
Multiprocessor Scheduling by Simulated
Evolution

Imtiaz Ahmad

Department of Computer Engineering
Kuwait University, P. O. Box: 5969, Safat 13060 Kuwait

Email: imtiaz@eng.kuniv.edu.kw

Muhammad K. Dhodhi
Ross Video Ltd., 9 Slack Road, Ottawa, ON, K2G 0B7 Canada

Email: mdhodhi@rossvideo.com

Ishfaq Ahmad
Department of Computer Science and Engineering

 Box 19015, CSE, University of Texas at Arlington, Arlington, TX 76019 USA
Email: iahmad@cse.uta.edu

Abstract— This paper presents a variant of simulated
evolution technique for the static non-preemptive scheduling
of parallel programs represented by directed acyclic graphs
including inter-processor communication delays and
contention onto a multiprocessor system with the dual
objectives of reducing the total execution time and scaling
with the number of processors. The premise of our
algorithm is Simulated Evolution, an effective optimization
method based on the analogy with the natural selection
process of biological evolution. The proposed technique,
named Scheduling with Simulated Evolution (SES),
combines simulated evolution with list scheduling, wherein
simulated evolution efficiently determines suitable priorities
which lead to a good solution by applying list scheduling as
a decoding heuristic. SES is an effective method that yields
reduced length schedules while scaling well and incurring
reasonably low complexity. The SES technique does not
require problem-specific parameter tuning on test problems
of different sizes and structures. Moreover, it strikes a
balance between exploration of the search space and
exploitation of good solutions found in an acceptable CPU
time. We demonstrate the effectiveness of SES by
comparing it against two existing static scheduling
techniques for the test examples reported in literature and
on a suite of randomly generated graphs. The proposed
technique produced good quality solutions with a slight
increase in the CPU time as compared with the competing
techniques.

Index Terms— Software, Scheduling, Allocating Parallel
Programs, Simulated Evolution

I. INTRODUCTION

Parallel programs are typically represented by directed
acyclic graphs (DAGs). In a DAG, nodes denote tasks
and an arc between any two nodes represents data
dependency among them. The weights associated with
the nodes and the arcs of a DAG represent the
computation cost and the communication cost,
respectively. The multiprocessor scheduling problem is

well known to be NP-complete except in a few restricted
cases [1-2]. Hence, satisfactory suboptimal solutions
obtainable in a reasonable amount of computation time
are generally sought [3-13] by devising effective
heuristics. The objective is not to propose another
heuristic but to improve the effectiveness of a given
heuristic.

Simulated evolution is a general purpose optimization
method based on an analogy with the natural selection
process in the biological environments. In biological
processes, species adapt themselves to the environment as
they evolve from one generation to the next. In this
evolution process some of the bad characteristics of the
old generation are eliminated and a new generation which
is more suited to the environment is created [14-20].
Mutation and selection are the two main driving forces
behind evolution. The simulated evolution models the
evolution process by asexual reproduction with mutation
and selection, while other probabilistic techniques, such
as genetic algorithms [14], focus on recombination of
different solutions via crossover and an occasional
mutation. In the simulated evolution scheme mutation is
the dominant operator and it is used for introducing
variations into solutions. In nature, mutation refers to
spontaneous and random changes in genes. The
advantage is that optimization proceeds rapidly because
the random distribution of new trials concentrates the
computational effort on solutions that have provided
evidence of success in the past [20]. Simulated evolution
has been successfully applied to combinatorial
optimization problems such as high-level synthesis [15],
routing [16], circuit partitioning [17] and standard cell
placement [18, 19]. A number of other evolutionary
algorithms such as genetic algorithms [21], genetic list
scheduling [22], particle swarm optimization [23], ant
colony optimization [24] and artificial immune system
[25] have been applied to multiprocessor scheduling
problem with varying degree of success.

1128 JOURNAL OF SOFTWARE, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.10.1128-1136

This paper presents an evolution-based technique,
SES, applied to the problem of multiprocessor scheduling
of task graphs with non-negligible inter-processor
communication delays. As elaborated below, the priority
assignment to tasks in list scheduling is critical in
determining a good schedule. Accurate priority
determination has led to a great deal of research to design
efficient heuristics. In the proposed technique we apply
simulated evolution to determine suitable priorities which
lead to a good solution by applying the list scheduling as
a decoding heuristic. SES presumes that the base heuristic
has been designed to give reasonably good solutions to
the problem at hand (such as the list scheduling in our
case). If this heuristic is applied to a new set of problem
data differing only slightly from the original problem, the
resulting solution should also be a reasonably good
solution to the original problem. Thus, by applying the
base heuristic to problem data in the neighborhood of the
original, the likelihood of good solutions enhances.

The remainder of the paper is organized as follows: the
details of proposed SES technique are discussed in
Section II, the performance results and comparisons are
reported in Section III. Section IV concludes this paper.

II. EVOLUTION-BASED TECHNIQUE

In this section, first we formulate the scheduling
problem, and then give a summary of the proposed
technique followed by its detailed implementation.

