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Abstract— This paper presents a variant of simulated 
evolution technique for the static non-preemptive scheduling 
of parallel programs represented by directed acyclic graphs 
including inter-processor communication delays and 
contention onto a multiprocessor system with the dual 
objectives of reducing the total execution time and scaling 
with the number of processors. The premise of our 
algorithm is Simulated Evolution, an effective optimization 
method based on the analogy with the natural selection 
process of biological evolution. The proposed technique, 
named Scheduling with Simulated Evolution (SES), 
combines simulated evolution with list scheduling, wherein 
simulated evolution efficiently determines suitable priorities 
which lead to a good solution by applying list scheduling as 
a decoding heuristic. SES is an effective method that yields 
reduced length schedules while scaling well and incurring 
reasonably low complexity. The SES technique does not 
require problem-specific parameter tuning on test problems 
of different sizes and structures. Moreover, it strikes a 
balance between exploration of the search space and 
exploitation of good solutions found in an acceptable CPU 
time. We demonstrate the effectiveness of SES by 
comparing it against two existing static scheduling 
techniques for the test examples reported in literature and 
on a suite of randomly generated graphs. The proposed 
technique produced good quality solutions with a slight 
increase in the CPU time as compared with the competing 
techniques.  

 
Index Terms— Software, Scheduling, Allocating Parallel 
Programs, Simulated Evolution 

 

I.  INTRODUCTION 

Parallel programs are typically represented by directed 
acyclic graphs (DAGs). In a DAG, nodes denote tasks 
and an arc between any two nodes represents data 
dependency among them. The weights associated with 
the nodes and the arcs of a DAG represent the 
computation cost and the communication cost, 
respectively. The multiprocessor scheduling problem is 

well known to be NP-complete except in a few restricted 
cases [1-2]. Hence, satisfactory suboptimal solutions 
obtainable in a reasonable amount of computation time 
are generally sought [3-13] by devising effective 
heuristics. The objective is not to propose another 
heuristic but to improve the effectiveness of a given 
heuristic. 

Simulated evolution is a general purpose optimization 
method based on an analogy with the natural selection 
process in the biological environments. In biological 
processes, species adapt themselves to the environment as 
they evolve from one generation to the next. In this 
evolution process some of the bad characteristics of the 
old generation are eliminated and a new generation which 
is more suited to the environment is created [14-20]. 
Mutation and selection are the two main driving forces 
behind evolution.  The simulated evolution models the 
evolution process by asexual reproduction with mutation 
and selection, while other probabilistic techniques, such 
as genetic algorithms [14], focus on recombination of 
different solutions via crossover and an occasional 
mutation. In the simulated evolution scheme mutation is 
the dominant operator and it is used for introducing 
variations into solutions. In nature, mutation refers to 
spontaneous and random changes in genes.  The 
advantage is that optimization proceeds rapidly because 
the random distribution of new trials concentrates the 
computational effort on solutions that have provided 
evidence of success in the past [20].  Simulated evolution 
has been successfully applied to combinatorial 
optimization problems such as high-level synthesis [15], 
routing [16], circuit partitioning [17] and standard cell 
placement [18, 19]. A number of other evolutionary 
algorithms such as genetic algorithms [21], genetic list 
scheduling [22], particle swarm optimization [23], ant 
colony optimization [24] and artificial immune system 
[25] have been applied to multiprocessor scheduling 
problem with varying degree of success. 
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This paper presents an evolution-based technique, 
SES, applied to the problem of multiprocessor scheduling 
of task graphs with non-negligible inter-processor 
communication delays. As elaborated below, the priority 
assignment to tasks in list scheduling is critical in 
determining a good schedule. Accurate priority 
determination has led to a great deal of research to design 
efficient heuristics. In the proposed technique we apply 
simulated evolution to determine suitable priorities which 
lead to a good solution by applying the list scheduling as 
a decoding heuristic. SES presumes that the base heuristic 
has been designed to give reasonably good solutions to 
the problem at hand (such as the list scheduling in our 
case). If this heuristic is applied to a new set of problem 
data differing only slightly from the original problem, the 
resulting solution should also be a reasonably good 
solution to the original problem. Thus, by applying the 
base heuristic to problem data in the neighborhood of the 
original, the likelihood of good solutions enhances.  

The remainder of the paper is organized as follows: the 
details of proposed SES technique are discussed in 
Section II, the performance results and comparisons are 
reported in Section III. Section IV concludes this paper. 

II.  EVOLUTION-BASED TECHNIQUE 

In this section, first we formulate the scheduling 
problem, and then give a summary of the proposed 
technique followed by its detailed implementation.  

