but not in the RHS, then the
node is deleted when the rule is applied. Conversely, if a
node label appears in the RHS but not in the LHS, then
the node is created when the rule is applied. Finally, if a
node label appears both in the LHS and in the RHS of a
rule, the node is not deleted. If a node is created or
maintained by a rule, we must specify in the RHS the
attributes' values after the rule application. In AToM3
there are several possibilities. If the node label is already
present in the LHS, the attribute value can be copied
(<COPIED>). We also have the option to give it a specific
value or assign it a Python program to calculate the value
(<SPECIFIED>), possibly using the value of other
attributes.

In this subsection, we use AToM3 to define the three
Graph Grammars for our approach.

1St GG: Converting Statechart diagrams into FlatSM
models

We have named this graph grammar Statechart2FlatSM.
To convert a Statechart into its equivalent FlatSM model
using our Statechart2FlatSM grammar, we have proposed
twenty three rules which will be applied in ascending
order. Due to lack of space, only some representative
rules are shown in Fig.6 and Fig.7.

The graph grammar has an initial Action which
decorates all the composite state and transition elements
in the Statechart model with temporary attributes to be
used in the matching conditions of rules. In composite
state elements, we use two attributes: Traversed and
Processed. The Traversed attribute is used for indicating
if the composite state has already been traversed by the
grammar, whereas the Processed attribute indicate
whether the composite state has been processed yet. In
transition elements, we use also an attribute (Converted)
which indicates if the transition has already been
converted by the grammar. All these temporary attributes
are initialized to 0.

The strategy of the conversion in Statechart2FlatSM
grammar can be summarized by the following main steps:

The first step is to select a Statechart form the set of
Statechart diagrams and to convert its initial state into a
FlatSM state (rule N°22), More precisely, this rule
consists in associating a FlatSM state to the Statechart
initial state by a generic link that permit to connect model
elements from different language in AToM3.

The second step is to traverse the selected Statechart
through its transitions from the initial state to next states
and so forth. The next states can be simple or composite
states. For the simple states, these states and the incoming
transitions are converted into FlateSM states and FlateSM
transitions respectively (rule N°5 and N°6). In the case
where the next simple state has been previously
processed, it will not be converted more than once. For
this raison the rule N°5 has a higher priority than the rule
N°6. When the next state is composite state,
Statechart2FlatSM grammar sets this state as traversed
(Traversed = 1) without converting the incoming
transition as shown in rule N°7. At the end of this step, all
Statechart states of the first level of hierarchy are

traversed. The simple states are converted, whereas the
composite ones are not yet.

In third step, the traversed composite states (if any)
will be converted. The conversion strategy is the same for
Statechart diagrams which is based on same traversing
process recursively (rule N°1). The last step is to relate
the equivalent FlatSM segments of the composite states
to FlatSM model. For example, rule N°14 converts exit
transiotion (not previousely Converted) from composite
state to simple state into its equivalent transition in
FlatSM model, and so forth for all other levels of
hierarchy.

In order to convert a concurrent composite state, the
Statechart2FlatSM graph creates two spatial FlatSM
states (Fork and Joint states) which mimic the semantic
of the concurrence (rule N°20). The Fork state denotes
parallel activation of all immediate successor states,
whereas the Join state denotes synchronized activation of
an immediate successor state, with respect to join state’s
source states. The conversion of nested states is
performed as described in the first and second steps.
Then, all initial nested states will be related to Fork state
(rule N°18) and all final nested states will be related to
Join state (rule N°17). For the sequential composite
states, the graph grammar locates the initial nested state
and creates an equivalent FlatSM state and converted
next nested states according the traversing process as
described below (in the second step). In Fig.8, we show
the conversion of a concurrent composite state into
FlatSM form.

Figure 6. 1st GG Rules: N° 1, N°5 and N°6.