A. Problem Formulation
Let S = {i: i = 1, . . ., m} be a set of m fully connected

homogeneous processors and let the application program
be modeled by a directed acyclic graph DAG = {j: j = 1,
. . ., n} of n tasks. For any two tasks i, j ∈ DAG, i < j
means that task j cannot be scheduled until i has been
completed, i is a predecessor of j and j is a successor of
i. Weights associated with the nodes represent the
computation cost and the weights associated with arcs
represent the communication cost. An example of a
directed acyclic graph (DAG) consisting of 28 tasks
adopted from [11] is shown in Fig. 1. The multiprocessor
scheduling is to assign the set of tasks of DAG onto the
set of processors S in such a way that precedence
constraints are maintained, and to determine the start and
finish times of each task with the objective to minimize
the schedule length. We assume that the communication
system permits the overlap of communication with
computation and its communication channels are half-
duplex. We do take care of network contention into
consideration in determining the schedule length. Task
execution can be started only after all the data have been
received from its predecessor’s nodes. Duplication of
same task is not allowed. Communication is zero when
two tasks are assigned to the same processor; otherwise
they incur a communication cost given by the edge
weight.

8 1234567

28 21222324252627

20 171819

16 131415

12 91011

2020202020202020

20202020

3030
30

30

20202020

55555555

5 5 5 5 5 5 5 5

5 5 5
5

5

5 5 5

55555555

600 600
600 600 600 600

600 600

Figure 1. A directed acyclic graph for FFT-4 adopted from [11].

B. The Principle of List Scheduling
A major portion of task scheduling heuristics is based

on the so called list scheduling approach [3-10]. In list
scheduling each task is assigned a priority based on its
estimated importance to determine the entire schedule.
Initially a ready list holds all the tasks which have no
predecessors. Whenever a processor becomes available, a
task with the highest priority is selected from the ready
list and assigned to the available processor. Two priority
levels are associated with each task (node): the t-level and
the b-level. The t-level of a node i is the length of the
longest path between this node and an entry node in the
DAG excluding the computation cost of node i. This level
essentially determines the earliest start time of a node.
The b-level of a node is the length of the longest path
(computation + communication cost) from node i to an
exit node. The b-level of a node is bounded by the critical
path of the DAG. Different scheduling heuristic use the t-
level and the b-level in different combinations such as
smaller t-level, larger b-level or larger (b-level + t-level)
etc. Detailed analysis of the design philosophies,
principles behind these algorithms and performance
comparisons for different classes of scheduling
techniques are given in references [3, 11-12].

The priorities assignments to tasks play a key role in
list scheduling. It was shown in [4] that, if priorities are
assigned improperly, the resulting schedules may be
worse, even if the precedence relationships are relaxed,
task execution time decreased and the number of
processors increased. It has been reported in [5, 6, 8] that
the critical path (b-level) list scheduling heuristic is
within 5% of the optimal solution 90% of the time when
the communication cost is ignored, while in the worst
case any list scheduling is within 50% of the optimal
solution. The critical path list scheduling no longer
provides the 50% performance guarantee in the presence
of non-negligible communications cost [7-10]. In this
paper we introduce a new technique based on simulated
evolution [15-19] for the static, non-preemptive
scheduling problem in homogeneous fully connected

JOURNAL OF SOFTWARE, VOL. 5, NO. 10, OCTOBER 2010 1129

© 2010 ACADEMY PUBLISHER

multiprocessor systems to reduce the schedule length and
to increase the throughput of the system.

C. Algorithm Summary
The simulated evolution is a combination of both

iterative and constructive methods [19]. To design a new
evolution based technique involves various design
decisions which include choosing a problem
representation, deciding the decoding scheme, applying an
appropriate cost function for the problem at hand,
developing search operators and deciding selection
mechanisms to be employed and the termination criteria.
We will give details of all these questions for the proposed
technique through an illustrative example. Outline of the
proposed simulated evolution-based scheduling (SES)
technique is shown in Fig. 2, where Ng denotes number of
generations, Pm mutation rate, m number of processors,
Ngm number of genes to be mutated and δ the maximum
number of consecutive generations without improvement
in the objective function.

In the proposed technique first we read the DAG of a
given application program and build a database which
includes the adjacency list, the number of predecessors
and the number of successors for each node in the directed
acyclic graph. Then we get the user defined parameters
such as the Ng, Pm, Ngm and the parameter δ. The t-level
and b-level of each node in the DAG are calculated and an
initial chromosome (initial_chrom) is built based on the b-
level. Then we copy the initial chromosome to current
chromosome (current_chrom) and apply the decoding
heuristic (list scheduling) to generate a solution (schedule)
for the current chromosome, and its cost is evaluated by
applying the function Evaluate(schedule). The schedule is
stored as the best schedule, current chromosome is stored
as the best chromosome and the cost is stored as the best
objective. A counter called count which keeps track of the
number of consecutive generations without improvement
in the objective value is initialized to zero. Then we repeat
the following until termination criteria are met. A mutation
operator (function Mutate) is applied to generate offspring
to form a new chromosome. Then the chromosome is
decoded using the list scheduling heuristic and the solution
is evaluated. If the new objective value is less than the
previous one, we update the best objective, the best
schedule, the best chromosome and count is set to zero.
Otherwise, if count is less than δ, the count is incremented;
else we copy the best chromosome to the current
chromosome and reset count to zero. The detailed
implementation of each step of the proposed algorithm is
described next using the directed acyclic graph shown in
Fig. 1 as an illustrative example.