A.  Problem Formulation 
Let S = {i: i = 1, . . ., m} be a set of m fully connected 

homogeneous processors and let the application program 
be modeled by a directed acyclic  graph DAG = {j: j = 1, 
. . ., n}  of n tasks. For any two tasks i, j ∈ DAG, i < j 
means that task j  cannot be scheduled until i  has been 
completed, i  is a predecessor of j  and j  is a successor of 
i. Weights  associated with the nodes represent the 
computation cost and the weights associated with arcs 
represent the communication cost. An example of a 
directed acyclic graph (DAG) consisting of 28 tasks 
adopted from [11] is shown in Fig. 1. The multiprocessor 
scheduling is to assign the set of tasks of DAG onto the 
set of processors S in such a way that precedence 
constraints are maintained, and to determine the start and 
finish times of each task with the objective to minimize 
the schedule length. We assume that the communication 
system permits the overlap of communication with 
computation and its communication channels are half-
duplex. We do take care of network contention into 
consideration in determining the schedule length. Task 
execution can be started only after all the data have been 
received from its predecessor’s nodes. Duplication of 
same task is not allowed.   Communication is zero when 
two tasks are assigned to the same processor; otherwise 
they incur a communication cost given by the edge 
weight. 
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Figure 1. A directed acyclic graph for FFT-4 adopted from [11]. 

B.  The Principle of List Scheduling 
A major portion of task scheduling heuristics is based 

on the so called list scheduling approach [3-10]. In list 
scheduling each task is assigned a priority based on its 
estimated importance to determine the entire schedule. 
Initially a ready list holds all the tasks which have no 
predecessors. Whenever a processor becomes available, a 
task with the highest priority is selected from the ready 
list and assigned to the available processor. Two priority 
levels are associated with each task (node): the t-level and 
the b-level.  The t-level of a node i is the length of the 
longest path between this node and an entry node in the 
DAG excluding the computation cost of node i. This level 
essentially determines the earliest start time of a node. 
The b-level of a node is the length of the longest path 
(computation + communication cost) from node i to an 
exit node. The b-level of a node is bounded by the critical 
path of the DAG. Different scheduling heuristic use the t-
level and the b-level in different combinations such as 
smaller t-level, larger b-level or larger (b-level + t-level) 
etc. Detailed analysis of the design philosophies, 
principles behind these algorithms and performance 
comparisons for different classes of scheduling 
techniques are given in references [3, 11-12]. 

The priorities assignments to tasks play a key role in 
list scheduling. It was shown in [4] that, if priorities are 
assigned improperly, the resulting schedules may be 
worse, even if the precedence relationships are relaxed, 
task execution time decreased and the number of 
processors increased. It has been reported in [5, 6, 8] that 
the critical path (b-level) list scheduling heuristic is 
within 5% of the optimal solution 90% of the time when 
the communication cost is ignored, while in the worst 
case any list scheduling is within  50% of the optimal 
solution. The critical path list scheduling no longer 
provides the 50% performance guarantee in the presence 
of non-negligible communications cost [7-10].  In this 
paper we introduce a new technique based on simulated 
evolution [15-19] for the static, non-preemptive 
scheduling problem in homogeneous fully connected 
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multiprocessor systems to reduce the schedule length and 
to increase the throughput of the system.  

C.  Algorithm Summary 
The simulated evolution is a combination of both 

iterative and constructive methods [19]. To design a new 
evolution based technique involves various design 
decisions which include choosing a problem 
representation, deciding the decoding scheme, applying an 
appropriate cost function for the problem at hand, 
developing search operators and deciding selection 
mechanisms to be employed and the termination criteria. 
We will give details of all these questions for the proposed 
technique through an illustrative example. Outline of the 
proposed simulated evolution-based scheduling (SES) 
technique is shown in Fig. 2, where Ng denotes number of 
generations, Pm mutation rate, m number of processors, 
Ngm number of genes to be mutated and δ the maximum 
number of consecutive generations without improvement 
in the objective function. 

In the proposed technique first we read the DAG of a 
given application program and build a database which 
includes the adjacency list, the number of predecessors 
and the number of successors for each node in the directed 
acyclic graph. Then we get the user defined parameters 
such as the Ng, Pm, Ngm and the parameter δ.  The t-level 
and b-level of each node in the DAG are calculated and an 
initial chromosome (initial_chrom) is built based on the b-
level. Then we copy the initial chromosome to current 
chromosome (current_chrom) and apply the decoding 
heuristic (list scheduling) to generate a solution (schedule) 
for the current chromosome, and its cost is evaluated by 
applying the function Evaluate(schedule). The schedule is 
stored as the best schedule, current chromosome is stored 
as the best chromosome and the cost is stored as the best 
objective. A counter called count which keeps track of the 
number of consecutive generations without improvement 
in the objective value is initialized to zero. Then we repeat 
the following until termination criteria are met. A mutation 
operator (function Mutate) is applied to generate offspring 
to form a new chromosome. Then the chromosome is 
decoded using the list scheduling heuristic and the solution 
is evaluated. If the new objective value is less than the 
previous one, we update the best objective, the best 
schedule, the best chromosome and count is set to zero. 
Otherwise, if count is less than δ, the count is incremented; 
else we copy the best chromosome to the current 
chromosome and reset count to zero. The detailed 
implementation of each step of the proposed algorithm is 
described next using the directed acyclic graph shown in 
Fig. 1 as an illustrative example. 

