
A Novel Ant Colony Genetic Hybrid Algorithm

Shang Gao
School of Computer Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Email: gao_shang@hotmail.com

Zaiyue Zhang and Cungen Cao
Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of

Sciences, Beijing 100080, China
Email: yzzjzzy@sina.com, cgcao@ict.ac.cn

Abstract—By use of the properties of ant colony algorithm
and genetic algorithm, a novel ant colony genetic hybrid
algorithm, whose framework of hybrid algorithm is genetic
algorithm, is proposed to solve the traveling salesman
problems. The selection operator is an artificial version of
natural selection, and chromosomes with better length of
tour have higher probabilities of being selected in the next
generation. Based on the properties of pheromone in ant
colony algorithm the ant colony crossover operation is given.
Four mutation strategies are put forward using the
characteristic of traveling salesman problems. The hybrid
algorithm with 2-opt local search can effectively find better
minimum beyond premature convergence. Ants choose
several tours based on trail, and these tours will replace the
worse solution. Compare with the simulated annealing
algorithm, the standard genetic algorithm and the standard
ant colony algorithm, all the 4 hybrid algorithms are proved
effective. Especially the hybrid algorithm with strategy D is
a simple and effective better algorithm than others.

Index Terms—ant colony algorithm, genetic algorithm,
traveling salesman problem

I. INTRODUCTION

Inspired by the behavior of real ants, Marco Dorigo
first introduced the colony optimization approach in his
Ph.D. thesis in 1992 and expanded it in his further work.
The characteristics of artificial ant colony include a
method to construct solutions that balances pheromone
trails and a problem-specific heuristic, a method to both
reinforce and evaporate pheromone, and local search to
improve the constructed solutions. The ACO[1] methods
have been successfully applied to diverse combinatorial
optimization problems including traveling salesman,
quadratic assignment, vehicle routing[2],
telecommunication networks[3], graph coloring,
constraint satisfaction, Hamitonian graphs and scheduling.
Genetic algorithms (GAs) or more generally,
evolutionary algorithms [4] have been touted as a class of
general-purpose search strategies for optimization

problems. GAs use a population of solutions, from which,
using crossover, mutation and selection strategies, better
and better solutions can be produced. GAs can handle any
kind of objective functions and any kind of constraints
without much mathematical requirements about the
optimization problems, and have been widely used as
search algorithms in various applications. Various GAs
have been proposed in the literature [5,6] and shown
superior performances over other methods. As a
consequence, GAs seemed to be nice approaches for
solving TSP. However, GAs may cause certain
degeneracy in search performance if their operators are
not carefully designed [6]. A genetic algorithm (GA) is a
metaheuristic inspired by the efficiency of natural
selection in biological evolution. Genetic algorithms have
been applied successfully to a wide variety of
combinatorial optimization problems and are the subject
of numerous recent books [7-8] and conference
proceedings. Unlike traditional heuristics (and some
metaheuristics like tabu search) that generate a single
solution and work hard to improve it, GAs maintain a
large number of solutions and perform comparatively
little work on each one. Several researchers (see [9] and
the references contained within) have implemented GAs
for the standard TSP, with mixed results. The GA in [9]
found new best solutions for some well studied
benchmark problems. Recently, there are many search
activities over artificial ants, which are agents with the
capability of mimicking the behavior of real ants [10,11].
The agents are sufficiently intelligent to exploit
pheromone information that has been left on the traversed
ground. Agents can then choose a route according to the
amount of pheromone. The larger amount of pheromone
is on a route, the larger is the probability of selecting the
route by agents. With such concept, a population-based
algorithm, Ant colony optimization (ACO), has been
widely used as a new cooperative search algorithm [10].
In this paper, a novel algorithm of ant colony genetic
algorithm for traveling salesman problem is proposed.

II. THE BASIC ACO ALGORITHM

In this section we introduce the basic ACO
algorithm. We decided to use the well-known traveling

 Supported by the National Natural Science Foundation of China
under Grant No.60773059; National Basic Research Program of Jiangsu
Province University (08KJB520003)

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1179

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.11.1179-1186

salesman problem as benchmark, in order to make the
comparison with other heuristic approaches easier. Given
a set of n towns, the TSP can be stated as the problem of
finding a minimal length closed tour that visits each town
once. We call ijd the length of the path between towns i

and j . In the case of Euclidean TSP, ijd is the Euclidean

distance between i and j (i.e.,
22)()(jijiij yyxxd −+−= . An instance of the

TSP is given by a graph (N , E), where N is the set of
towns and E is the set of edges between towns (a fully
connected graph in the Euclidean TSP).

Let)(tbi (ni ,,2,1=) be the number of ants in

town i at time t and let ∑
=

=
n

i
i tbm

1
)(be the total

number of ants. Each ant is a simple agent with the
following characteristics:

(1) It chooses the town to go to with a probability that
is a function of the town distance and of the amount of
trail present on the connecting edge.

(2) To force the ant to make legal tours, transitions to
already visited towns are disallowed until a tour is
completed (this is controlled by a tabu list).

(3) When it completes a tour, it lays a substance called
trail on each edge),(ji visited.

Let)(tijτ be the intensity of trail on edge),(ji at
time t . Each ant at time t chooses the next town, where
it will be at time 1+t . Therefore, if we call an iteration
of the ACO algorithm the m moves carried out by the
m ants in the interval)1,(+tt , then every n iterations
of the algorithm (which we call a cycle) each ant has
completed a tour. At this point the trail intensity is
updated according to the following formula

ijijij tnt τρττ Δ+=+)()((1)
where ρ is a coefficient such that (1- ρ) represents

the evaporation of trail between time t and nt + ,

∑
=

Δ=Δ
m

k

k
ijij

1
ττ (2)

where k
ijτΔ is the quantity per unit of length of trail

substance (pheromone in real ants) laid on edge),(ji by
the k-th ant between time t and nt + . It is given by

⎪
⎩

⎪
⎨

⎧
=

otherwise0
 tour itsin

j) (i, edge usesant th -k if

k
k
ij L

Q
τΔ (3)

where Q is a constant and kL is the tour length of the
k-th ant. The coefficient ρ must be set to a value ρ <1
to avoid unlimited accumulation of trail. In our
experiments, we set the intensity of trail at time 0,

)0(ijτ , to a small positive constant c.

In order to satisfy the constraint that an ant visits all the
n different towns, we associate with each ant a data
structure called the tabu list, that saves the towns already
visited up to time t and forbids the ant to visit them again
before n iterations (a tour) have been completed. When a
tour is completed, the tabu list is used to compute the
ant’s current solution (i.e., the distance of the path
followed by the ant). The tabu list is then emptied and the
ant is free again to choose. We define ktabu the
dynamically growing vector, which contains the tabu list
of the kth ant, ktabu the set obtained from the elements

of ktabu , and)(stabuk the s-th element of the list (i.e.,
the s-th town visited by the k-th ant in the current tour).

We call visibility ijη the quantity 1
dij

. This

quantity is not modified during the run of the ACO
algorithm, as opposed to the trail, which instead changes
according to the previous formula (1).

We define the transition probability from town i to
town j for the k-th ant as

⎪
⎪
⎩

⎪⎪
⎨

⎧
∈

⋅

⋅

= ∑
∈

otherwise

allowedjif
t

t

tp
k

alloweds
isis

ijij

k
ij

k

0

)(
)(

)(βα

βα

ητ
ητ

 (4)

where kallowed = { N - ktabu } and where α and

β are parameters that control the relative importance of
trail versus visibility. Therefore the transition probability
is a trade-off between visibility (which says that close
towns should be chosen with high probability, thus
implementing a greedy constructive heuristic) and trail
intensity at time t (that says that if on edge),(ji there
has been a lot of traffic then it is highly desirable, thus
implementing the autocatalytic process).

Given the definitions of the preceding section, the so-
called ant-cycle algorithm is simply stated as follows.
Formally the ant-cycle algorithm is:
1. Initialize:

Set t:=0 {t is the time counter}
Set NC:=0 {NC is the cycles counter}
For every edge (i,j) set an initial value cij =τ for

trail intensity and 0=Δ ijτ
Place the m ants on the n nodes

2. Set s:=1 {s is the tabu list index}
For k:=1 to m do

Place the starting town of the k-th ant in)(stabuk
3. Repeat until tabu list is full {this step will be repeated
(n-1) times}

Set s:=s+1
For k:=1 to m do

Choose the town j to move to, with probability
)(tp k

ij given by equation (4) {at time t the k-th ant is on

town)1(−= stabui k }

1180 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

Move the k-th ant to the town j
Insert town j in)(stabuk

4. For k:=1 to m do
Move the k-th ant from)(ntabuk to)1(ktabu

Compute the length kL of the tour described by the
k-th ant

Update the shortest tour found
For every edge (i,j)

For k:=1 to m do

⎪⎩

⎪
⎨

⎧
=Δ

otherwise0

 tour itsin j) (i, edge usesant th -k if
k

k
ij L

Q
τ

∑
=

Δ=Δ
m

k

k
ijij

1
ττ

5. For every edge (i,j) compute)(ntij +τ according to

equation ijijij tnt τρττ Δ+=+)()(
Set t:=t+n
Set NC:=NC+1
For every edge (i,j) set 0:=Δ ijτ

6. If (NC < NCMAX) and (not stagnation behavior)
then

Empty all tabu lists
Goto step 2

else
Print shortest tour
Stop

The complexity of the ant-cycle algorithm is
)(2 mnNCO ⋅⋅ if we stop the algorithm after NC

cycles. In fact step 1 is)(2 mnO + , step 2 is)(mO ,

step 3 is)(2 mnO ⋅ , step 4 is)(2 mnO ⋅ , step 5 is

)(2nO , step 6 is)(mnO ⋅ . Since we have
experimentally found a linear relation between the
number of towns and the best number of ants, the
complexity of the algorithm is)(3nNCO ⋅ .

We also experimented with two other algorithms of
the AS, which we called ant-density and ant-quantity
algorithms. They differ in the way the trail is updated. In
these two models each ant lays its trail at each step,
without waiting for the end of the tour. In the ant-density
model a quantity Q of trail is left on edge (i,j) every time
an ant goes from i to j; in the ant quantity model an ant

going from i to j leaves a quantity
ijd

Q of trail on edge

(i,j) every time it goes from i to j. Therefore, in the ant-
density model we have

⎩
⎨
⎧

=Δ
otherwise0

 tour itsin j) (i, edge usesant th -k ifQk
ijτ

and in the ant-quantity model we have

⎪⎩

⎪
⎨
⎧

=Δ
otherwise0

 tour itsin j) (i, edge usesant th -k if
ij

k
ij

d
Q

τ

From these definitions it is clear that the increase in trail
on edge (i,j) when an ant goes from i to j is independent
of dij in the ant-density model, while it is inversely
proportional to dij in the ant-quantity model (i.e., shorter
edges are made more desirable by ants in the ant-quantity
model).

III. THE BASIC GENETIC ALGORITHM

The evolutionary theory attributes the process of the
natural evolution of populations to the Darwin`s principle
of natural selection "survival of the fittest". Genetic
Algorithms (GA) were developed by Holland (1975), and
are based on the principles of natural selection and
genetic modification. GA are optimization methods,
which operate on a population of points, designated as
individuals. Each individual of the population represents
a possible solution of the optimization problem.
Individuals are evaluated depending upon their fitness.
The fitness indicates how well an individual of the
population solves the optimization problem.

GA begin with random initialization of the population.
The transition of a population to the next takes place via
the application of the genetic operators: Selection,
crossover, and mutation. Through the selection process,
the fittest individuals will be chosen to go to the next
population. Crossover exchanges the genetic material of
two individuals creating two new individuals. Mutation
arbitrarily changes the genetic material of an individual.
The application of the genetic operators upon the
individuals of the population continues until a sufficiently
good solution of the optimization problem is found. The
solution is usually achieved when a pre-defined stop
condition, i.e., a certain number of generations is reached.
GA has the following general features:

(1) GA operates with a population of possible
solutions (individuals) instead of a single individual.
Thus, the search is carried out in a parallel form.

(2) GA is able to find optimal or sub-optimal
solutions in complex and large search spaces. Moreover,
GA are applicable to nonlinear optimization problems
with constraints, that can be defined in discrete or
continuous search spaces.

(3) GA examines many possible solutions at the same
time. So there is a higher probability that the search
converges to an optimal solution.

In the classical GA developed by Holland (1975), the
individuals are represented by binary numbers, i.e., bit
strings. In the meantime, new representations for
individuals and appropriate genetic operators have been
developed. For optimization problems with variables
within the continuous domain the real representation has
shown to be more suitable. With this type of the
representation, individuals are represented directly as real
numbers. For this case, it is no necessary to transform
real numbers into binary. In the following, some terms
and definitions are described.

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1181

© 2010 ACADEMY PUBLISHER

After several generations, GA can converge to the
best solution. Let P(t) and C(t) are parents and offspring
in generation t. A usual form of general GA is shown in
the following:
Procedure: General GA

Begin
t ← 0;
Initialize P(t); {Generate random population of n

chromosomes (suitable solutions for the problem)}
Evaluate P(t); {Evaluate the fitness f(x) of each

chromosome x in the population}
While (not match the termination conditions) do

Recombine P(t) to yield C(t);
[Selection] Select two parent chromosomes
from a population according to their fitness
(the better fitness, the bigger chance to be
selected)
[Crossover] With a crossover probability
cross over the parents to form a new
offspring (children). If no crossover was
performed, offspring is an exact copy of
parents.
[Mutation] With a mutation probability
mutate new offspring at each locus (position
in chromosome).
[Accepting] Place new offspring in a new
population
[Replace] Use new generated population for
a further run of algorithm

Evaluate C(t);
Select P(t+1) form P(t) and C(t);
t ← t+1;

End;
End;
Recently, genetic algorithms with local search have

also been considered as good alternatives for solving
optimization problems. The local search for TSP, 2-opt
approach, can be implemented after crossover and
mutation operators.

IV. ANT COLONY GENTIC ALGORITHM

A. Ant Colony Trail Update
After all ants have constructed a solution, we can

update pheromone trail according to populations. The
pheromone-updating rule is performed as

),(),(),(srsrsr τΔρττ += （5）
Where),(srτ is pheromone trail between city r and s ,

⎩
⎨
⎧ ∈

=
otherwise0

tourbest),(if/
),(

srLQ
sr gbτΔ , and

gbL is the optimal tour length for the TSP problem.
To avoid search stagnation, the allowed range of the

pheromone trail strengths is limited to the interval
[minτ , maxτ], that is, maxmin, ττττ ≤≤∀ ijij .

B. Selection Operators
This operator is designed by a common method of

natural selection in GA called the Roulette Wheel method.
The Roulette Wheel method simply chooses the strings in
a statistical fashion based solely upon their relative (i.e.,
percentage) cost or fitness values. So, the natural
selection operator in this GA randomly chooses strings
from the current population with probability inversely
proportional to their cost.

The i th chromosome is selected based on the
probability

∑
=

= n

i
i

i
i

f

f
P

1

 (6)

where if is fitness of i th chromosome. if is the
reciprocal of length of tour. The shorter the route the
higher the fitness value is.

C. Ant Colony Crossover Operators
There are many different types of crossover operators,

but we discuss ant colony crossover operator as following.
Let’s suppose we have two parent tours given by

P1=1 2 3 4 5 6 7 8
P2=1 2 8 3 4 5 7.6
They are shown in figure 1. The coarse linear represent

that the pheromone trail of these two city is higher. We
can sort the 8 sides pheromone trail of two parent tours.
We note the coarse linear from the maximum to k th
(5=k) maximum according the pheromone trail. For
example, the pheromone trail of 12e 、 23e 、 34e 、

45e , 67e in 1P are higher, and 12e 、 34e 、 45e 、

16e , 67e in 2P are higher. Then we use these sides make
up a new offspring solution. We can choose the side
which pheromone trail is the higher, as the solution is
illegal. And we choose the other side by nearest rule. The
process is shown in figure2.

Figure 1. Two parent solutions

1182 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

Figure2. The part solution and offspring solution

D. Mutation Operators
There are following methods to generate a new tour

1C from the tour 0C .

Mutation operator A Choose two cities 1j and

2j from the tour 0C by randomly, and then swap 1j

with 2j in the tour 0C , so the new tour is 1C . For

example, suppose 0C =2 3 4 1 5 7 9 8 6, 31 =j and

92 =j , so 1C =2 9 4 1 5 7 3 8 6.

Mutation operator B Choose a city 1j from the tour

0C by randomly, and then swap 1j with the next visited

city. For example, suppose 0C =2 3 4 1 5 7 9 8 6,

31 =j , so 1C =2 4 3 1 5 7 9 8 6.

Mutation operator C A modified solution 1C is

generated from 0C by randomly choose two cities 1j

and 2j and reversing the sequence in which the cities in

between cities 1j and 2j are traversed, i.e. the 2-change

generation mechanism. For example, suppose 0C =2 3 4

1 5 7 9 8 6, 31 =j and 92 =j , so 1C =2 9 7 5 1 4 3 8
6.

Mutation operator D Choose two cities 1j and

2j from the tour 0C by randomly, and then insert city

1j into the latter of 2j city. For example, suppose 0C =2

3 4 1 5 7 9 8 6, 31 =j and 92 =j , so 1C =2 4 1 5 7 9
3 8 6.

E. 2-Option Llocal Search
Each individual has a 2-option local search

minimization applied to their tour. The 2-option local
search is not the most effective local search method. A 3-
option local search or the “champion” LK search has
been proven much more effective and efficient. While
this may be true, they also require much more
computation time and perhaps parallel processing to
obtain an adequate number of generations in a reasonable

timeframe. For the city sets examine here a 2-option local
search is sufficient, and for larger city sets employing a
LK search will continue the success of the algorithm. The
framework for a 2-option local search is shown in Figure
3.

Figure3. 2-option local search

The local search takes an initial solution and makes
incremental modifications in order to find a better tour.
The operation makes 2 breaks in the tour, recombines in
the only possible other option for a complete tour, and
then compares the new tour distance to the previous tour
distance. This process results in a local optimum due to
small rearrangements which work out short nonoptimized
sections in the tour.

F. Ant Colony Gentic Hybrid Algorithm
The ant colony genetic hybrid algorithm solving TSP

can be expressed as follows:
1. Initialize:

Set t:=0 {t is the time counter}
Set NC:=0 {NC is the cycles counter}
Generate N tours, and choose the better m tours

from these N tours, and pheromone laid on edge of
these m better tours.

Set 0=Δ ijτ
Place the m ants on the n nodes

2. Set s:=1 {s is the tabu list index}
For k:=1 to m do

Place the starting town of the k-th ant in)(stabuk
3. Repeat until tabu list is full {this step will be repeated
(n-1) times}

Set s:=s+1
For k:=1 to m do

Choose the town j to move to, with probability
)(tp k

ij given by equation (4) {at time t the k-th ant is on

town)1(−= stabui k }
Move the k-th ant to the town j
Insert town j in)(stabuk

4. For k:=1 to m do
Move the k-th ant from)(ntabuk to)1(ktabu

Compute the length kL of the tour described by the
k-th ant

Update the shortest tour found
For every edge (i,j)

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1183

© 2010 ACADEMY PUBLISHER

For k:=1 to m do

⎪⎩

⎪
⎨

⎧
=Δ

otherwise0

 tour itsin j) (i, edge usesant th -k if
k

k
ij L

Q
τ

∑
=

Δ=Δ
m

k

k
ijij

1

ττ

5. Selection operators
6. Ant colony crossover operators
7. Mutation operator
8. 2-option local search
9. Ants choose several tours based on trail, and these
tours will replace the worse solution
10. Save the current best tour
11. For every edge (i,j) compute)(ntij +τ according to

equation ijijij tnt τρττ Δ+=+)()(
Set t:=t+n
Set NC:=NC+1
For every edge (i,j) set 0:=Δ ijτ

12. If (NC < NCMAX) and (not stagnation behavior)
then

Empty all tabu lists
Goto step 2

else
Print shortest tour
Stop

V..EXPERIMENTAL RESULTS

A. Traveling Salesman Problem
Almost all ACO algorithms have initially been tested

on the traveling salesman problem. The traveling
salesman problem (TSP) can be represented by a
complete graph),(ANG = with N being the set of
nodes, also called cities, and A being the set of arcs fully
connecting the nodes. Each arc Aji ∈),(is assigned a

value ijd which represents the distance between cities i

and j . The TSP then is the problem of finding a shortest

closed tour visiting each of the Nn = nodes of G
exactly once. For symmetric TSPs, the distances between
the cities are independent of the direction of traversing
the arcs, that is, jiij dd = for every pair of nodes. In the

asymmetric TSP(ATSP) at least for one pair of nodes i
and j we have jiij dd ≠ .All the TSP instances used in
the empirical studies presented in this article are taken
from the TSPLIB benchmark library accessible at
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
These instances have been used in many other studies and
partly stem from practical applications of the TSP.

The exact algorithms are designed to find the optimal
solution to the TSP, that is, the tour of minimal length.
They are computationally expensive because they must
(implicitly) consider all solutions in order to identify the

optimum. These exact algorithms are typically derived
from the integer linear programming (ILP) formulation of
the TSP

1,0

),,2,1(1

),,2,1(1..

min

1

1

1 1

=

==

==

∑

∑

∑∑

=

=

= =

ij

N

i
ij

N

j
ij

N

i

N

j
ijij

x

njx

nixts

xd

 (7)

where n is the number of vertices, the ijx 's are the

decision variables: ijx is set to 1 when arc (i,j) is
included in the tour, and 0 otherwise. Branch and bound
algorithms are commonly used to find an optimal solution
to the TSP, and the above AP-relaxation is useful to
generate good lower bounds on the optimal value.

B. Simulated Annealing Algorithms
Simulated annealing (SA) is a Monte Carlo approach

to minimizing multivariate functions, and meanwhile a
numerical optimization model based on the principles of
thermo dynamics, which is motivated by an analogy to
annealing in solids. The concept of SA derives from a
paper published by Metropolis et al. in 1953. The
algorithm in this paper simulated the cooling of materials
in a heated bath, which is also known as an annealing
process. If you heat a solid past melting point and then
cool it, the structural properties of the solid will primarily
depend on the rate of cooling. If the liquid is cooled
slowly enough, the large crystals will be formed.
However, if the liquid is cooled quickly (quenched), the
crystals will take shape with some imperfections.
Metropolis’s algorithm simulated the material as a system
of particles. The algorithm simulates the cooling process
by gradually lowering the temperature of the system until
it converges to a steady, frozen state. Simulated annealing
(SA) takes advantage of search strategies in which cost-
deteriorating neighborhood solution may be accepted to
search the optimal solutions. In SA, in addition to better-
fitness neighbors are always accepted, worse-fitness
neighbors may also be accepted according to a
probability that is gradually decreased in the cooling
process. With the stochastic nature, SA enables
asymptotic convergence to optimal solution and has been
widely used for solving optimization problems. In SA, if
a modified solution is found to have better fitness than its
ancestor then the modified solution is retained and the
previous solution is discarded. If the modified solution is
found to have less fitness than its ancestor, the modified
solution may be still retained with a probability related to
the current temperature. As the process continues and the
temperature decreases, unsatisfactory solutions are less
likely accepted. By using this approach, it is possible for
the SA algorithm to move out of local minima, and more
likely that good solutions will not be discarded.

1184 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

The Simulated annealing algorithm can be described as
follows:
1. Set the initial temperature 100000=T , the final
temperature 10 =T , and annealing velocity 9.0=α .

Generate a random the tour 0C , and calculate the overall

sum of the squared errors 0f .

2. If T > 0T , go to Step 3. Otherwise print output 0C
and stop.
3. Generate a new tour 1C from the tour 0C .

4. Calculate the overall sum of the squared errors 1f , and

set 01 ffE −=Δ .If 0≤ΔE , accept the new

solution ， 10 CC ← , TT α← , go to Step 2.

Otherwise if)1,0()/exp(randTE >Δ− ，accept the

new solution also, 10 CC ← ， TT α← ，go to Step 2.
Else go to Step 3.

C. Computational Results
This section compares the results of simulated

annealing algorithm, genetic algorithm, ACO algorithm
and hybrid algorithms on traveling salesman problem of
Oliver30 problem and att48 problem. The parameters of
simulated annealing algorithm are set as follows: the
initial temperature 100000=T , the final temperature

10 =T , and annealing velocity 99.0=α . The
parameters of the genetic algorithm optimization toolbox
(GAOT) used to solving TSP are set as follows: the
population 30=N , the cross probability 2.0=cP , and

the mutation probability 5.0=mP . The parameters of
the hybrid algorithms are set as follows:

5.1=α , 30=m , 2=β , and 9.0=ρ . 100 rounds
of computer simulation are conducted for each algorithm,
and the results are shown in Table 1. The optimal tour of
Oliver30 by hybrid algorithm is shown in Fig. 4. The
optimal tour of att48 by hybrid algorithm is shown in Fig.
5. All the 4 hybrid algorithms are proved effective.
Especially the hybrid algorithm with mutation strategy D
is a simple and effective better algorithm than others.

TABLE I.
TESTING RESULT OF ALGORITHMS

Oliver30 att48 Algorithms
Average
solutions

Best
solutions

Worst
solutions

Average
solutions

Best
solutions

Worst
solutions

Simulated annealing algorithm 438.5223 424.6918 479.8312 34958 35176 40536
Genetic algorithm 483.4572 467.6844 502.5742 38541 38732 42458

Basic ACO algorithm 450.0346 441.9581 499.9331 35876 36532 42234

Crossover operator + Mutation
operator A+2-Opt+ACO

438.9323 424.6257 457.9002 34893 35134 38573

Crossover operator + Mutation
operator B+2-Opt+ACO

439.4758 426.1782 465.9797 3553 35300 39357

Crossover operator + Mutation
operator C+2-Opt+ACO

435.4134 424.9003 447.3198 34689 35185 37698

Crossover operator + Mutation
operator D+2-Opt+ACO

431.4876 423.7406 447.6734 33764 33522 36789

Figure 4 The optimal tour of Oliver30 by hybrid algorithm

Figure 5 The optimal tour of att48 by hybrid algorithm

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1185

© 2010 ACADEMY PUBLISHER

V..CONCLUSIONS

In this paper, we presented a novel ant colony genetic
hybrid algorithm for traveling salesman problem. It keeps
the advantages of ant colony optimization and GAs. From
our simulation for those test problems, the proposed
algorithm indeed can find the best solutions or optimal
solutions. In other words, the proposed algorithm seems
to have admirable performance. Experiments for
benchmark problems show the hybrid algorithm better
than other algorithms.

The following problems need to be considered. 1. The
parameters and their affect on the performance of the
optimization should be studied in more detail. 2. How to
explore hybrid algorithm application to continuous space
problem should be investigated. 3. The hybrid
algorithm’s convergent speed, or the efficiency, should be
worth further investigating. 4. How to evaluate the
quality of hybrid algorithm and other algorithms is still a
problem.

ACKNOWLEDGMENT

This work was partially supported by National Basic
Research Program of Jiangsu Province University
(08KJB520003) and the National Natural Science
Foundation of China under Grant No.60773059.

REFERENCES

[1] A. Colorni, M. Dorigo, and V. Maniezzo, “An
investigation of some properties of an ant algorithm”, Proc.
Of the Parallel Problem Solving from Nature Conference
(PPSN’92). Brussels, Belgium: Elsevier Publishing,1992,
pp.509-520.

[2] Bernd Bullnheimer, F. Richard. Hartl, and Christine
Strauss, “Applying the ant System to the vehicle routing
problem”. 2nd Metaheuristics International Conference
(MIC-97). Sophia-Antipolis, France, 1997, pp.21-24.

[3] Gianni Di Caro, and M. Dorigo, “Mobile agents for
adaptive routing”, Proceedings of the 31th Hawaii
International Conference on system Sciences. Big Island of
Hawaii,1998, pp.74-83.

[4] T. Bäck, U. Hammel, and H. P. Schwefel, “Evolutionary
computation: Comments on the history and current state,”
IEEE Trans. On Evolutionary Computation, Vol. 1, No. 1,
1997,pp.3-17.

[5] M. Gen, and R. Cheng, Genetic Algorithms and
Engineering Design, John Wiley & Sons Inc., 1997.

[6] L. Jiao, and L. Wang, “Novel genetic algorithm based on
immunity,” IEEE Transactions on Systems, Man and
Cybernetics, Part A, Vol. 30, No. 5, 2000, pp.552 –561.

[7] K. F. Man, K. S. Tang, and S. Kwong, Genetic Algorithms:
Concepts and Designs. Springer, New York, 1999.

[8] G. Winter, J. Periaux, M. Galan, and P. Cuesta, editors.
Genetic Algorithms in Engineering and Computer Science.
Wiley, New York, 1995.

[9] G. Laporte, A. Asef-Vaziri, and C. Sriskandarajah, “Some
applications of the generalized travelling salesman
problem,” Journal of the Operational Research Society,Vol
47, No12,1996,pp.1461–1467.

[10] M. Dorigo, and L. M. Gambardella, “Ant colony system: A
cooperative learning approach to the traveling salesman
problem,” IEEE Trans. On Evolutionary Computation, Vol.
1,1997, pp.53-66.

[11] R. Beckers, J. L. Deneubourg, and S. Goss, “Trails and u-
turns in the selection of the shortest path by the ant Lasius
Niger,” Journal of Theoretical Biology,Vol. 159, 1992,
pp.397-415.

Shang Gao was born in 1972, and received his M.S. degree
in 1996 and Ph.D degree in 2006. He now works in school of
computer science and technology, Jiangsu University of Science
and Technology. He is a professor and He is engage mainly in
systems engineering and soft computing.

Zaiyue Zhang was born in 1961, and received his M.S.
degree in mathematics in 1991 from the Department of
Mathematics, Yangzhou Teaching College, and the Ph.D.
degree in mathematics in 1995 from the Institute of Software,
the Chinese Academy of Sciences. His current research areas
are recursion theory, knowledge representation and knowledge
reasoning.

Cungen Cao was born in 1964, and received his M.S. degree
in 1989 and Ph.D. degree in 1993 both in mathematics from the
Institute of Mathematics, the Chinese Academy of Sciences.
Now he is a professor of the Institute of Computing Technology,
the Chinese Academy of Sciences. His research area is large
scale knowledge processing.

1186 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