LHS RHS

::=

5.- Conv_Transition_ BetweenSimpleStes:
1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

<ANY>

Entry/ < ANY>
Exit/ < ANY>

<ANY>

Entry/ < ANY>
Exit/ < ANY>

<COPIED>

Entry/< COPIED>
Exit/ < COPIED >

<COPIED>

Entry/< COPIED>
Exit/ < COPIED >

<COPIED>

<COPIED>

<ANY>

<ANY>

<ANY> / <ANY> <COPIED> / < COPIED>
<SPECIFIED> / < SPECIFIED >

CONDITION
 Node (3). Converted = = 0
ACTION
 Node (3). Converted = 1

CONDITION
 Node (3). Converted = = 0
ACTION
 Node (3). Converted = 1

LHS RHS

::=

1.- Conv_TransitionBetweenNestedStes:

1

2

3

4

5

6

7

8 8
1

2

3

4

5

6

7

89

<ANY>

Entry/ < ANY>
Exit/ < ANY>

<ANY>

Entry/ < ANY>
Exit/ < ANY>

<COPIED>

Entry/< COPIED>
Exit/ < COPIED >

<COPIED>

Entry/< COPIED>
Exit/ < COPIED >

<ANY>

Entry/ < ANY>
Exit/ < ANY>

Entry/ < COPIED>
Exit/ < COPIED >

<COPIED>

<ANY>

<ANY>

<COPIED>

<COPIED>

<ANY> / <ANY> <COPIED> / < COPIED>
<SPECIFIED> / < SPECIFIED >

CONDITION
 Node (3). Converted = = 0
ACTION
 Node (3). Converted = 1

LHS RHS

::=

6.- Conv_TransitionAndSimpleSte:
1

2

3

45
1

2

3

4

6

5

7

8

<ANY>

Entry/ < ANY>
Exit/ < ANY>

<ANY>

Entry/ < ANY>
Exit/ < ANY>

<COPIED>

Entry/< COPIED>
Exit/ < COPIED >

<COPIED>

Entry/< COPIED>
Exit/ < COPIED >

<SPECIFIED>

<COPIED> <ANY>

<COPIED> / < COPIED> <ANY> / <ANY>
<SPECIFIED> / < SPECIFIED >

1284 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

Figure 7. 1st GG Rules: N°7, N°14, N°17, N°18, N°20 and 22.

Figure 8. The Conversion of a concurrent composte state (X) to FlatSM

form and ONM form.

2nd GG: Constructing Intermediate system-level model

We have named the second graph grammar
FlatSM2ONMs. When the FlatSM2ONMs graph grammar
execution finishes, the resulting model is the CPN
system-level model. Fig.9 shows the important proposed
rules.

The idea behind the transformation can be described in
the following steps. In the first one, the graph grammar
selects a Statechart and creates both the token routing
structure (IP, ED and OP places and OTA, ITA , T1 and
T2 transitions) and an equivalent ONM place for its
initial state (rule N°14). The second step consists of
creating the LM for the selected Statechart based on its
equivalent FlatSM model generated in the first graph
grammar. The transformation process is based on
traversing FlatSM model in the same manner used in the
first graph grammar. An ONM place is created for each
FlatSM state, and an ONM transition is for each FlatSM
Transition (for example, rules N°2). We note that the
Fork or Join states in the FlatSM model will be
transformed into ONM transitions (see Fig.8).

At this point, LM should be linked to the token routing
structure. For each FlatSM transition that generates
events, an output arc will be created from the associated
ONM transition to ED place in the token routing
structure. If the event is an external event that will be sent
to other objects, the created output arc will have an
inscription as “ex”. The external events of object are
specified in the Collaboration diagram (rule N°8).
Otherwise, the event will be considered as an internal
event (rule N°9). Linking IP place to LM will be
processed in same way as for the ED place but with input
arc. Then, ITA and OTA transitions are related to ILP
place (rule N°11).

Finally, Statechart2FlatSM graph grammar deletes all
elements of Statechart diagrams, Collaboration diagram
and FlatSM formalism in order to have only the system-
level model in ONM formalism (for example, rule N°17
for deleting Statechart state).