D.  Initial Chromosome 
The chromosome representation of SES is given in 

Table I. Each position of the chromosome is called a gene. 
A gene i in the chromosome represents the priority of the 
node i in the directed acyclic task graph.  The priority of 
node i for the initial chromosome is the length of the 
longest path (computation + communication cost) from 
node i to an exit node (b-level). In SES, only one 

chromosome is utilized in each generation, although each 
generation may consist of more than one chromosome as 
mentioned in [19], but it incurs more memory overhead.  
In our case the chromosome is represented in a problem 
domain instead of solution as compared with the previous 
approaches [15-19]. The chromosome is decoded using a 
fast list scheduling heuristic. This chromosome provides 
the priorities when we want to find a solution for the given 
problem using list scheduling. 

 
Read DAG and build a database;

yes

no

Read Ng, Pm, Ngm, m and δ

Find the t-level (ti) and b-level (bi) of each node i in DAG;
Generate initial_chrom based on b-level only;

current_chrom       initial_chrom;
schedule        Decoding_heuristic (m, current_chrom);

best_objective         Evaluate (schedule);
best_chrom          current_chrom;

best_schedule        schedule;     count         0;

current_chrom        Mutate (current_chrom, Pm, Ngm);

schedule        Decoding_heuristic (m, current_chrom)

objective        Evaluate (schedule);

objective < best_objective
yesno

best_objective         objective;
best_schedule         schedule;

best_chrom        current_chrom;
   count         0;

no yes
count > δ

current_chrom      best_chrom;
  count         0;   count        count + 1;

Report the best_schedule.

stopping criteria
satisfied ?

;

 
Figure 2. Outline of the proposed scheme. 

 
TABLE I.  

Initial chromosome with node priorities. 
 

Node number[node priority based on b-level] 
1 [710], 2 [710], 3 [710], 4 [710], 5 [710], 6 [710], 7 [710], 
8 [710], 9 [685], 10 [685], 11 [685], 12 [685], 13 [65],  
14 [65], 15 [65], 16 [65], 17 [30], 18 [30], 19[30], 20 [30], 
21 [5], 22 [5], 23 [5], 24 [5], 25 [5], 26 [5], 27 [5], 28 [5] 

 

E.  Decoding Heuristic 
A scheduling algorithm consists of two steps: 

assigning the tasks to processors and determining the task 
execution ordering within a processor. Our decoding 
heuristic is an extended version of list scheduling [4-8] 
but assigns priorities and determines the execution order 
in the same step. The pseudo-code for the decoding 
heuristic is given in Fig. 3. In this heuristic we first build 
a task list from the given chromosome and initialize a 
ready list with only those tasks which do not have any 
predecessor. Then a task i from the ready list with the 
highest priority is selected. Then we check for each 
processor j its ready time by the procedure 
find_ready_time( ) and the data available time for task i 
on processor j from all the predecessor nodes of node i 
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the procedure find_data_available_time(i, j) by 
scheduling the messages on the links and taking into 
consideration the contention. The early start time for 
processor j is the maximum of its data available time and 
its ready time. We check this for all the processors and 
find a candidate processor on which task i can be started 
the earliest. Then the task i is scheduled onto candidate 
processor. Then the task i is deleted from the ready list. 
This process is repeated on the ready list till there is no 
task in the ready list. A task cannot be scheduled unless 
its predecessors have been scheduled and data has been 
communicated.  The next_event gets the earliest time 
when a task finishes its execution. Then, at the 
next_event, tasks whose predecessors have been 
scheduled are inserted into the ready list at their 
appropriate position by a function called 
update_ready_list( ). If there is no ready task at the 
next_event, it is then assigned the earliest time at which at 
least one more running task completes its execution. The 
algorithm repeats these simple steps until the task list 
becomes empty.  

 
Decoding_heuristic  (chromosome, m): 
Build task_list  from the chromosome; 
ready_list ← Initialize_ready_list(task_list);  
while (task_list < > null) do begin 

 for  each task on the ready_list  do begin 
Pick task i with the highest priority value; 
early_start_time = INFINITY; 
for j=1 to m begin   
  pr_ready_time ← find_ready_time(j); 

        data_available_time ←  find_data_available_time(i, j); 
        pr_start_time=Max(data_available_time, pr_ready_time); 
        If pr_start_time < early_start_time then 
        begin 
          candidate_processor = j; 
          early_start_time = pr_start_time; 
        end; 
     end for; 

     Schedule task i onto  candidate_processor; 
     Delete task i from  the ready_list; 

end for; 
next_event ← find_time_for_ready_list_update( ); 
ready_list ← update_ready_list(next_event); 
end while; 
end Decoding_heuristic. 
 

Figure 3. Pseudo-code of decoding heuristic. 
 

For the illustrative example the tasks schedule on 
processors and links for the initial chromosome onto a 
multiprocessor system consisting of two homogeneous 
processors is shown in Table II.  The schedule length is 
2585 for the initial chromosome, which is more than 
serial time (480) because of the communication overhead. 
We store this solution and the corresponding 
chromosome in the database before introducing any 
variation in the chromosome. 

F.  Mutation 
In the simulated evolution based approach mutation is 

the main operator which introduces variations in the 
chromosome to find new points in the search space. 
Usually mutation is implemented by selecting one gene at 
random, with a mutation rate Pm, and replacing its value.  
But our technique alters multiple numbers of genes given 

by a parameter Ngm (the number of genes to be mutated) 
with a mutation rate Pm.  The motivation behind 
mutating multiple genes at a time is to introduce enough 
variations into the chromosomes so that a different 
solution is generated by applying the decoding heuristic. 
If we mutate only one gene at a time, we need more 
generations to arrive at a good solution, hence requiring 
more CPU time. Pseudo-code for the mutation operator is 
shown in Fig. 4.  

TABLE II. 
Initial schedule for Fig. 1. 

 
 Tasks scheduled on processors and links 

P0 

1 [0-20], 3 [20-40], 5 [40-60], 7 [60-80], 12 [85-105], 10 
[105-125], 15 [1305-1335], 14 [1905-1935], 13 [2505-2535], 
18 [2535-2555], 28 [2555-2560], 27 [2560-2565], 26 [2565-
2570], 25 [2570-2575], 23 [2575-2580], 21 [2580-2585] 

P1 
2 [0-20], 4 [20-40], 6 [40-60], 8 [60-80], 11 [90-110], 9 [110-
130], 16 [705-735],  20 [2510-2530], 19 [2530-2550],17 
[2550-2570], 24 [2570-2575], 22 [2575-2580] 

P0 xP1

(8 →12) [80-85], (5 → 11) [85-90], (4 → 10) [90-95], (1 → 
9) [95-100], (12 → 16) [105-705], (11 → 15) [705-1305], (9 
→ 14) [1305-1905], (9 → 13) [1905-2505], (14 → 20) [2505-
2510], (14 → 19) [2510-2515], (15 → 17) [2515-2520], (13 
→ 17) [2535-2540], (20 → 28) [2540-2545], (20 → 27) 
[2545-2550], (19 → 26) [2550-2555], (19 → 25) [2555-
2560], (18 → 24) [2560-2565], (17 → 21) [2570-2575] 

Note: 3 [20-40] means that node number 3 is scheduled on the processor from time units 20 to 
40.  (8 → 12) [80-85] means that a message from node 8 to node 12 is scheduled on the channel 
from time units 80 to 85 from the processor on which node 8 is assigned to the processor on 
which node 12 is assigned. 
 

In the mutation operator, we randomly select Ngm 
number of genes with probability Pm and perturb their 
values in the range -t-levelj/2 to t-levelj/2, where t-levelj 
is the t-level of the node j in DAG with probability Pm .  
The priority of each node j in the chromosome is bounded 
in the range of b-levelj  to b-levelj + t-levelj. If the 
priority value becomes more than b-levelj + t-level, the 
priority is assigned the value b-levelj + t-levelj.  If the 
priority value becomes less than b-levelj, it is assigned 
the value b-levelj.   The concept behind these ranges is to 
explore a wider space of priorities, but within the 
proximity to the original problem.  After applying the 
mutation operator the old chromosome is replaced with a 
new one. The new generation is evaluated by applying 
the list scheduling heuristic. If the value of the objective 
function is less than the current best objective, the 
solution in the database is updated (i.e. the best objective 
is replaced with the new objective, best schedule gets 
new schedule). 

G.  Termination Criteria 
We always saved the chromosome which resulted in 

the most recent best schedule. A counter count keeps 
track of the number of consecutive iteration without any 
improvement in the objective function value. When count 
becomes equal to δ, which is a user defined upper limit 
on the number of consecutive iterations without any 
improvement in the objective function value, we replace 
the current chromosome with the previous best 
chromosome and start the search again. This time we may 
go to a new neighborhood by altering the mutation rate or 
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also by increasing/decreasing the number of genes to be 
mutated. Since genes are picked up randomly, we will 
end up in a new neighborhood. This helps to escape from 
local optima, thereby enabling the search to continue. The 
best solution discovered by the proposed technique is 
stored separately and is updated when a new best solution 
is found during the search. We terminate the search when 
Ng generations are completed. 

 
Mutation (chromosome, Pm, Ngm) 
for  i= 1 to Ngm  do  begin 
   j ← random (n, 1); 
   r ← random ( ); 
   if  (r < Pm) then 
   begin 

    chromosome[j] = chromosome[j] + random(- t-levelj/2, t-levelj/2); 
    if (chromosome[j] > (t-levelj + b-levelj)) then  

chromosome[j] = t-levelj + b-levelj;  
    end if;  
    if (chromosome[j] < b-levelj) then  
 chromosome[j] = b-levelj; 
    end if;  
end if; 

end for; 
end Mutation. 

Figure 4. Pseudo-code of mutation operator. 
 

We experimented with various numbers of generations 
Ng, mutation rates Pm, the number of genes to be 
mutated (Ngm) which give good results at a reasonable 
computation cost.  The number of generations between 
50-150, Pm=0.6, and δ =10 are sufficient to arrive at 
reasonably good solutions. The effects of these 
parameters on schedule length are shown in the 
experimental results section. The final schedule and the 
chromosome which resulted in the best solution  by  
applying the proposed technique to the DAG of Fig. 1 
using two processors,  is shown in Table III and Table IV, 
respectively. Note that the communication system allows 
overlap of communication with computation. SES 
generates a schedule length of 240, where both the 
processors are 100 % utilized. MH [9] and DLS [10] 
generate a schedule length of 2585 and 2635, 
respectively.  One of the main drawbacks of MH is that it 
uses static priorities, while DLS does use dynamic 
priorities but the exploration space is very limited. The 
proposed technique outperforms all other techniques and 
provides the shortest schedule length. This example 
shows that priorities determination in list scheduling is 
the key element to determine a good schedule and the 
proposed scheme is providing a technique to exploit this 
feature. 

 
TABLE III.  

Chromosome which resulted in the best schedule for Fig. 1. 
 

Node number[node priority] 
1 [710], 2 [710], 3 [710], 4 [710], 5 [710], 6 [710], 7 [710], 
8 [710], 9 [692], 10 [687], 11 [705], 12 [688], 13 [95],  
14 [642], 15 [65], 16 [509], 17 [403], 18 [87], 19[541],  
20 [476], 21 [418], 22 [16], 23 [19], 24 [58], 25 [220],  
26 [147], 27 [706], 28 [384] 

 
TABLE IV.  

Schedule generated by SES for Fig. 1. 
 

 Tasks scheduled on processors and links 

P0 

1 [0-20], 3 [20-40], 5 [40-60], 7 [60-80], 11 [80-100], 12 
[100-120], 16 [120-150], 15 [150-180], 19 [180-200], 17 
[200-220], 27 [220-225], 21 [225-230], 26 [230-235], 23 
[235-240] 

P1 
2 [0-20], 4 [20-40], 6 [40-60], 8 [60-80], 9 [80-100], 10 [100-
120], 14 [120-150], 13 [150-180], 20 [180-200], 18 [200-
220], 28 [220-225], 25 [225-230, 24 [230-235], 22 [235-240] 

P0 xP1

(6 →11) [60-65], (1 → 9) [65-70], (8 → 12) [80-85], (3 → 
10) [85-90], (14 → 19) [150-155], (16 → 20) [155-160], (13 
→ 17) [180-185], (15 → 18) [185-190], (20 → 27) [200-205], 
(19 → 25) [205-210], (18 → 23) [220-225], (17 → 22) [225-
230] 

III.  EXPERIMENTAL RESULTS 

The proposed simulated evolution-based technique, 
SES, for multiprocessor scheduling has been tested on a 
number of examples reported in literature and on a suite 
of randomly generated graphs. The results are very 
promising. The proposed evolution-based technique 
offers considerable improvement in the schedule length 
over previous work. We compared our results with the 
two competing techniques DLS [10] and MH [9].  For all 
the test examples the following values of different 
parameters were used: the number of generations (Ng) =   
80; the mutation rate (Pm) =0.6; the number of genes to 
be mutated (Ngm) = 10; and the control parameter δ =10. 

A.  A Suite of Test Graphs [11] 
As a first example, we have selected a suite of test 

graphs such as FFTs, trees (SUM1, SUM2) and irregular 
graph (IRR) used by McCreary et al. [11] to compare the 
performance of different scheduling algorithms. The FFT 
graph is shown in Fig. 1. The node weights for FFT-1 
through FFT-3 are given in Table V. The communication 
cost is 25 units per edge for FFT-1 and FFT-2, while 
communication cost is 500 units per edge for FFT-3. The 
comparison of schedule lengths for all the test graphs is 
given in Table VI.  The proposed technique gives the 
shortest schedule length as compared with the DLS and 
MH techniques for all the test cases. 

 
TABLE V.  

Nodes weight for FFTs graphs. 
 

Node # FFT-1 FFT-2 FFT-3 

1-8 1 60 20 

9-12 20 50 20 

13-16 30 5 30 

17-20 20 5 20 

21-28 1 5 5 
 

B.  Example 2 
The second example consists of three different types of 

directed acyclic graphs: Out-Tree, Fork-Join and Laplace 
Equation Solver. The comparison of schedule length with 
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DLS [10] and MH [9] techniques are given in Table VII. 
The proposed technique outperforms other techniques by 
providing a considerable improvement for all the test 
cases. This demonstrates the strength of the proposed 
technique to explore good solutions for different types of 
graph structures. 
 

TABLE VI.  
Comparison of schedule lengths for test graphs of Example 1. 

 
DAGs SES DLS [10] MH [9] 

SUM-1 65 75 84 

SUM-2 50 51 51 

IRR 650 710 755 

FFT-1 173 175 175 

FFT-2 255 275 280 

FFT-3 1630 2100 2570 

 
The effects of different control parameters on the 

schedule length for the Out-Tree graph are shown in Fig. 
5. This Figure shows that if we mutate only one gene per 
generation like the traditional mutation operator, the 
solution quality does not improve with the number of 
generations (Ng) because the alterations in the 
chromosome are not enough to generate a different 
solution by applying the decoding heuristic. If we 
increase the value of Ngm the solution quality improves, 
because we are introducing enough variations into the 
chromosomes, so that a different solution is generated by 
applying the decoding heuristic. The solution quality 
depends mainly on the number of generations and on the 
value of Ngm. The mutation rate (Pm) does affect the 
solution quality, but impact appears only with an increase 
in the number of generations. With the increase in the 
number of generations, the solution quality certainly 
improves, but then it requires more CPU time. To achieve 
a reasonable balance between the quality of solution and 
the computation cost, one has to select suitable values of 
these parameters. The values of these parameters selected 
for our experimentation is a reasonable choice.  

 
TABLE VII.  

Comparison of schedule lengths for test graphs of Example 2. 
 

DAGs SES DLS [10] MH [9] 

Out-Tree 723 761 1070 

Fork-Join 1924 3533 3406 

Laplace 6390 7340 8370 
 

C.  A Suite of Random Graphs 
To demonstrate the effectiveness of our SES 

technique, we consider a large suite of 175 of randomly 
generated graphs.  The size of the graphs varied from 50 
to 350 nodes with increments of 50. The cost of each 
node was randomly selected from a normal distribution 
with the mean equal to the specified average computation 

cost. The cost of each edge was also randomly generated 
using a normal distribution with the mean equal to the 
product of the average computation cost and the 
communication-to-computation ratio (CCR). Five 
different values of CCR were selected: 0.1, 0.5, 1.0, 2.0, 
and 10.0. For generating the random task graphs, we used 
another parameter called parallelism (P). This parameter 
determines the average number of immediate descendents 
for each node. Five different values of parallelism were 
chosen: 1, 2, 3, 4, 5. Thus, the suite consists of 25 graphs 
for each size. We compared our results with the two 
competing techniques MH [9] and DLS [10] for 8 fully 
connected homogeneous processors. Two types of 
comparisons were carried out based on the results 
obtained by running each algorithm on this suite of 175 
graphs. First, we compared the speedup for graphs with 
different values of CCR and P, and then we compared the 
average speedup for all the random graphs generated by 
the technique. Finally, we compared the average run 
times  (CPU +I/O) of these algorithms. The discussion of 
these comparisons is as follows: 
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Figure 5. The effects of different parameters on the schedule length. 
 

The typical pattern of speedup with different values of 
CCR is shown in Fig. 6-10. As the value of CCR is 
increased, the speedup decreases. The average speedup 
curves of SES, MH and DLS algorithms for 8 processors 
are given in Fig. 11. Each point in this figure is the 
average of 25 tests cases with various values of CCR and 
parallelism. We did not encounter a single instance 
during all the tests cases the schedule length generated by 
either DLS or MH are better than SES. The proposed 
technique outperformed both the MH and DLS 
algorithms. The average running times for various 
numbers of nodes in the task graph for 8 processors are 
given in Fig. 12. Each point in the figure is also the 
average of 25 tests cases. The running times of SES are 
large as compared with MH, but are comparable with 
DLS. The running times of SES becomes less as 
compared with DLS as the size of the graph is increased, 
since the overhead of the number of generations remains 
the same for all graph sizes.  The proposed technique 
produces much better results in terms of the quality of the 
solution as compared with MH and DLS and with 
comparable running times with DLS. 
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Figure 6. Speedup versus number of nodes. 
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Figure 7. Speedup versus number of nodes. 
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Figure 8. Speedup versus number of nodes. 

IV.  CONCLUSIONS 

SES blends a simulated evolution and a heuristic and 
uses a neighborhood structure to efficiently search a large 
solution space in order to find the best possible solution 
within an acceptable CPU time.  In SES, the 
chromosomal representation is based on problem data, 
and the solution is generated by applying a fast decoding 
heuristic (list scheduling) in order to map from problem 
domain to solution domain. Experimental results on test 
examples demonstrated that SES reduces the schedule 
length in a scalable fashion as compared to the existing 
approaches for different types of graph structures. SES 
can be easily extended for heterogeneous processors and 
can also be integrated with other heuristics. 
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Figure 9. Speedup versus number of nodes. 
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Figure 10. Speedup versus number of nodes. 
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Figure 11. Average speedup for 8 fully connected processors. 
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Figure 12. Average CPU running times (logscale) for 8 processors. 
 

 

1134 JOURNAL OF SOFTWARE, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER



REFERENCES 

[1] M. R. Garey and D. S. Johnson, Computers and 
Intractability: A Guide to the Theory of NP Completeness, 
San Francisco, CA, W. H. Freeman, 1979. 

[2] Y. Kwok and I. Ahmad, “Static Scheduling Algorithms for 
Allocating Directed Task Graphs to Multiprocessors,” 
ACM Computing Surveys, Vol. 31, No. 4, pp. 406-471, 
December 1999. 

[3] Y. Kwok and I. Ahmad, “Benchmarking and Comparison 
of the Task Graph Scheduling Algorithms,” Journal of 
Parallel and Distributed Computing, Vol. 59, No. 2, pp. 
381-422, December 1999. 

[4] R. L. Graham, “Bounds on Multiprocessing Timing 
Anomalies,” SIAM Journal of Applied Math., 17, pp. 416-
429, 1969. 

[5] T. L. Adam, K. M. Chandy, and J. R. Dicson, “A 
Comparison of List Schedules for Parallel Processing 
Systems,” Communications of the ACM, Vol. 17, No. 12,  
pp. 685-690, December 1974. 

[6] W. H. Kohler, “A Preliminary Evaluation of the Critical 
Path Method for Scheduling Tasks on Multiprocessor 
Systems,” IEEE Trans. on Computers,  Vol. 24, No. 12, 
pp. 1235-1238, December 1975. 

[7] C. Y. Lee, J. J. Hwang, Y. C. Chow, and F. D. Anger, 
“Multiprocessor Scheduling With Interprocessor 
Communication Delays,” Operations Research Letters, 
Vol. 7, No. 3, pp. 141-147, June 1988. 

[8] T. Yang and A. Gerasoulis, “List Scheduling with and 
without Communication Delays,” Parallel Computing, 19, 
pp. 1321-1344, 1993. 

[9] H. El-Rewini and T. G. Lewis, “Scheduling Parallel 
Program Tasks onto Arbitrary Target Machines,” Journal 
of Parallel and Distributed Computing, Vol. 9, No. 2, pp. 
138-153, June 1990. 

[10] G. C. Sih and E. A. Lee, “Scheduling to Account for 
Interprocessor Communication Within Interconnection-
Constrained Processor Network,” 1990 International 
Conference on Parallel Processing, Vol. 1, pp. 9-17, 
August 1990. 

[11] C. L. McCreary, A. A. Khan, J. J. Thompson, and M. E. 
McArdle, “A Comparison of Heuristics for Scheduling 
DAGs on Multiprocessors,”  8th International Parallel 
Processing Symposium, pp. 446-451,  April 1994. 

[12] G. Liao, E. R. Altman, V. K. Agarwal and G. R. Gao, “A 
Comparative Study of Multiprocessor List Scheduling 
Heuristics,” Twenty-Seventh Annual Hawaii International 
Conference on System Sciences, pp. 68-77,  January 1994. 

[13] Y Kwok and I. Ahmad, “Dynamic Critical-Path 
Scheduling: An Effective Technique for Allocating Task 
Graphs onto Multiprocessors,” IEEE Transactions on 
Parallel and Distributed Systems, Vol. 7, No. 5, pp. 506-
521, May 1996.  

[14] D. E. Goldberg, Genetic Algorithms in Search, 
Optimization and Machine Learning, Addison-Wesley, 
1989. 

[15] T. A. Ly and J. T. Mowchenko, “Applying Simulated 
Evolution to High Level Synthesis,” IEEE Trans. on CAD 
of Integrated Circuits and Systems, Vol. 12, No. 3, pp. 
389-409, March 1993. 

[16] Y. L. Lin, Y. C. Hsu, and F. S. Tsai, “SILK: A Simulated 
Evolution Router,” IEEE Trans. on CAD of Integrated 
Circuits and Systems, Vol. 8, No. 10, pp. 1108-1114, 
October 1989.  

[17] Y. Saab and V. Rao, “An Evolution-Based Approach to 
Partitioning ASIC Systems,” 26th ACM/IEEE Design 
Automation Conference, pp. 767-770, 1989. 

[18] Y. H. Hu and C. Y. Mao, “Solving Gate-Matrix Layout 
Problems by Simulated Evolution,” IEEE International 
Symposium on Circuits and Systems, pp. 1873-1875, 1993. 

[19] R. M. King and P. Banerjee, “ESP: Placement by 
Simulated Evolution,” IEEE Trans. on CAD of Integrated 
Circuits and Systems, Vol. 8, No. 3, pp. 245-256, March 
1989. 

[20] V. Nissen, “Solving the Quadratic Assignment Problem 
with Clues from Nature,” IEEE Trans. on Neural 
Networks, Vol. 5, No. 1, pp. 66-72, January 1994. 

[21] A. S. Wu, H. Yu, S. Jin, K. C. Lin and G. Schiavone, “An 
Incremental Genetic Algorithm to Multiprocessor 
Scheduling,” IEEE Trans. on Parallel and Distributed 
Computing, Vol. 15, No. 9, pp. 824-834, September 2004. 

[22] M. Grajcar, “Genetic List Scheduling Algorithm for 
Scheduling and Allocation on a Loosely Coupled 
Heterogeneous Multiprocessor System,” Proceedings of 
the 36th Annual ACM/IEEE Design Automation 
Conference, pp. 280-285, 1999. 

[23] T. Chen, B. Zhang, X. Hao and Y. Dai, “Task Scheduling 
in Grid based on Particle Swarm Optimization,” The Fifth 
international Symposium on Parallel and Distributed 
Computing, pp. 238-245, July 2006. 

[24] C. Chiang, Y. Lee, C. Lee and T. Chou, “Ant Colony 
Optimization for Task Matching and Scheduling,” IEE-
Proceedings Computers and Digital Techniques, Vol. 153, 
No. 6, pp. 373-380, November 2006. 

[25] H. Yu, “Optimizing Task Schedules Using an Artificial 
Immune System Approach,” Proceedings of the 10th 
Annual Conference on Genetic and Evolutionary 
Computation, pp. 151-158, 2008. 

 
 
 

Imtiaz Ahmad received his B.Sc. in Electrical Engineering 
from University of Engineering and Technology, Lahore, 
Pakistan, a M.Sc. in Electrical Engineering from King Fahd 
University of Petroleum and Minerals, Dhahran, Saudi Arabia, 
and a Ph.D. in Computer Engineering from Syracuse 
University, Syracuse, New York, in 1984, 1988 and 1992, 
respectively. Since September 1992, he has been with the 
Department of Computer Engineering at Kuwait University, 
Kuwait, where he is currently a professor. His research interests 
include design automation of digital systems, high-level 
synthesis, and parallel and distributed computing. 
 
 
 

Muhammad K. Dhodhi received his B.Sc. (with honors) 
in Electrical Engineering from the University of Engineering 
and Technology, Lahore, Pakistan in 1982. He received two 
Master degrees, one in Computer and Systems Engineering and 
another in Electric Power Engineering, from Rensselaer 
Polytechnic Institute, Troy, New York, in 1984 and 1986, 
respectively. He received a Ph.D. in Electrical Engineering from 
Lehigh University, Bethlehem, PA, in 1992.  Dr. Dhodhi has 
research and development experience both in the industry as 
well as in academia. Dr. Dhodhi is currently a Senior Member 
of hardware development team at Ross Video Ltd., Ottawa, 
Canada.  In the past, he has worked as a member of technical 
staff for distinguished global organizations such as Nortel 
Networks, Lucent Technologies, IBM Corporation, and a 
number of start-ups such as Diablo Technologies, Silicon Optix,  
The VHDL Technology Group,  Silc Technologies and as a 
Principal Consultant at Hayat ECAT, Inc. In industry, Dr. 
Dhodhi has been actively involved in all the phases of VLSI 
design, modeling and verification of System-on-Chip (SoC) 

JOURNAL OF SOFTWARE, VOL. 5, NO. 10, OCTOBER 2010 1135

© 2010 ACADEMY PUBLISHER



devices, ASICs/FPGAs used in Networking (i.e., Multiservice 
Core Switching Products, Terabit Switch Routers), Video/Image 
Processors, and Advanced Memory Buffers for DDR2/DDR3.  
He has also played a key role in the development of state-of-
the-art constrained random versification and assertion-based 
design and verification methodologies.     

In academia, Dr. Dhodhi had worked as an assistant 
professor with the Department of Electrical and Computer 
Engineering, Kuwait University, from February 1993 to May 
1997. He was an associate professor of electrical and computer 
engineering, Kuwait University, Kuwait from 1997 to 1998. Dr. 
Dhodhi research interests are in Wireless Sensor Networks, 
Hardware/Software Co-Design Verification, VLSI Design 
Automation and Parallel/Distributed Computing. 

 
 
 
Ishfaq Ahmad received a B.Sc. degree in Electrical 

Engineering from the University of Engineering and 
Technology, Pakistan, in 1985, and an MS degree in Computer 
Engineering and a PhD degree in Computer Science from 
Syracuse University, New York, U.S.A., in 1987 and 1992, 
respectively. He is currently a professor of Computer Science 
and Engineering at the University of Texas at Arlington (UTA).  
Prior to joining UTA, he was on the faculty of Computer 
Science Department at the Hong Kong University of Science 

and Technology (HKUST). At UTA, he leads the Multimedia 
Laboratory and the Institute for Research in Security (IRIS). 
IRIS, an inter-disciplinary research center spanning several 
departments, is engaged in research on advanced technologies 
for homeland security and law enforcement. Professor Ahmad is 
known for his research contributions in parallel and distributed 
computing, multimedia computing, video compression, and 
security. His work in these areas is published in 200 plus 
technical papers in peer-reviewed journals and conferences.  

Dr. Ahmad is a recipient of numerous research awards, 
which include three best paper awards at leading conferences 
and 2007 best paper award for IEEE Transactions on Circuits 
and Systems for Video Technology, IEEE Service Appreciation 
Award, and 2008 Outstanding Area Editor Award from the 
IEEE Transactions on Circuits and Systems for Video 
Technology.  

His current research is funded by the Department of Justice, 
National Science Foundation, SRC, Department of Education, 
and several companies. He is an associate editor of the Journal 
of Parallel and Distributed Computing, IEEE Transactions on 
Circuits and Systems for Video Technology, IEEE Transactions 
on Multimedia, IEEE Distributed Systems Online, and Hindawi 
Journal of Electrical and Computer Engineering. He is a Fellow 
of the IEEE and a member of the advisory board of Lifeboat 
Foundation. 

 

1136 JOURNAL OF SOFTWARE, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER


