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Abstract— Many distance-related algorithms, such as k-
nearest neighbor learning algorithms, locally weighted learn-
ing algorithms etc, depend upon a good distance metric to
be successful. In this kind of algorithms, a key problem is
how to measure the distance between each pair of instances.
In this paper, we provide a survey on distance metrics for
nominal attributes, including some basic distance metrics
and their improvements based on attribute weighting and
attribute selection. The experimental results on the whole
36 UCI datasets published on the main web site of Weka
platform validate their effectiveness.

Index Terms— distance metric, attribute weighting, attribute
selection, nominal attributes, classification

I. INTRODUCTION

Although many distance metrics reviewed in this pa-
per can be used to address the regression and cluster-
ing problems directly, we focus our attention on the
classification problem. In classification, an arbitrary in-
stance x is often represented by an attribute vector <
a1(x), a2(x), . . . , an(x) >, where ai(x) denotes the value
of the ith attribute Ai of x.

The distance measure problem includes two aspects: 1)
How to choose an appropriate distance metric according
to different data characteristics. Some are appropriate
for numeric attributes while others are appropriate for
nominal attributes. In this paper, we focus our attention
on the distance metrics for nominal attributes. 2) How to
overcome the curse of dimensionality problem [1], [2].
The distance-related algorithms are especially sensitive
to this problem when there are a lot of redundant and/or
irrelevant attributes in the data. An effective approach to
overcome the curse of dimensionality problem is to weight
each attribute differently when measuring the distance
between each pair of instances. This approach is widely
known as attribute weighting. Another drastic approach
to overcome the curse of dimensionality is to completely
eliminate the least relevant attributes from the attribute
space when measuring the distance between each pair
of instances. This approach is widely known as attribute
selection.

The rest of the paper is organized as follows. In Section
II, we provide a survey on some basic distance metrics

Corresponding author: Hongwei Li (hwli@cug.edu.cn)
Chaoqun Li is supported by the National Natural Science Foundation

of China under grant no. 60905033, the Research Foundation for
Outstanding Young Teachers, China University of Geosciences (Wuhan)
under grant no. CUGQNL0830, and the Fundamental Research Funds
for the Central Universities under grant no. CUGL090248.

for nominal attributes and their improvements based on
attribute weighting and attribute selection. In Section III,
we use the k-nearest neighbor algorithm (KNN) [3] and
the whole 36 UCI datasets published on the main web
site of Weka platform [4] to experimentally test their
effectiveness. In Section IV, we draw conclusions.

II. DISTANCE METRICS

A. Basic Distance Metrics

When all attributes are nominal, the simplest distance
metric is the Overlap Metric. We simply denote it OM in
this paper, which can be defined as:

d(x, y) =
n∑

i=1

δ(ai(x), ai(y)) (1)

where n is the number of attributes, ai(x) and ai(y) are
the values of the ith attribute Ai of the instances x and y
respectively, δ(ai(x), ai(y)) is 0 if ai(x) = ai(y) and 1
otherwise.

OM is widely used by instance-based learning [5], [6]
and locally weighted learning [7], [8]. Obviously, it is
a little rough to measure the distance between each pair
of instances, because it fails to make use of additional
information provided by nominal attribute values that can
aid in generalization [9].

In order to find reasonable distance between each pair
of instances with nominal attribute values only, the Value
Difference Metric (VDM) was introduced by Standfill
and Waltz [10]. A simplified version of it, without the
weighting schemes, can be defined as:

d(x, y) =
n∑

i=1

C∑
c=1

|P (c|ai(x))− P (c|ai(y))| (2)

where C is the number of classes, P (c|ai(x)) is the
conditional probability that the class of x is c given that
the attribute Ai has the value ai(x), P (c|ai(y)) is the
conditional probability that the class of y is c given that
the attribute Ai has the value ai(y).

VDM assumes that two values of an attribute are
more closer if they have more similar classifications. Our
experimental results in Section III show that VDM is
much more accurate than OM.

Another probability-based metric is SFM, which was
originally presented by Short and Fukunaga [11], [12] and
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then was extended by Myles and Hand [13]. It is defined
by Equation 3.

d(x, y) =
C∑

c=1

|P (c|x)− P (c|y)| (3)

where the class membership probabilities P (c|x) and
P (c|y) can only be estimated by naive Bayes [14],
[15] in many realistic data mining applications, because
more complicated probability estimators will lead to more
higher time complexity.

After this, Minimum Risk Metric (simply MRM, de-
fined by Equation 4) was presented by Blanzieri and Ricci
[16]. Different from SFM that minimizes the expectation
of difference between the finite error and the asymptotic
error, MRM directly minimizes the risk of misclassifica-
tion.

d(x, y) =
C∑

c=1

P (c|x)(1− P (c|y)) (4)

Besides, Cleary and Trigg [17] presented a distance
metric based on entropy. The approach computing the dis-
tance between two instances is motivated by information
theory, and the distance between instances is defined as
the complexity of transforming one instance into another.
The advantage of the measure is to provide a consistent
approach to handling of symbolic attributes, real valued
attributes and missing values.

Daniel Tunkelang and Daniel Tunkelang Endeca [18]
presented a data-driven difference measure for categorical
data for which the difference between two data points is
based on the frequency of the categories or combinations
of categories that they have in common.

According to our experiments in Section III, no any
one distance metric can perform better than the other on
all application domains because different distance metrics
have different biases. Therefore, we can choose different
distance metrics for different data mining applications.

B. Improving Basic Distance Metrics via Attribute
Weighting

In above basic distance metrics, all attributes are con-
sidered to have identical contributions to the distance
metrics. However, this assumption is unrealistic in many
data mining application domains. To relax this assump-
tion, one way is to assign different weights to different
attributes when measuring the distance between each pair
of instances. This is the well-known attribute weighting.
In this Section, we take the Overlap Metric for example
to discuss different kinds of attribute weighting methods.

First of all, let’s give the definition of the attribute
weighted Overlap Metric as follows.

d(x, y) =
n∑

i=1

wiδ(ai(x), ai(y)) (5)

where wi is the weight of the ith attribute Ai.
Now, the only left thing is how to define the weight of

each attribute.

When all attributes are nominal, many times, the mutual
information is used to define the correlation between
each attribute variable and the class variable. In fact, it
has already been widely used in many papers [19]–[21].
We call the resulting OM mutual information weighted
overlap metric, simply MIWOM. Now, let’s define it as
follows.

wi =
∑
ai,c

P (ai, c) log
P (ai, c)

P (ai)P (c)
(6)

Instead of mutual information, Huang [22] used the
frequencies with which the attribute values ai(x) and
ai(y) appear in the training data to weight the attribute
Ai. It can be defined as follows.

wi =
F (ai(x)) + F (ai(y))
F (ai(x))F (ai(y))

(7)

where F (ai(x)) and F (ai(y)) are the frequencies with
which the attribute values ai(x) and ai(y) appear in
the training data respectively. We call the resulting OM
frequency weighted overlap metric, simply FWOM.

In 2007, Hall [23] proposed to obtain the weights of all
of the attributes by building decision trees. For detail, this
algorithm constructs an ensemble of unpruned decision
trees at first, and then the minimum depth that an attribute
is tested at the built decision trees is used to weight the
attribute. The detailed Equation is described as follows.

wi =

∑s
j=1 1/

√
dj

s
(8)

where dj is the minimum depth that the attribute Ai is
tested at the jth decision tree, and s is the number of
trees that the attribute Ai appears in.

To classification problem, there are more elaborate at-
tribute weighting methods. In these methods, the weights
are class sensitive in that an attribute may be more
important to one class than to another. To cater for
this, Aha [6] described IB4 which maintains a separate
description and a set of attribute weights for each class,
and the weights are adjusted using a simple performance
feedback algorithm to reflect the relative relevances of
the attributes. All weights are updated after each training
instance x is classified. The updating is on the basis
of the most similar instance y of x, the difference of
the ith attribute value between x and y, and whether
the classification is indeed correct. The weights increase
when they correctly predict classifications and decrease
otherwise.

Wettschereck and Aha [24] investigated those methods
that automatically assign weights for all of attributes using
little or no domain-specific knowlege, and introduced
a five-dimensional framework to categorize automatic
weight-setting methods.

Instead of considering an continuous weight space,
Kohavi etc [25] described a method searching a discrete
weight space. They thought that a large space of weight
will lead to increase variance and over-fitting. Their exper-
imental results show that, to many datasets, restricting the
number of possible weights to two (0 and 1) is superior.
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In fact, this is the so-called attribute selection. We will
review it in the next subsection.

Although attribute selection can be viewed as a special
case of attribute weighting with the zero and one weights
only, there are two main difference between attribute
weighting and attribute selection at least: 1) The main
problem focused on is different. Most attribute weighting
methods focus on how to calculate the relevance degree
between the attribute variable and the class variable. In
contrast, most attribute selection methods focus on how
to search and evaluate attribute subsets. 2) The main
motivation is different. Most attribute weighting methods
focus on how to improve the accuracy of the resulted
algorithms. In contrast, most attribute selection methods
focus on how to reduce the test time of the resulted
algorithms and the dimensionality of the available data.
According to our experiments in Section III, the attribute
weighting methods can enhance the performance of the
resulted algorithms indeed while the attribute selection
methods can significantly reduce the test time of the
resulted algorithms and the size of dimensionality of the
available data.

C. Improving Basic Distance Metrics via Attribute Selec-
tion

The extreme of attribute weighting is attribute selec-
tion, which assumed that some attributes are completely
irrelevant and redundant to class variable. In fact, in
many applications, there exist such attributes indeed [26]–
[28]. Therefore, these attributes should be removed from
attribute space. In the same way, we also take the Overlap
Metric for example to discuss different kinds of attribute
selection methods.

First of all, let’s give the definition of the attribute
selected Overlap Metric as follows.

d(x, y) =
k∑

i=1

δ(ai(x), ai(y)) (9)

where {a1, a2, . . . , ak} is the selected attribute subset.
Now, the only left thing is how to search and evaluate

the attribute subset {a1, a2, . . . , ak}.
The attribute selection methods can be broadly divided

into two main categories: wrapper methods and filter
methods. 1) wrapper methods use a learning algorithm to
measure the merit of the selected attribute subsets. Thus,
wrapper methods select different attribute subsets for dif-
ferent learning algorithms. Because wrapper methods con-
sider how a learning algorithm and the training instances
interact, wrapper models have more higher accuracy and
computational cost than filter methods in many cases.
2) Filter methods have one common characteristic: the
attribute selection process is independent of the learning
algorithm. Therefore, filter methods can be viewed as a
data preprocessing step. Generally, filter methods can be
operated efficiently and effectively, and are adaptive for
high dimensional data.

Figure 1. The basic framework of wrapper methods for attribute subset
selection.

1) Wrapper Methods: In 1994, John and Kohavi etc
[29] presented the define of filter methods and wrapper
methods. Wrapper methods are those attribute selection
methods utilizing the induction algorithm itself, their
experiments show the efficiency of wrapper methods.
To wrapper methods, the merit of an attribute subset
is measured by the accuracy of the resulted learning
algorithms, so the key problem is how to design search
strategies. Research strategies mainly include exhaustive
search and heuristic search. Exhaustive search can find
the optimal attribute subset for a learning algorithm, but
is not practical for high dimensional datasets. Heuristic
search only searches a restricted space of attribute subsets
and is more practical, but the selected attribute subset
by heuristic search may be suboptimal. Heuristic search
mainly includes greedy stepwise search, best first search,
and genetic algorithms etc.

In 1997, Kohavi and John [30] in detail investigated
the strengths and weaknesses of the wrapper approach,
compared greedy hill climbing and best first research, and
presented some improvements to reduce the running time.
Simultaneously, they pointed that overuse the accuracy
estimates in attribute subset selection may cause the over-
fitting problem. To the over-fitting problem of the wrapper
approach, Loughrey and Cunningham [31] outlined a set
of experiments to prove the case, and presented a modified
genetic algorithm to address the over-fitting problem by
stopping the search before over-fitting occurs. Figure
1 shows the basic framework of wrapper methods for
attribute subset selection, and the figure is described in
[30] originally.

2) Filter Methods: To filter methods, except search
strategy, another very important problem is how to eval-
uate the merit of the selected attribute subsets.

Almuallim and Dietterich [32] presented a method
simply called FOCUS. FOCUS exhaustively searches the
space of attribute subsets until it finds the minimum
combination of attributes that is sufficient to determine
the class label. That is referred to as the min-features
bias. However, John etc [29] pointed out that this bias has
some severe implications when it is applied blindly. For
example, this bias favors the attributes with many values
over those with few values. this is alike to the bias in
the information gain measure in decision trees. Moreover
this method is not practical for the high dimensional data
because it executes an exhaustive search.
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Kira and Rendell [33] presented a method called
RELIEF, which uses the statistical method to remove
irrelevant attributes. The method can be divided into four
steps: The first step is randomly sampling m instances;
the second step is finding the nearest instance y of the
same class and the nearest instance z of opposite class to
each sampled instance x; the third step is updating each
attribute weight based m triplets of x, y, z; The last step is
choosing a threshold τ , those attributes whose relevance
are less than τ are considered to be irrelevant attributes
and be removed from the attribute set. Similar to RELIEF,
Scherf and Brauer [34] present another method (simply
EUBAFES) by using an attribute weighting approach to
attribute selection.

In the earlier research, researchers focused their atten-
tion on removing irrelevant attributes and ignored redun-
dant attributes because Kira and Rendell [33] pointed out
that Relief does not help with redundant attributes. The
later researchers presented some more elaborate attribute
selection methods to discriminate the irrelevant and re-
dundant attributes.

M. A. Hall [35], [36] presented a method simply called
CFS (Correlation based Feature Selection). The central
hypothesis of CFS is that good attribute sets contain
attributes that are highly correlated with the class variable,
yet uncorrelated with each other. This method heuristi-
cally searches an attribute subset through a correlation
based approach, and uses Equation 10 to measure the
merit of an attribute subset S containing k attributes.

Merits =
krcf√

k + k(k − 1)rff

(10)

where rcf is the average attribute-class correlation, and
rff is the attribute-attribute inter-correlation. Obviously,
the heuristic merit tries to search an attribute subset with
bigger rcf by removing irrelevant attributes and smaller
rff by removing redundant attributes.

Yu and Liu [37] presented another filter method using
a correlation-based approach, in which an entropy-based
measure is used to indicate the correlation between each
pair of attributes. Besides, they discussed the definition
of strong relevant attributes, weak relevant attributes,
irrelevant attributes and redundant attributes in detail,
and introduced a framework to discriminate the irrelevant
and redundant attributes. The central assumption of the
method is that an optimal attribute subset should contains
all strong relevant attributes and weak relevant but non-
redundant attributes.

Peng etc [38] introduced a criteria called minimal-
redundancy-maximal-relevance (simply MRMR) to
search a set of sequential attribute subsets candidates,
then a wrapper method is used to find an optimal
attribute subset from these attribute subsets candidates.
The MRMR criteria is defined as:

maxΦ(D(S, c), R(S)),Φ = D(S, c)−R(S) (11)

where D = I({ai, i = 1, . . . , s}; c) is a feature set S
with s features dependency on the target class c, R =

1
|S|2

∑
ai,aj∈S I(ai, aj) is the dependency among these

k features in the feature set S. The MRMR criteria is
a balance between maximizing D(S, c) and minimizing
R(S).

Seen from above, almost all methods, except for RE-
LIEF, involve search strategies. Therefore, these methods
have relatively higher computational time. In fact, some
researchers present some methods without involving the
search process. For example, Cardie [39] applied decision
tree algorithms to select attribute subsets for case-based
learning, and only those attributes that appeared in the
final decision trees are used in a k-nearest neighbor
classifier.

Ratanamahatana and Gunopulos [40] also used decision
trees to select attribute subsets for naive Bayes. It is
known that the performance of NB suffers in domains that
involve correlated attributes. C4.5 decision tree learning
algorithm, on the other hand, typically perform better than
NB on such domains. Therefore, in their method, only
those attributes appeared in the decision trees built by
C4.5 are selected for NB.

Mitra etc [41] presented another unsupervised attribute
selection method without involving the search process.
The method uses a cluster technique to partition the
original attribute set into a number of homogeneous
subsets and selects a representative attribute from each
subset. Besides, Liu etc [42] presented a discretization-
based method for attribute subset selection.

III. EXPERIMENTS AND RESULTS

In this section, we use the 10-nearest neighbor algo-
rithm to validate the effectiveness of some basic distance
metrics and their improvements based on attribute weight-
ing and attribute selection.

Experiments are performed on the whole 36 UCI
datasets published on the main web site of Weka platform
[4], which represent a wide range of domains and data
characteristics listed in Table I. In our experiments, the
following four data preprocessing steps are used:

1) Replacing missing attribute values: The unsuper-
vised filter named ReplaceMissingValues in Weka is
used to replace all missing attribute values in each
data set.

2) Discretizing numeric attribute values: The unsuper-
vised filter named Discretize in Weka is used to
discretize all numeric attribute values in each data
set.

3) Sampling large data sets: For saving the time of
running experiments, the unsupervised filter named
Resample with the size of 20% in Weka is used to
randomly sample each large data set having more
than 5000 instances. In these 36 data sets, there
are three such data sets: ”letter”, ”mushroom”, and
”waveform-5000”.

4) Removing useless attributes: Apparently, if the
number of values of an attribute is almost equal to
the number of instances in a data set, the attribute
is useless. Thus, we used the unsupervised filter
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named Remove in Weka to remove this type of
attributes. In these 36 data sets, there are only three
such attributes: the attribute “Hospital Number” in
the data set “colic.ORIG”, the attribute “instance
name” in the data set “splice” and the attribute
“animal” in the data set “zoo”.

Now, we introduce established algorithms and their
abbreviations used in our implements and experiments.

1) OM: the Overlap Metric defined by Equation 1.
2) VDM: the Value Difference Metric defined by

Equation 2.
3) SFM: the Short and Fukunaga Metric defined by

Equation 3.
4) MIWOM: the Overlap Metric with the weights

defined by Equation 5 and Equation 6.
5) FWOM: the Overlap Metric with the weights de-

fined by Equation 5 and Equation 7.
6) Wrapper: the Overlap Metric with Wrapper-based

attribute selection method [30]. Besides, the greedy
stepwise search strategy is used.

7) Filter: the Overlap Metric with Filter-based attribute
selection method [35], [36]. Besides, the greedy
stepwise search strategy is used.

Three groups of experiments are designed: The first
one is used to compare OM with VDM and SFM in
terms of classification accuracy. The second one is used
to validate the effectiveness of attribute weighting in
terms of classification accuracy. The third one is used to
validate the effectiveness of attribute selection in terms of
classification accuracy, test time (the averaged CPU time
in millisecond, the experiments are performed on a dual-
processor 2.26 Ghz P8400 Windows notebook PC with
2.93Gb RAM.), and the size of dimensionality.

In all experiments, the classification accuracy, test time,
and size of dimensionality on each dataset are obtained
via 10-fold cross-validation. Finally, we conducted a two-
tailed t-test with 95% confidence level [43] to compared
each pair of algorithms.

Table II-VI respectively show the compared results.
The symbols ◦ and • in the tables statistically signifi-
cant upgradation or degradation over OM with a 95%
confidence level. The averages and the w/t/l values are
summarized at the bottom of these tables, each entry w/t/l
means that the improved metrics win on w datasets, tie
on t datasets, and lose on l datasets compared to OM.
From the experimental results, we can see that:

1) No any one distance metric can perform better
than the other on all datasets because different
distance metrics have different biases. Therefore,
we can choose different distance metrics for differ-
ent data mining applications. Generally speaking,
VDM and SFM are better than OM when high
classification accuracy is the sole concern. when
the computational cost and/or comprehensibility are
also important, OM should be considered firstly.

2) The attribute weighting methods can enhance the
performance of the resulted algorithms indeed while
the attribute selection methods can significantly

reduce the test time of the resulted algorithms and
the size of dimensionality of the available data.

TABLE I.
DESCRIPTIONS OF UCI DATASETS USED IN THE EXPERIMENTS.

Dataset Instances Attributes Classes
anneal 898 38 6
anneal.ORIG 898 38 6
audiology 226 69 24
autos 205 25 7
balance-scale 625 4 3
breast-cancer 286 9 2
breast-w 699 9 2
colic 368 22 2
colic.ORIG 368 27 2
credit-a 690 15 2
credit-g 1000 20 2
diabetes 768 8 2
Glass 214 9 7
heart-c 303 13 5
heart-h 294 13 5
heart-statlog 270 13 2
hepatitis 155 19 2
hypothyroid 3772 29 4
ionosphere 351 34 2
iris 150 4 3
kr-vs-kp 3196 36 2
labor 57 16 2
letter 20000 16 26
lymph 148 18 4
mushroom 8124 22 2
primary-tumor 339 17 21
segment 2310 19 7
sick 3772 29 2
sonar 208 60 2
soybean 683 35 19
splice 3190 61 3
vehicle 846 18 4
vote 435 16 2
vowel 990 13 11
waveform-5000 5000 40 3
zoo 101 17 7

IV. CONCLUSIONS

In this paper, we provide a survey on distance metrics
for nominal attributes, including some basic distance met-
rics and their improvements based on attribute weighting
and attribute selection. According to our experimental
results on a large number of UCI datasets, we can draw
conclusions: 1) Generally, VDM and SFM are better than
OM when high classification accuracy is the sole concern.
when the computational cost and/or comprehensibility
are also important, OM should be considered firstly. 2)
The attribute weighting methods, especially the attribute
weighting method based on frequency, can really improve
the classification accuracy of the resulted algorithms. 3)
Although the attribute selection methods can’t achieve
significant improvements in terms of accuracy, it can sig-
nificantly reduce the test time of the resulted algorithms
and the size of dimensionality of the available data.
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TABLE II.
EXPERIMENTAL RESULTS FOR OM VERSUS VDM AND SFM:

CLASSIFICATION ACCURACY.

Dataset OM VDM SFM
anneal 95.88 97.55 ◦ 97.10
anneal.ORIG 84.41 88.53 ◦ 88.86 ◦
audiology 58.79 61.42 72.09 ◦
autos 62.52 64.93 68.71
balance-scale 83.84 86.73 94.08 ◦
breast-cancer 73.09 74.11 70.30
breast-w 93.99 96.28 ◦ 96.85 ◦
colic 83.13 84.76 80.44
colic.ORIG 69.82 76.63 ◦ 74.76
credit-a 86.09 84.64 83.62
credit-g 71.90 74.40 73.30
diabetes 69.02 75.14 ◦ 74.24
glass 57.06 61.26 60.80
heart-c 81.09 83.77 81.81
heart-h 82.02 82.37 85.08
heart-statlog 82.22 82.59 83.70
hepatitis 84.50 81.25 81.88
hypothyroid 93.08 93.16 93.08
ionosphere 89.74 90.03 90.89
iris 93.33 95.33 94.67
kr-vs-kp 95.06 96.21 ◦ 87.27 •
labor 85.67 88.00 93.33
letter 71.22 80.35 ◦ 69.75 •
lymph 80.86 80.29 82.38
mushroom 99.75 99.75 96.18 •
primary-tumor 42.47 43.93 46.59
segment 89.65 93.33 ◦ 89.78
sick 97.03 97.67 ◦ 96.55
sonar 81.33 79.83 77.98
soybean 89.01 93.41 ◦ 92.23 ◦
splice 83.26 93.54 ◦ 95.17 ◦
vehicle 68.68 71.16 59.58 •
vote 92.90 94.73 91.28
vowel 67.68 82.42 ◦ 70.00
waveform-5000 74.60 82.80 ◦ 82.90 ◦
zoo 89.18 89.18 91.18
Average 80.66 83.37 82.46
w/t/l - 13/23/0 7/25/4
◦, • statistically significant upgradation or degradation
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