P

Entry/
Exit/

A

Entry/
Exit/

C

Entry/
Exit/

B

Entry/
Exit/

D

Entry/
Exit/

Q

Entry/
Exit/

X

Entry/
Exit/

X_C

P

X_Fork

X_Join

Q

X_A

X_B

X_A

X_A

X_B

X_C

X_D

Q

P

X_Fork

X_Join

T1
 T2

LHS RHS

::=

7.- SetCurrent_CompositeSteFromSimpleSte:

1

2

3

45
1

2

3

45
<ANY>

Entry/ < ANY>
Exit/ < ANY>

<COPIED>

Entry/< COPIED>
Exit/ < COPIED >

<COPIED> <ANY>

Entry/ < ANY>
Exit/ < ANY>

Entry/ < COPIED>
Exit/ < COPIED >

<COPIED> <ANY>

<COPIED> / < COPIED> <ANY> / <ANY>

CONDITION
 (Node (3). Converted = = 0) And (Node (2).Traversed = = 0)
ACTION
 Node (2). Traversed = 1

14.- Conv_ExitTransitionFromSequential CompositeSte
 2SimpleSte:

RHS

::=

1

2

3

4 56

78

9

<COPIED>

<COPIED>

Entry/< COPIED>
Exit/ < COPIED >

<COPIED>

Entry/< COPIED>
Exit/ < COPIED >

<COPIED> / < COPIED>

<COPIED>

<COPIED>

LHS

1

2

3

4 56

78

<ANY>

<ANY>

Entry/ < ANY>
Exit/ < ANY>

<ANY>

Entry/ < ANY>
Exit/ < ANY>

<ANY>

<ANY>

<ANY> / <ANY>

Entry/ < ANY>
Exit/ < ANY>

<SPECIFIED> / < SPECIFIED >

CONDITION
 Node (3). Converted = = 0
ACTION
 Node (3). Converted = 1

17.- Add_EndingTransitionInConcurrentCompositeSte:
LHS RHS

::=

1

2

3

4

56

7
8

9

1

2

3

4

56

7
8

<ANY>

Entry/ < ANY>
Exit/ < ANY >

Entry/ < COPIED>
Exit/ < COPIED >

<COPIED>

<ANY>

Entry/ < ANY>
Exit/ < ANY>

<COPIED>

Entry/< COPIED>
Exit/ < COPIED >

<ANY>

_Join

<COPIED>

 _Join

<SPECIFIED> /
< SPECIFIED >

CONDITION
 (Node (1). Traversed = = 1) And (Node (1). Processed = = 1)

LHS

Entry/ < ANY>
Exit/ < ANY >

18.- Conv_InitialSteInConcurrentCompisiteSte:
RHS

::=

1

2

3

4

56 1

2

3

4

56

8

9

7

<ANY>

Entry/ < COPIED>
Exit/ < COPIED >

<COPIED>

<ANY>

Entry/ < ANY>
Exit/ < ANY>

<COPIED>

Entry/< COPIED>
Exit/ < COPIED >

_Fork _Fork

<SPECIFIED>

<SPECIFIED> /
< SPECIFIED >

CONDITION
 (Node (1). Traversed = = 1) And (Node (1). Processed = = 1)

20.- Conv_ConcurrentCompisiteSte:
LHS RHS

::=

1

2 3

45

67

1

2 3

<ANY>

Entry/ < ANY>
Exit/ < ANY >

Entry/ < COPIED>
Exit/ < COPIED >

<COPIED> _Fork

_Join

CONDITION
 (Node (1). Traversed = = 1) And (Node (1). Processed = = 0)
ACTION
 Node (1). Processed = 1

22.-Conv_InitialState:
LHS RHS

::=

1

2

3

4

56

1

2

3

4

StateChart : <ANY> StateChart : <COPIED>

<ANY>

Entry/ < ANY>
Exit/ < ANY>

<COPIED>

Entry/< COPIED>
Exit/ < COPIED >

<SPECIFIED>

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1285

© 2010 ACADEMY PUBLISHER

Figure 9. 2nd GG Rules: N°2, N°8, N°9, N°11, N°14 and N°17.

3rd GG: Generating the INA description

We have named the last graph grammar ONMs2INA.
This grammar generates the INA description file (the .cnt
file) of the whole system. The .cnt file consists of the
unfolded net structure (which describes the places colors
(sub-places), their initial markings, and the relations with
the transition colors (sub-transitions)), and the folding
information.

The ONMs2INA graph grammar has an initial Action
which opens the file where the INA code will be
generated and decorates all the Place and Transition
elements in the model with temporary attributes to be
used in the conditions specified in the rules. In place
elements, we use two attributes C (Current) and V
(Visited). The C attribute is used to identify the place in
the model whose code has to be generated (C ==1),
whereas the V attribute is used to indicate whether code
for the place has been generated yet (V == 1: for
unfolded net structure, V == 2: for sub-places
information section and V == 3: for the aggregation
section). In Transition elements, we use three attributes
PRE, POST and V (Visited). The PRE attribute is used to
indicate whether this transition is processed as pre-
transition for the current sub-place, whereas the POST
attribute is used to indicate if this transition is processed
as post-transition. The V attribute is used to indicate
whether code for the transition has been generated yet (V
== 1: for sub-transitions information section and V ==
2: for the aggregation section). All these temporary
attributes are initialized to 0.

The ONMs2INA graph grammar is composed of ten
rules. We are concerned here by code generation, so none
of these rules will change the input model as shown in
Fig.10. The main steps of the Automatic code generation
can be described as follows:

The first step is to select a place and assign a number
for it identification which is unique, and marks it as
current. For the sub-places of the selected place, the
graph grammar assigns also a number for each of its sub-
places (ruleN°6).

The second step consists in generating the unfolded net
structure. For each sub-place in the current place, one line
will be generated. Each such line starts with the number
of the sub-place, followed by one blank and the number
of tokens in the initial marking (ruleN°4). If the sub-place
has pre-transitions, these are generated as elements of list
separated by blanks (ruleN°1). Likewise, if the sub-place
has post-transitions then the graph grammar generates a
similar list which is preceded by "," (ruleN°2). We note
that rule N°3 is used to initializes POST and PRE
attributes of all transitions for the processing of the next
sub-place. Whereas, rule N°5 is used to locate the current
place whose processing has been terminated (for all its
sub-places), and mark it as Visited (V == 1). This process
will be repeated for all others not visited places in the
CPN model (ruleN°6 for selecting anther not visited
place).

The last step is to generate the folding information, i.e.,
the information which colored places and transitions
exist, and what their colors are. The rules N°7 and N°8

<ANY>

Entry/ < ANY>
Exit/ < ANY>

RHS

::=

17.-Delete_SC_State:

1

14.- Trsfr_InitialSte2ONMPlace&Gen_TokenRoutingStructure:
RHS

1

2

3

4

5
6

StateChart : <ANY>

LHS

<COPIED>

Entry/ < COPIED>
Exit/ < COPIED >

1

2

3

4

56

7
8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

ITA
14

<SPECIFIED>

<SPECIFIED>

T2

IP

ED

OP

OTA
<SPECIFIED>

<SPECIFIED>

<SPECIFIED>

T1

<SPECIFIED>

StateChart : <COPIED>

<COPIED>

<SPECIFIED>

1

2

3

4

6

7

5

10

8

9

11

12
13

1

2

3

4

6

7

5

10

8

9

11

12
13

<COPIED > / < COPIED >

LHS
9.- Gen_OutputArcForInternalEvent:

RHS

::=

<ANY>

<ANY>

<ANY>

<ANY>

ED

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<ANY>

<ANY>

ED

<SPECIFIED>

StateChart : <ANY> StateChart : <COPIED>

<ANY> <COPIED> <ANY > / <ANY >

14

8.- Gen_OutputArcForExternalEvent:

<COPIED>

LHS RHS

::=

1

2

3

4

6

7

5

10

8

9

11

12
13

14 1516

<ANY>
1

2

3

4

6

7

5

10

8

9

11

12
13

14 1516

<ANY>

<ANY>

<ANY>

ED

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<ANY>

<ANY>

ED

<SPECIFIED>

StateChart : <ANY> StateChart : <COPIED>

<ANY> <COPIED> <ANY > / <ANY > <COPIED > / < COPIED >

<ANY> <ANY> <ANY> <COPIED> <COPIED>

17

CONDITION
 Node (11).Name = = Node (14).Name And
 Node (3).action IN Node (16).events

<SPECIFIED>

LHS RHS

::=

2.- Trsfr _FSMSteAndTransition2ONMPlaceAndTransition:

<COPIED > / < COPIED >

1

2

3

4
5 1

2

3

4

6

7

5

10

8

9

<COPIED>

<COPIED>

<ANY>

<ANY>

<ANY>

<ANY > / <ANY >

<COPIED>

<SPECIFIED>

<SPECIFIED>

<SPECIFIED>

::=

<ANY>

<ANY>

Entry/ < ANY>
Exit/ < ANY>

11.- Gen_ILPPlace_AndRelate_ITA_And_OTATransitions
 2ILPPlace:

LHS

::=

RHS
1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

StateChart : <ANY>

IP IP

OP

ED ED

OP

ILP

T1 T1

ITA
ITA

OTA
OTA

StateChart : <COPIED>

<ANY>

<ANY>

<ANY>

<ANY>

<COPIED>

<COPIED>

<COPIED>

<COPIED>
<SPECIFIED>

<SPECIFIED>

LHS

1286 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

generate the sub-places and sub-transitions information
sections respectively. The assigned number followed by
the color which represents the event-name are generated
for all sup-places and for all sub-transitions. Whereas, the
rules N°9 and N°10 generate the places and transitions
aggregations information section respectively. Each place
will be defined by generating its number, name and color
set which is a set of its sub-places numbers. For every
transition, the number, name and color set will be also
generated.

Figure 10. 3rd GG: Generating INA specification.

VI. CASE STUDY: ATM MACHINE

We consider an example of an ATM machine,
dispensing cash to a user [6]. The Statechart diagrams
and the Collaboration diagram created in our tools are
shown in Fig.11 (in the top of the canvas tool). The
description of the problem is as follows: An ATM
machine has three basic states: Idle (waiting for customer
interaction), Active (handling a customer transaction) and
Maintenance (perhaps having a cash store replenished).
While active, the behavior of the ATM follows a simple
path: Validate the customer, select a transaction, process
the transaction and then print a receipt. After printing, the
ATM returns to the idle state. While in the active state,
the user might any time cancel the transaction, returning
to the ATM to the idle state. The Statechert diagram of
ATM user shows the different user’s actions. All named
events in the Statechart diagrams, which do not show up
on the collaboration diagram, form the internal events of
that respective object.

In order to analyze this behavioral specification of the
ATM Machine, we have to transform this specification
into its equivalent system-level CPN model. To realize
this transformation in our tools, we have to execute the
Statechart2FlatSM graph grammar to obtain flattened
FlatSM models from composite Statechart diagrams as
shown in Fig.11 (in the bottom of the canvas tool). Then
we have to execute also the FlatSM2ONMs graph
grammar to synthesize the system-level CPN model from
the obtained FlatSM models and Collaboration diagram.
The resulted CPN model of the automatic transformation
is shown in Fig.12.

In order to perform the analysis of the resulted CPN
model using the INA analyzer we have to generate its
equivalent INA description. To generate INA description
in our tool, we have to execute the ONMs2INA graph
grammar defined in the previous section. A part of the
automatic generated file SYSTEM-LEVEL_MODEL.cnt
which contains the INA description of ATM machine is
shown in Fig.13.

To analyze the properties of the behavioral
specification of the ATM Machine, we have invoked the
INA tool with the generated INA specification file as
input. Then, the INA tool provides the properties of the
Petri Net as shown in Fig.14. We can see from INA
screen that the net is not bounded, not live, not safe and
the deadlock-trap property is not valid.

CONDITION
 (Node (1). C = = 0) And
 (Node (1). V = = 0)
ACTION
 Node (1). C = 1
 Node (1). V = 0

::=

LHS RHS
6.- SelectPlaceToDescribe:

1
<ANY>

1
<COPIED>

CONDITION
 (Node (1). C = = 0) And
 (Node (1). V = = 1)
ACTION
 Node (1). C = 0
 Node (1). V = 2

::=

LHS RHS
7.- genSubPlaceInformation:

1
<ANY>

1
<COPIED>

CONDITION
 (Node (1). C = = 0) And
 (Node (1). V = = 2)
ACTION
 Node (1). C = 0
 Node (1). V = 3

::=

LHS RHS
9.- genPlaceAggregation:

1
<ANY>

1
<COPIED>

CONDITION
 (Node (1). C = = 1) And
 (Node (1). V = = 0) And
 (Node (2). PRE = = 0)
ACTION
 Node (2). PRE = 1

2

1

3

LHS RHS

::=

1.- genListOfPreTransitions:

2

1

3

<ANY>

<ANY>

<ANY>

<COPIED>

<COPIED>

<COPIED>

::=

LHS RHS
3.- InitialiseTransition:

1
<ANY> <COPIED>

1

CONDITION
 (Node (1). PRE = = 1) Or
 (Node (1). POST = = 1)
ACTION
 Node (1). PRE = 0
 Node (1). POST = 0

::=

LHS RHS
4.- SubPlaceDescription:

1
<ANY>

1
<COPIED>

CONDITION
 (Node (1). C = = 1) And
 (Node (1). V = = 0)

::=

LHS RHS
5.- EndOfPlaceDescription:

1
<ANY>

1
<COPIED>

CONDITION
 (Node (1). C = = 1) And
 (Node (1). V = = 0)
ACTION
 Node (1). C = 0
 Node (1). V = 1

::=

LHS RHS

CONDITION
 Node (1). V = = 0
ACTION
 Node (1). V = 1

8.- genSubTransitionInformation:

1
<ANY> <COPIED>

1

::=

LHS RHS
10.- genTransitionAggregation:

1
<ANY> <COPIED>

1

CONDITION
 Node (1). V = = 1
ACTION
 Node (1). V = 2

1

2

3

1

2

3

CONDITION
 (Node (1). C = = 1) And
 (Node (1). V = = 0) And
 (Node (2). POST = = 0)
ACTION
 Node (2). POST = 1

LHS RHS

::=

2.- genListOfPostTransitions:

<ANY>

<ANY> <COPIED>

<COPIED>

<ANY> <COPIED>

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1287

© 2010 ACADEMY PUBLISHER

Figure 11. Behavioral specification of ATM Machine.

1288 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

Figure 12. System-level CPN model of ATM Machine.

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1289

© 2010 ACADEMY PUBLISHER

Figure 13. Generated INA specification.

Figure 14. Analysis of the obtained System-level CPN model.

VII. CONCLUSION

In this paper we have proposed a Graph transformation
approach for transforming UML Statechart and
Collaboration diagrams to Colored Petri nets models.
More precisely, we have proposed an automated
approach and tool environment that formally transform
dynamic behaviors of systems expressed using UML
models into their equivalent Colored Petri Nets (CPN)
models for analysis purposes. This transformation aimed
to bridge the gap between informal notation (UML
diagrams) and more formal notation (colored Petri nets
models). It produces highly-structured, graphical, and
rigorously-analyzable models that facilitates early
detection of errors like deadlock, live-lock, … .To make
the analysis easier, we have used the obtained CPN
models to generate automatically their equivalent
description in the input language of the INA Petri net
analyzer. Our approach is based on graph transformation
and the meta-modeling tool ATOM3 was used. We have
illustrated our approach through an example.

In future work we plan to transform other UML
diagrams to colored Petri nets and use the well known
reduction technique on the obtained models before
performing the analysis in order to optimize the models.
We plan also to back-annotate the analysis results into the
UML diagrams to reach the complete automation of the
transformation.

REFERENCES

[1] AGG Home page, http://tfs.cs.tu-berlin.de/agg/
[2] AToM3 Home page, http://atom3.cs.mcgill.ca/
[3] R. Bardohl, H. Ehrig, J. De Lara and G. Taentzer,

″Integrating Meta Modelling with Graph Transformation for
Efficient Visual Language Definition and Model
Manipulation″, Proc. Wermelinger, M., Margaria-Steffen, T.
(eds.) FASE 2004. LNCS Springer, Heidelberg, Vol. 2984,
pp. 214–228, 2004.

[4] S. Bernardi, S. Donatelli and J. Merseguer. "From UML
sequence diagrams and statecharts to analysable petri net
models". Proc. 3rd international workshop on Software and
performance, pp. 35-45, Rome, Italy, 2002.

[5] D. Blonstein, H. Fahmy and A. Grbavec. ″Issues in the
Practical use of Graph Rewriting″. LNCS, Vol. 1073,
Springer pp.38-55, 1996.

[6] G. Booch, J. Rumbaugh and I. Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley, 1999.

[7] J. De Lara and H. Vangheluwe, ″AToM3: A Tool for Multi-
Formalism Modelling and Meta-Modelling″, Proc.
ETAPS/FASE’02, LNCS, Vol. 2306, pp.174-188, 2002.

[8] J. De Lara and H. Vangheluwe, ″Computer Aided Multi-
Paradigm Modelling to Process Petri-nets and Statecharts″,
Proc. International Conference on Graph Transformations
(ICGT), LNCS, Vol. 2505, pp. 239-253Springer-Verlag,
Barcelona, Spain, 2002.

[9] J. De Lara and H. Vangheluwe, ″Meta-Modelling and Graph
Grammars for Multi-Paradigm Modelling in AToM3″,
Software and Systems Modelling, Special Section on Graph
Transformations and Visual Modeling Techniques, Vol. 3,
pp. 194–209, 2004.

[10] Y. Deng, S.K. Chang, J. De Figueired and A. Psrkusich.
″Integrating Software Engineering Methods and Petri Nets
for the Specification and Prototyping of Complex

1290 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

Information Systems″. Proc. The 14th International
Conference on Application and Theory of Petri Nets, LNCS,
Vol. 691, pp. 206-223, Chicago, 1993.

[11] Z. Dong and X. He, "Integrating UML Statechart and
Collaboration Diagrams Using Hierarchical Predicate
Transition Nets", Lecture Notes in Informatics, Workshop of
the pUML-Group held together with the «UML»2001 on
Practical UML-Based Rigorous Development Methods, Vol.
7, pp. 99-112, 2001.

[12] R. El Mansouri, E. Kerkouche and A. Chaoui, ″A
Graphical Environment for Petri Nets INA Tool Based on
Meta-Modelling and Graph Grammars″, Proc. World
Academy of Science, Engineering and Technology, ISSN
2070-3740, Vol. 34, pp.471-475, 2008.

[13] EMF Home page, http://www.eclipse.org/emf/
[14] FUJABA Home page, http://www.fujaba.de/
[15] GEF Home page, http://www.eclipse.org/gef/
[16] H.J. Genrich and K. Lautenbach. ″System Modelling with

High-Level Petri Nets ″. Theoretical Computer Science, Vol.
13, pp. 109-136, 1981.

[17] GME Home page, http://www.isis.vanderbilt.edu/gme/
[18] GMF Home page, http://www.eclipse.org/gmf/
[19] GReAT Home page,

http://www.escherinstitute.org/Plone/tools/
[20] D. Heral, ″Statechart: A Visual Formalism for Complex

Systems″, Science of Computer Programming. Vol.8,
pp.231-274. 1987.

[21] INA Home page, http://www2.informatik.hu-
berlin.de/~starke/ina.html

[22] K. Jensen, Coloured Petri Nets, Vol. 1: Basic Concepts,
Springer-Verlag, 1992.

[23] S. Kelly, K. Lyytinen and M. Rossi, ″MetaEdit+: A fully
configurable Multi-User and Multi-Tool CASE and CAME
Environment″, Proc. Constantopoulos, P., Vassiliou, Y.,
Mylopoulos,J. (eds.) CAiSE 1996. LNCS Springer,
Heidelberg, Vol. 1080, 1996. MetaEdit+ Homepage,
http://www.MetaCase.com

[24] E. Kerkouche and A. Chaoui, ″A Formal Framework and a
Tool for the Specification and Analysis of G-Nets Models
Based on Graph Transformation″, Proc. International
Conference on Distributed Computing and Networking -
ICDCN’09-, LNCS Springer-Verlag Berlin Heidelberg,, Vol.
5408, pp. 206–211, India, 3-6 January, 2009.

[25] E. Kerkouche, A. Chaoui, E. Bourennane, and O. Labbani:
“Modelling and verification of Dynamic behaviour in UML
models, a graph transformation based approach“,
proceedings of SEDE’2009, Las Vegas, Nevada, USA, 22-
24 June 2009.

[26] KerMeta Home page, http://www.kermeta.org/
[27] C. Lakos, "Object Petri Nets - Definition and Relationship

to Colored Petri Nets", Technical Report TR94-3, Computer
Science Department, University of Tasmania, 1994.

[28] T. Murata, ″Petri Nets: Properties, Analysis and
Applications″, Proc. IEEE, Vol. 77, pp. 541-580, No.4,
1989.

[29] PROD Home page, version 3.4.01,
http://www.tcs.hut.fi/Software/prod/

[30] PROGRES Home page, http://www-i3.informatik.rwth-
aachen.de/research/projects/progres/main.html

[31] Python Home page, http://www.python.org
[32] G. Rozenberg, Handbook of Graph Grammars and

Computing by Graph Transformation, Vol. 1. World
Scientific, Singapore, 1999.

[33] J.A. Saldhana, S. M. Shatz and Z. Hu, ″Formalisation of
Object Behavior and Interaction From UML Models″,

International Journal of Software Engineering and
Knowledge Engineering. Vol. 11, pp. 643-673, 2001.

[34] S. Shlaer and S. J. Mellor, Object Life Cycles Modeling the
World in States, Yourdon Press, Prentice Hall, 1992.

[35] TIGER Home page, http://tfs.cs.tu-berlin.de/tigerprj/

Elhillali Kerkouche is Assistant Professor in the department
of Computer science, University of Oum El bouaghi, Algeria.
His research field is formal methods and Distributed Systems.

Allaoua Chaoui is with the department of computer science,

Faculty of Engineering, University Mentouri Constantine,
Algeria. He received his Master degree in Computer science in
1992 (in cooperation with the University of Glasgow, Scotland)
and his PhD degree in 1998 from the University of Constantine
(in cooperation with the CEDRIC Laboratory of CNAM in
Paris, France). He has served as associate professor in
Philadelphia University in Jordan for five years and University
Mentoury Constantine for many years. During his career he has
designed and taught courses in Software Engineering and
Formal Methods. Dr Allaoua Chaoui has published many
articles in International Journals and Conferences. He
supervises many Master and PhD students. His research
interests include Mobile Computing, formal specification and
verification of distributed systems, and graph transformation
systems.

El Bay Bourennane is Professor of Electronics at the

laboratory LE2I, (Laboratory of Electronics, Computer Science
and Image). University of Bourgogne, Dijon, France.

Ouassila Labbani is an Associate Professor at University of

Bourgogne, Dijon, France. Her research field is UML and
formal methods.

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1291

© 2010 ACADEMY PUBLISHER