D. Initial Chromosome
The chromosome representation of SES is given in

Table I. Each position of the chromosome is called a gene.
A gene i in the chromosome represents the priority of the
node i in the directed acyclic task graph. The priority of
node i for the initial chromosome is the length of the
longest path (computation + communication cost) from
node i to an exit node (b-level). In SES, only one

chromosome is utilized in each generation, although each
generation may consist of more than one chromosome as
mentioned in [19], but it incurs more memory overhead.
In our case the chromosome is represented in a problem
domain instead of solution as compared with the previous
approaches [15-19]. The chromosome is decoded using a
fast list scheduling heuristic. This chromosome provides
the priorities when we want to find a solution for the given
problem using list scheduling.

Read DAG and build a database;

yes

no

Read Ng, Pm, Ngm, m and δ

Find the t-level (ti) and b-level (bi) of each node i in DAG;
Generate initial_chrom based on b-level only;

current_chrom initial_chrom;
schedule Decoding_heuristic (m, current_chrom);

best_objective Evaluate (schedule);
best_chrom current_chrom;

best_schedule schedule; count 0;

current_chrom Mutate (current_chrom, Pm, Ngm);

schedule Decoding_heuristic (m, current_chrom)

objective Evaluate (schedule);

objective < best_objective
yesno

best_objective objective;
best_schedule schedule;

best_chrom current_chrom;
 count 0;

no yes
count > δ

current_chrom best_chrom;
 count 0; count count + 1;

Report the best_schedule.

stopping criteria
satisfied ?

;

Figure 2. Outline of the proposed scheme.

TABLE I.

Initial chromosome with node priorities.

Node number[node priority based on b-level]
1 [710], 2 [710], 3 [710], 4 [710], 5 [710], 6 [710], 7 [710],
8 [710], 9 [685], 10 [685], 11 [685], 12 [685], 13 [65],
14 [65], 15 [65], 16 [65], 17 [30], 18 [30], 19[30], 20 [30],
21 [5], 22 [5], 23 [5], 24 [5], 25 [5], 26 [5], 27 [5], 28 [5]

E. Decoding Heuristic
A scheduling algorithm consists of two steps:

assigning the tasks to processors and determining the task
execution ordering within a processor. Our decoding
heuristic is an extended version of list scheduling [4-8]
but assigns priorities and determines the execution order
in the same step. The pseudo-code for the decoding
heuristic is given in Fig. 3. In this heuristic we first build
a task list from the given chromosome and initialize a
ready list with only those tasks which do not have any
predecessor. Then a task i from the ready list with the
highest priority is selected. Then we check for each
processor j its ready time by the procedure
find_ready_time() and the data available time for task i
on processor j from all the predecessor nodes of node i

1130 JOURNAL OF SOFTWARE, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER

the procedure find_data_available_time(i, j) by
scheduling the messages on the links and taking into
consideration the contention. The early start time for
processor j is the maximum of its data available time and
its ready time. We check this for all the processors and
find a candidate processor on which task i can be started
the earliest. Then the task i is scheduled onto candidate
processor. Then the task i is deleted from the ready list.
This process is repeated on the ready list till there is no
task in the ready list. A task cannot be scheduled unless
its predecessors have been scheduled and data has been
communicated. The next_event gets the earliest time
when a task finishes its execution. Then, at the
next_event, tasks whose predecessors have been
scheduled are inserted into the ready list at their
appropriate position by a function called
update_ready_list(). If there is no ready task at the
next_event, it is then assigned the earliest time at which at
least one more running task completes its execution. The
algorithm repeats these simple steps until the task list
becomes empty.

Decoding_heuristic (chromosome, m):
Build task_list from the chromosome;
ready_list ← Initialize_ready_list(task_list);
while (task_list < > null) do begin

 for each task on the ready_list do begin
Pick task i with the highest priority value;
early_start_time = INFINITY;
for j=1 to m begin
 pr_ready_time ← find_ready_time(j);

 data_available_time ← find_data_available_time(i, j);
 pr_start_time=Max(data_available_time, pr_ready_time);
 If pr_start_time < early_start_time then
 begin
 candidate_processor = j;
 early_start_time = pr_start_time;
 end;
 end for;

 Schedule task i onto candidate_processor;
 Delete task i from the ready_list;

end for;
next_event ← find_time_for_ready_list_update();
ready_list ← update_ready_list(next_event);
end while;
end Decoding_heuristic.

Figure 3. Pseudo-code of decoding heuristic.

For the illustrative example the tasks schedule on
processors and links for the initial chromosome onto a
multiprocessor system consisting of two homogeneous
processors is shown in Table II. The schedule length is
2585 for the initial chromosome, which is more than
serial time (480) because of the communication overhead.
We store this solution and the corresponding
chromosome in the database before introducing any
variation in the chromosome.

F. Mutation
In the simulated evolution based approach mutation is

the main operator which introduces variations in the
chromosome to find new points in the search space.
Usually mutation is implemented by selecting one gene at
random, with a mutation rate Pm, and replacing its value.
But our technique alters multiple numbers of genes given

by a parameter Ngm (the number of genes to be mutated)
with a mutation rate Pm. The motivation behind
mutating multiple genes at a time is to introduce enough
variations into the chromosomes so that a different
solution is generated by applying the decoding heuristic.
If we mutate only one gene at a time, we need more
generations to arrive at a good solution, hence requiring
more CPU time. Pseudo-code for the mutation operator is
shown in Fig. 4.

TABLE II.
Initial schedule for Fig. 1.

 Tasks scheduled on processors and links

P0

1 [0-20], 3 [20-40], 5 [40-60], 7 [60-80], 12 [85-105], 10
[105-125], 15 [1305-1335], 14 [1905-1935], 13 [2505-2535],
18 [2535-2555], 28 [2555-2560], 27 [2560-2565], 26 [2565-
2570], 25 [2570-2575], 23 [2575-2580], 21 [2580-2585]

P1
2 [0-20], 4 [20-40], 6 [40-60], 8 [60-80], 11 [90-110], 9 [110-
130], 16 [705-735], 20 [2510-2530], 19 [2530-2550],17
[2550-2570], 24 [2570-2575], 22 [2575-2580]

P0 xP1

(8 →12) [80-85], (5 → 11) [85-90], (4 → 10) [90-95], (1 →
9) [95-100], (12 → 16) [105-705], (11 → 15) [705-1305], (9
→ 14) [1305-1905], (9 → 13) [1905-2505], (14 → 20) [2505-
2510], (14 → 19) [2510-2515], (15 → 17) [2515-2520], (13
→ 17) [2535-2540], (20 → 28) [2540-2545], (20 → 27)
[2545-2550], (19 → 26) [2550-2555], (19 → 25) [2555-
2560], (18 → 24) [2560-2565], (17 → 21) [2570-2575]

Note: 3 [20-40] means that node number 3 is scheduled on the processor from time units 20 to
40. (8 → 12) [80-85] means that a message from node 8 to node 12 is scheduled on the channel
from time units 80 to 85 from the processor on which node 8 is assigned to the processor on
which node 12 is assigned.

In the mutation operator, we randomly select Ngm
number of genes with probability Pm and perturb their
values in the range -t-levelj/2 to t-levelj/2, where t-levelj
is the t-level of the node j in DAG with probability Pm .
The priority of each node j in the chromosome is bounded
in the range of b-levelj to b-levelj + t-levelj. If the
priority value becomes more than b-levelj + t-level, the
priority is assigned the value b-levelj + t-levelj. If the
priority value becomes less than b-levelj, it is assigned
the value b-levelj. The concept behind these ranges is to
explore a wider space of priorities, but within the
proximity to the original problem. After applying the
mutation operator the old chromosome is replaced with a
new one. The new generation is evaluated by applying
the list scheduling heuristic. If the value of the objective
function is less than the current best objective, the
solution in the database is updated (i.e. the best objective
is replaced with the new objective, best schedule gets
new schedule).

G. Termination Criteria
We always saved the chromosome which resulted in

the most recent best schedule. A counter count keeps
track of the number of consecutive iteration without any
improvement in the objective function value. When count
becomes equal to δ, which is a user defined upper limit
on the number of consecutive iterations without any
improvement in the objective function value, we replace
the current chromosome with the previous best
chromosome and start the search again. This time we may
go to a new neighborhood by altering the mutation rate or

JOURNAL OF SOFTWARE, VOL. 5, NO. 10, OCTOBER 2010 1131

© 2010 ACADEMY PUBLISHER

also by increasing/decreasing the number of genes to be
mutated. Since genes are picked up randomly, we will
end up in a new neighborhood. This helps to escape from
local optima, thereby enabling the search to continue. The
best solution discovered by the proposed technique is
stored separately and is updated when a new best solution
is found during the search. We terminate the search when
Ng generations are completed.

Mutation (chromosome, Pm, Ngm)
for i= 1 to Ngm do begin
 j ← random (n, 1);
 r ← random ();
 if (r < Pm) then
 begin

 chromosome[j] = chromosome[j] + random(- t-levelj/2, t-levelj/2);
 if (chromosome[j] > (t-levelj + b-levelj)) then

chromosome[j] = t-levelj + b-levelj;
 end if;
 if (chromosome[j] < b-levelj) then
 chromosome[j] = b-levelj;
 end if;
end if;

end for;
end Mutation.

Figure 4. Pseudo-code of mutation operator.

We experimented with various numbers of generations
Ng, mutation rates Pm, the number of genes to be
mutated (Ngm) which give good results at a reasonable
computation cost. The number of generations between
50-150, Pm=0.6, and δ =10 are sufficient to arrive at
reasonably good solutions. The effects of these
parameters on schedule length are shown in the
experimental results section. The final schedule and the
chromosome which resulted in the best solution by
applying the proposed technique to the DAG of Fig. 1
using two processors, is shown in Table III and Table IV,
respectively. Note that the communication system allows
overlap of communication with computation. SES
generates a schedule length of 240, where both the
processors are 100 % utilized. MH [9] and DLS [10]
generate a schedule length of 2585 and 2635,
respectively. One of the main drawbacks of MH is that it
uses static priorities, while DLS does use dynamic
priorities but the exploration space is very limited. The
proposed technique outperforms all other techniques and
provides the shortest schedule length. This example
shows that priorities determination in list scheduling is
the key element to determine a good schedule and the
proposed scheme is providing a technique to exploit this
feature.

TABLE III.

Chromosome which resulted in the best schedule for Fig. 1.

Node number[node priority]
1 [710], 2 [710], 3 [710], 4 [710], 5 [710], 6 [710], 7 [710],
8 [710], 9 [692], 10 [687], 11 [705], 12 [688], 13 [95],
14 [642], 15 [65], 16 [509], 17 [403], 18 [87], 19[541],
20 [476], 21 [418], 22 [16], 23 [19], 24 [58], 25 [220],
26 [147], 27 [706], 28 [384]

TABLE IV.

Schedule generated by SES for Fig. 1.

 Tasks scheduled on processors and links

P0

1 [0-20], 3 [20-40], 5 [40-60], 7 [60-80], 11 [80-100], 12
[100-120], 16 [120-150], 15 [150-180], 19 [180-200], 17
[200-220], 27 [220-225], 21 [225-230], 26 [230-235], 23
[235-240]

P1
2 [0-20], 4 [20-40], 6 [40-60], 8 [60-80], 9 [80-100], 10 [100-
120], 14 [120-150], 13 [150-180], 20 [180-200], 18 [200-
220], 28 [220-225], 25 [225-230, 24 [230-235], 22 [235-240]

P0 xP1

(6 →11) [60-65], (1 → 9) [65-70], (8 → 12) [80-85], (3 →
10) [85-90], (14 → 19) [150-155], (16 → 20) [155-160], (13
→ 17) [180-185], (15 → 18) [185-190], (20 → 27) [200-205],
(19 → 25) [205-210], (18 → 23) [220-225], (17 → 22) [225-
230]

III. EXPERIMENTAL RESULTS

The proposed simulated evolution-based technique,
SES, for multiprocessor scheduling has been tested on a
number of examples reported in literature and on a suite
of randomly generated graphs. The results are very
promising. The proposed evolution-based technique
offers considerable improvement in the schedule length
over previous work. We compared our results with the
two competing techniques DLS [10] and MH [9]. For all
the test examples the following values of different
parameters were used: the number of generations (Ng) =
80; the mutation rate (Pm) =0.6; the number of genes to
be mutated (Ngm) = 10; and the control parameter δ =10.

A. A Suite of Test Graphs [11]
As a first example, we have selected a suite of test

graphs such as FFTs, trees (SUM1, SUM2) and irregular
graph (IRR) used by McCreary et al. [11] to compare the
performance of different scheduling algorithms. The FFT
graph is shown in Fig. 1. The node weights for FFT-1
through FFT-3 are given in Table V. The communication
cost is 25 units per edge for FFT-1 and FFT-2, while
communication cost is 500 units per edge for FFT-3. The
comparison of schedule lengths for all the test graphs is
given in Table VI. The proposed technique gives the
shortest schedule length as compared with the DLS and
MH techniques for all the test cases.

TABLE V.

Nodes weight for FFTs graphs.

Node # FFT-1 FFT-2 FFT-3

1-8 1 60 20

9-12 20 50 20

13-16 30 5 30

17-20 20 5 20

21-28 1 5 5

B. Example 2
The second example consists of three different types of

directed acyclic graphs: Out-Tree, Fork-Join and Laplace
Equation Solver. The comparison of schedule length with

1132 JOURNAL OF SOFTWARE, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER

DLS [10] and MH [9] techniques are given in Table VII.
The proposed technique outperforms other techniques by
providing a considerable improvement for all the test
cases. This demonstrates the strength of the proposed
technique to explore good solutions for different types of
graph structures.

TABLE VI.
Comparison of schedule lengths for test graphs of Example 1.

DAGs SES DLS [10] MH [9]

SUM-1 65 75 84

SUM-2 50 51 51

IRR 650 710 755

FFT-1 173 175 175

FFT-2 255 275 280

FFT-3 1630 2100 2570

The effects of different control parameters on the

schedule length for the Out-Tree graph are shown in Fig.
5. This Figure shows that if we mutate only one gene per
generation like the traditional mutation operator, the
solution quality does not improve with the number of
generations (Ng) because the alterations in the
chromosome are not enough to generate a different
solution by applying the decoding heuristic. If we
increase the value of Ngm the solution quality improves,
because we are introducing enough variations into the
chromosomes, so that a different solution is generated by
applying the decoding heuristic. The solution quality
depends mainly on the number of generations and on the
value of Ngm. The mutation rate (Pm) does affect the
solution quality, but impact appears only with an increase
in the number of generations. With the increase in the
number of generations, the solution quality certainly
improves, but then it requires more CPU time. To achieve
a reasonable balance between the quality of solution and
the computation cost, one has to select suitable values of
these parameters. The values of these parameters selected
for our experimentation is a reasonable choice.

TABLE VII.

Comparison of schedule lengths for test graphs of Example 2.

DAGs SES DLS [10] MH [9]

Out-Tree 723 761 1070

Fork-Join 1924 3533 3406

Laplace 6390 7340 8370

C. A Suite of Random Graphs
To demonstrate the effectiveness of our SES

technique, we consider a large suite of 175 of randomly
generated graphs. The size of the graphs varied from 50
to 350 nodes with increments of 50. The cost of each
node was randomly selected from a normal distribution
with the mean equal to the specified average computation

cost. The cost of each edge was also randomly generated
using a normal distribution with the mean equal to the
product of the average computation cost and the
communication-to-computation ratio (CCR). Five
different values of CCR were selected: 0.1, 0.5, 1.0, 2.0,
and 10.0. For generating the random task graphs, we used
another parameter called parallelism (P). This parameter
determines the average number of immediate descendents
for each node. Five different values of parallelism were
chosen: 1, 2, 3, 4, 5. Thus, the suite consists of 25 graphs
for each size. We compared our results with the two
competing techniques MH [9] and DLS [10] for 8 fully
connected homogeneous processors. Two types of
comparisons were carried out based on the results
obtained by running each algorithm on this suite of 175
graphs. First, we compared the speedup for graphs with
different values of CCR and P, and then we compared the
average speedup for all the random graphs generated by
the technique. Finally, we compared the average run
times (CPU +I/O) of these algorithms. The discussion of
these comparisons is as follows:

120100806040200
600

700

800

900

1000

1100

1200

1300

1400 Pm=0.5, Ngm=1
Pm=0.5, Ngm=4

Pm=0.75, Ngm=0.75
Pm=0.5, Ngm=8

Number of generations

Sc
he

du
le

 le
ng

th

Figure 5. The effects of different parameters on the schedule length.

The typical pattern of speedup with different values of
CCR is shown in Fig. 6-10. As the value of CCR is
increased, the speedup decreases. The average speedup
curves of SES, MH and DLS algorithms for 8 processors
are given in Fig. 11. Each point in this figure is the
average of 25 tests cases with various values of CCR and
parallelism. We did not encounter a single instance
during all the tests cases the schedule length generated by
either DLS or MH are better than SES. The proposed
technique outperformed both the MH and DLS
algorithms. The average running times for various
numbers of nodes in the task graph for 8 processors are
given in Fig. 12. Each point in the figure is also the
average of 25 tests cases. The running times of SES are
large as compared with MH, but are comparable with
DLS. The running times of SES becomes less as
compared with DLS as the size of the graph is increased,
since the overhead of the number of generations remains
the same for all graph sizes. The proposed technique
produces much better results in terms of the quality of the
solution as compared with MH and DLS and with
comparable running times with DLS.

JOURNAL OF SOFTWARE, VOL. 5, NO. 10, OCTOBER 2010 1133

© 2010 ACADEMY PUBLISHER

400350300250200150100500
4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

SES
MH

DLS

CCR = 0.1, P = 4

Number of nodes

Sp
ee

du
p

Figure 6. Speedup versus number of nodes.

400350300250200150100500
3.0

3.5

4.0

4.5

5.0

5.5

6.0

SES
MH

DLS

CCR = 0.5, P = 4

Number of nodes

Sp
ee

du
p

Figure 7. Speedup versus number of nodes.

400350300250200150100500
2.0

2.5

3.0

3.5

4.0

SES
MH

DLS

CCR = 1.0, P =4

Number of nodes

Sp
ee

du
p

Figure 8. Speedup versus number of nodes.

IV. CONCLUSIONS

SES blends a simulated evolution and a heuristic and
uses a neighborhood structure to efficiently search a large
solution space in order to find the best possible solution
within an acceptable CPU time. In SES, the
chromosomal representation is based on problem data,
and the solution is generated by applying a fast decoding
heuristic (list scheduling) in order to map from problem
domain to solution domain. Experimental results on test
examples demonstrated that SES reduces the schedule
length in a scalable fashion as compared to the existing
approaches for different types of graph structures. SES
can be easily extended for heterogeneous processors and
can also be integrated with other heuristics.

400350300250200150100500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

SES
MH

DLS

CCR = 2.0, P = 4

Number of nodes

Sp
ee

du
p

Figure 9. Speedup versus number of nodes.

400350300250200150100500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SES
MH

DLS

CCR = 10.0, P = 4

Number of nodes

Sp
ee

du
p

Figure 10. Speedup versus number of nodes.

400350300250200150100500
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

SES
MH

DLS

Number of nodes

A
ve

ra
ge

 S
pe

ed
up

Figure 11. Average speedup for 8 fully connected processors.

400350300250200150100500
.1

1

10

100

1000

10000

SES
MH

DLS

Number of nodes

A
ve

ra
ge

 ru
nn

in
g

tim
es

 (s
ec

on
ds

)

Figure 12. Average CPU running times (logscale) for 8 processors.

1134 JOURNAL OF SOFTWARE, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER

REFERENCES

[1] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP Completeness,
San Francisco, CA, W. H. Freeman, 1979.

[2] Y. Kwok and I. Ahmad, “Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors,”
ACM Computing Surveys, Vol. 31, No. 4, pp. 406-471,
December 1999.

[3] Y. Kwok and I. Ahmad, “Benchmarking and Comparison
of the Task Graph Scheduling Algorithms,” Journal of
Parallel and Distributed Computing, Vol. 59, No. 2, pp.
381-422, December 1999.

[4] R. L. Graham, “Bounds on Multiprocessing Timing
Anomalies,” SIAM Journal of Applied Math., 17, pp. 416-
429, 1969.

[5] T. L. Adam, K. M. Chandy, and J. R. Dicson, “A
Comparison of List Schedules for Parallel Processing
Systems,” Communications of the ACM, Vol. 17, No. 12,
pp. 685-690, December 1974.

[6] W. H. Kohler, “A Preliminary Evaluation of the Critical
Path Method for Scheduling Tasks on Multiprocessor
Systems,” IEEE Trans. on Computers, Vol. 24, No. 12,
pp. 1235-1238, December 1975.

[7] C. Y. Lee, J. J. Hwang, Y. C. Chow, and F. D. Anger,
“Multiprocessor Scheduling With Interprocessor
Communication Delays,” Operations Research Letters,
Vol. 7, No. 3, pp. 141-147, June 1988.

[8] T. Yang and A. Gerasoulis, “List Scheduling with and
without Communication Delays,” Parallel Computing, 19,
pp. 1321-1344, 1993.

[9] H. El-Rewini and T. G. Lewis, “Scheduling Parallel
Program Tasks onto Arbitrary Target Machines,” Journal
of Parallel and Distributed Computing, Vol. 9, No. 2, pp.
138-153, June 1990.

[10] G. C. Sih and E. A. Lee, “Scheduling to Account for
Interprocessor Communication Within Interconnection-
Constrained Processor Network,” 1990 International
Conference on Parallel Processing, Vol. 1, pp. 9-17,
August 1990.

[11] C. L. McCreary, A. A. Khan, J. J. Thompson, and M. E.
McArdle, “A Comparison of Heuristics for Scheduling
DAGs on Multiprocessors,” 8th International Parallel
Processing Symposium, pp. 446-451, April 1994.

[12] G. Liao, E. R. Altman, V. K. Agarwal and G. R. Gao, “A
Comparative Study of Multiprocessor List Scheduling
Heuristics,” Twenty-Seventh Annual Hawaii International
Conference on System Sciences, pp. 68-77, January 1994.

[13] Y Kwok and I. Ahmad, “Dynamic Critical-Path
Scheduling: An Effective Technique for Allocating Task
Graphs onto Multiprocessors,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 7, No. 5, pp. 506-
521, May 1996.

[14] D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley,
1989.

[15] T. A. Ly and J. T. Mowchenko, “Applying Simulated
Evolution to High Level Synthesis,” IEEE Trans. on CAD
of Integrated Circuits and Systems, Vol. 12, No. 3, pp.
389-409, March 1993.

[16] Y. L. Lin, Y. C. Hsu, and F. S. Tsai, “SILK: A Simulated
Evolution Router,” IEEE Trans. on CAD of Integrated
Circuits and Systems, Vol. 8, No. 10, pp. 1108-1114,
October 1989.

[17] Y. Saab and V. Rao, “An Evolution-Based Approach to
Partitioning ASIC Systems,” 26th ACM/IEEE Design
Automation Conference, pp. 767-770, 1989.

[18] Y. H. Hu and C. Y. Mao, “Solving Gate-Matrix Layout
Problems by Simulated Evolution,” IEEE International
Symposium on Circuits and Systems, pp. 1873-1875, 1993.

[19] R. M. King and P. Banerjee, “ESP: Placement by
Simulated Evolution,” IEEE Trans. on CAD of Integrated
Circuits and Systems, Vol. 8, No. 3, pp. 245-256, March
1989.

[20] V. Nissen, “Solving the Quadratic Assignment Problem
with Clues from Nature,” IEEE Trans. on Neural
Networks, Vol. 5, No. 1, pp. 66-72, January 1994.

[21] A. S. Wu, H. Yu, S. Jin, K. C. Lin and G. Schiavone, “An
Incremental Genetic Algorithm to Multiprocessor
Scheduling,” IEEE Trans. on Parallel and Distributed
Computing, Vol. 15, No. 9, pp. 824-834, September 2004.

[22] M. Grajcar, “Genetic List Scheduling Algorithm for
Scheduling and Allocation on a Loosely Coupled
Heterogeneous Multiprocessor System,” Proceedings of
the 36th Annual ACM/IEEE Design Automation
Conference, pp. 280-285, 1999.

[23] T. Chen, B. Zhang, X. Hao and Y. Dai, “Task Scheduling
in Grid based on Particle Swarm Optimization,” The Fifth
international Symposium on Parallel and Distributed
Computing, pp. 238-245, July 2006.

[24] C. Chiang, Y. Lee, C. Lee and T. Chou, “Ant Colony
Optimization for Task Matching and Scheduling,” IEE-
Proceedings Computers and Digital Techniques, Vol. 153,
No. 6, pp. 373-380, November 2006.

[25] H. Yu, “Optimizing Task Schedules Using an Artificial
Immune System Approach,” Proceedings of the 10th
Annual Conference on Genetic and Evolutionary
Computation, pp. 151-158, 2008.

Imtiaz Ahmad received his B.Sc. in Electrical Engineering
from University of Engineering and Technology, Lahore,
Pakistan, a M.Sc. in Electrical Engineering from King Fahd
University of Petroleum and Minerals, Dhahran, Saudi Arabia,
and a Ph.D. in Computer Engineering from Syracuse
University, Syracuse, New York, in 1984, 1988 and 1992,
respectively. Since September 1992, he has been with the
Department of Computer Engineering at Kuwait University,
Kuwait, where he is currently a professor. His research interests
include design automation of digital systems, high-level
synthesis, and parallel and distributed computing.

Muhammad K. Dhodhi received his B.Sc. (with honors)
in Electrical Engineering from the University of Engineering
and Technology, Lahore, Pakistan in 1982. He received two
Master degrees, one in Computer and Systems Engineering and
another in Electric Power Engineering, from Rensselaer
Polytechnic Institute, Troy, New York, in 1984 and 1986,
respectively. He received a Ph.D. in Electrical Engineering from
Lehigh University, Bethlehem, PA, in 1992. Dr. Dhodhi has
research and development experience both in the industry as
well as in academia. Dr. Dhodhi is currently a Senior Member
of hardware development team at Ross Video Ltd., Ottawa,
Canada. In the past, he has worked as a member of technical
staff for distinguished global organizations such as Nortel
Networks, Lucent Technologies, IBM Corporation, and a
number of start-ups such as Diablo Technologies, Silicon Optix,
The VHDL Technology Group, Silc Technologies and as a
Principal Consultant at Hayat ECAT, Inc. In industry, Dr.
Dhodhi has been actively involved in all the phases of VLSI
design, modeling and verification of System-on-Chip (SoC)

JOURNAL OF SOFTWARE, VOL. 5, NO. 10, OCTOBER 2010 1135

© 2010 ACADEMY PUBLISHER

devices, ASICs/FPGAs used in Networking (i.e., Multiservice
Core Switching Products, Terabit Switch Routers), Video/Image
Processors, and Advanced Memory Buffers for DDR2/DDR3.
He has also played a key role in the development of state-of-
the-art constrained random versification and assertion-based
design and verification methodologies.

In academia, Dr. Dhodhi had worked as an assistant
professor with the Department of Electrical and Computer
Engineering, Kuwait University, from February 1993 to May
1997. He was an associate professor of electrical and computer
engineering, Kuwait University, Kuwait from 1997 to 1998. Dr.
Dhodhi research interests are in Wireless Sensor Networks,
Hardware/Software Co-Design Verification, VLSI Design
Automation and Parallel/Distributed Computing.

Ishfaq Ahmad received a B.Sc. degree in Electrical

Engineering from the University of Engineering and
Technology, Pakistan, in 1985, and an MS degree in Computer
Engineering and a PhD degree in Computer Science from
Syracuse University, New York, U.S.A., in 1987 and 1992,
respectively. He is currently a professor of Computer Science
and Engineering at the University of Texas at Arlington (UTA).
Prior to joining UTA, he was on the faculty of Computer
Science Department at the Hong Kong University of Science

and Technology (HKUST). At UTA, he leads the Multimedia
Laboratory and the Institute for Research in Security (IRIS).
IRIS, an inter-disciplinary research center spanning several
departments, is engaged in research on advanced technologies
for homeland security and law enforcement. Professor Ahmad is
known for his research contributions in parallel and distributed
computing, multimedia computing, video compression, and
security. His work in these areas is published in 200 plus
technical papers in peer-reviewed journals and conferences.

Dr. Ahmad is a recipient of numerous research awards,
which include three best paper awards at leading conferences
and 2007 best paper award for IEEE Transactions on Circuits
and Systems for Video Technology, IEEE Service Appreciation
Award, and 2008 Outstanding Area Editor Award from the
IEEE Transactions on Circuits and Systems for Video
Technology.

His current research is funded by the Department of Justice,
National Science Foundation, SRC, Department of Education,
and several companies. He is an associate editor of the Journal
of Parallel and Distributed Computing, IEEE Transactions on
Circuits and Systems for Video Technology, IEEE Transactions
on Multimedia, IEEE Distributed Systems Online, and Hindawi
Journal of Electrical and Computer Engineering. He is a Fellow
of the IEEE and a member of the advisory board of Lifeboat
Foundation.

1136 JOURNAL OF SOFTWARE, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER

