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Abstract—As computer systems become increasingly inter-
networked, Distributed Real-time Embedded (DRE) systems 
has became increasingly common and important, a 
challenging problem faced by researchers and developers of 
DRE software is devising and implementing an method that 
can effectively analyze requirements in varying operational 
conditions. In this paper, a Hierarchical Distributed Real-
time Embedded net (HDRE-net) is proposed as software 
analysis tool. The basic task, function module and 
communication process are modeled by using HDRE-net, 
thus forming the whole application through the synthesis 
operation of Petri net. Time Reachability Graph is adopted 
to analyze the correctness of HDRE-net, the basic properties 
of DRE software are also considered. Finally, a specific 
example is given to simulate the analysis process, and the 
results show that the method can be a good solution to 
analyze DRE software. 
 
Index Terms—Distributed real-time and embedded system; 
Petri net; Time Reachability Graph; modeling; verifying 
 

I.  INTRODUCTION 

As computer systems become increasingly inter-
networked, most of critical systems in the world are 
embedded systems that control physical, chemical, 
biological, or defense processes and devices in real-time. 
Increasingly, these embedded systems are part of larger 
DRE system [1]. A typical DRE software will consist of 
multiple subsystems, which may be concentrated in a 
highly localized area, distributed over a wide geographic 
region, or may involve combinations of both local and 
distributed deployment. These subsystems will 
communicate with each other to exchange information 
and carry out coordinated actions [2]. 

Because DRE software is often characterized by 
complexity and volatility of requirements, developers 

require tools that support the rapid evaluation of design 
models against system-level temporal and functional 
properties. Such a validation activity helps identify 
requirement. However, a challenging problem faced by 
researchers and developers of DRE software is how to 
devise and implement a method that can effectively 
analyze requirements in varying operational conditions. 
Basically, in a DRE system, if the basic properties are not 
met, the consequences can be disastrous, including great 
damage of resources or even loss of human lives [3]. 

Therefore it is necessary to model and analyze DRE 
software early in the lifecycle. In these early development 
phases, the cost effectiveness and ease of use of 
validation tools is significant, as well as the level of rigor 
supplied by the modeling language and environment. 
Despite recent advances in DRE systems development, 
however, there remain significant challenges that make it 
hard to develop large-scale DRE software [4, 5]. The key 
unresolved challenges include the lack of methods for 
effectively modeling, integrating, and verifying. 

To address these challenges, we extend for Place 
Timed Petri net and propose a Hierarchical Distributed 
Real-time Embedded net (HDRE-net). The tasks and the 
relationships between tasks of DRE software are 
described in detail. In particular, we abstract 
communication process as a task, and using HDRE-net to 
describe resource and time delay of communication 
process, thus forming the whole application. Based on the 
constructed model, Time Reachability Graph is adopted 
to analyze the correctness of HDRE-net, the basic 
properties of DRE software are also considered. 

The remainder of this paper is organized as follows. 
Section 2 presents the computation model. Section 3 
shows how HDRE-net can be used to model DRE 
systems. Section 4 proposes analysis technologies of 
DRE software. In section 5, a specific example is given to 
simulate the modeling and analysis process. Section 6 
presents some related works while section 7 is 
conclusions. 
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II.  BASIC CONCEPT AND DEFINITION 

A.  Definition of  HDRE-net 
Timed Petri nets (TPN) is a mathematical formalism, 

which allows to model the features present in most 
concurrent and real-time systems, such as concurrent, 
asynchronism and distribution, etc. Some recent 
researches indicate that TPN is powerful enough to 
describe behavioral features of DRE software [6, 7]. The 
basic concepts of it can refer to [8]. In this paper, we 
extend for TPN and establish a model for analyzing DRE 
software. 

Definition 1: A tuple Σ=(TPN,I,γ)  is called Distributed 
Real-time Embedded net (DRE-net) iff: 

   (1) TPN =(PN, C, M0) is a Timed Place Petri net; 
   (2) I⊂P is a special place, which is called the 

interface of Σ and denoted by the dotted circle; 
   (3) γ is the priority function of transition. γ(ti)=(αi,βi), 

where αi,βi are called the primary and secondary priority 
of transition ti; 

The distribution of token in each place at time θ is 
called the marking of DRE-net model, denoted by M. The 
marking M(p) denotes the number of tokens in the place p. 
M=Ma ∪Mu,  where Ma is the available tokens of M, Mu is 
the unavailable tokens of  M.  For any x∈(P∪T), we 
denote the pre-set of x as   ●x={y|y∈ (P∪T)∧(y,x)∈F}  
and the post-set of x as x●={y|y∈ (P∪T)∧(x,y) ∈F}.  

 Definition 2: A six tuple Ω=(Σ,Γ,TI,TA,PI,PA) is 
called Hierarchical Distributed Real-time Embedded Net 
(HDRE-net) model, where:  

(1) Σ is DRE-net model, which describes the basic 
structure of Ω; 

(2) Γ={Γi|i∈Z*} is the finite set of DRE-net and 
HDRE-net, each element is called a page of Ω; 

(3) TI⊂T is the set of substituted operation, each page 
of HDRE-net corresponds to a substituted node and 
denoted by the double rectangle; 

(4) TA is the page allocation function, whose function 
is to allocate the corresponding page to the substituted 
node;  

(5) PI⊂P is the set of interface node, which describes 
the input and output of substituted node, and denoted by 
double circle; 

(6) PA is the mapping function of interface, which 
maps the interface node into the input and output of the 
operation. 

From the definition, we can get that DRE-net is a 
special case of HDRE-net, that is, Γ in HDRE-net model 
is empty. In this paper, the firing of transition in DRE-net 
model is instantaneous and the invocation of transition is 
determined by its priority. By default, the delay time of 
place is 0; the priority of transition is (0,0). The time unit 
can be set according to the specific circumstances. We 
will analyze the operation mechanism of HDRE-net 
model in the following. 

B.  Operation mechanism of HDRE-net 
Because the tokens in HDRE-net model include time 

factor, only using marking can't sufficient to describe the 

state of the system. In order to better describe time 
characteristics, we introduce the concept of wait time in 
this paper.  

Definition 3: Let Ω be a HDRE-net model, which 
reaches marking M at time θ, ∀Pi∈P, place Pi has j 
tokens in marking M, Pi

k is the kth token of Pi. Vector : 
TS(Pi)=(TSi

1,TSi
2,……,TSi

j)  
is the wait time of place Pi, where TS(Pi

k)= max{ci-(θ-
ξk),0}, ξk is the time that token Pi

k generated.  
TS(Pi

k) is the wait time of token Pi
k. TS(Pi

k)=m 
explains the model must wait M time units before using 
token Pi

k. While TS(Pi
k)=0 represents the token is 

available. Recorded TS(M,θ) as the wait time set of 
places under marking M.  

Definition 4: Let Ω be a HDRE-net model, a pair S = 
(M, TS) is called a state of Ω at time θ. Where M is 
marking, which describes the distribution of resources; 
TS(M, θ) is the time stamp of marking M, which depicts 
time properties of system.  

Initial state S0=(M0,TS0) where TS0 is a zero vector, i.e., 
all tokens are available in the initial state. Two ways can 
be used to change state: 

 (1) time elapse, at the time θ+ω (ω > 0), because the 
wait time of tokens have changed which makes the model 
reach a new state S′, denoted by S[ω>S′.  

(2) transition firing, the firing of transition ti will 
generate a new marking, thus the model will reach a new 
state S′, denoted by S[ti>S′. 

The state S reaches state S'' by firing transition ti after 
waiting ω time units is denoted by S[(ti, ω)>S′′. 

Definition 5: Let Ω be a HDRE-net model, S=(M, TS) 
is a state of Ω at time θ, for transition ti∈T, iff: 

(1) ∀pj∈P:pj∈•ti→Ma≥W(pj,ti), ti is called strong 
enabled under marking M, denoted by M[ti>, all 
transitions that have strong enabled under marking M are 
recorded as set SET(M). 

(2) ∀pj∈P: pj∈•ti→M≥W(pj,ti)∧Ma<W(pj, ti), ti is called 
weak enabled under marking M, denoted by M[ti≥, all 
transitions that have weak enabled under marking M are 
recorded as set WET(M). 

The set ET(M)=SET(M)∪WET(M). If transition ti has 
weak enabled under marking M and at least pass through 
ω time units to be strong enabled, then ω is called firing 
delay of transition ti under marking M. From the above 
definition, we can draw that the firing delay of strong 
enabled transition is 0. ω=max(TS(●ti)) is called firing 
delay of transition ti under state S, denoted by FD(S,ti). 

Definition 6: Let Ω be a HDRE-net model, S=(M, TS) 
is a state of Ω at time θ,  ∀ti∈ET(S),ω∈N*, the firing of 
transition ti is effective iff it meets one of the following 
conditions: 

(1) ti∈SET(M): αi≤min(αj)∧βi≤min(βk), where 
tj∈SET(M),tk∈U(ti) 

(2) ti∈WET(M): SET(M)=Φ∧ FD(S,ti)≤ FD(S,tj), 
tj∈WET(M) 

 The set U(ti)={tk| tk∈SET(M) ∧αk=αi} represents the 
set of transitions whose primary priority are equal to the 
primary priority of ti. All the effective firing transitions 
under state S are denoted by FT(S).  
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Figure 1. DRE-net Model of Task 

Definition 7: Let Ω be a HDRE-net model, S=(M, TS) 
is a state of Ω at time θ, the model will reach a new state 
S'=(M',TS') by effectively firing enabled transition ti, 
denoted by S[(ti,ω)>S′, S' is called the reachable state of 
S, the computation of M' , TS' are based on the following 
rules:  

(1) Computing marking:   
∀Pj∈●ti∪ti

●,M′(Pj)=M(Pj)- W(Pj,ti)+W(ti,Pj) 
(2) Computing wait time:  
First, adding wait time to the new generated marking: 
 TS′(Pi

k)=ci, Pi
k is generated when firing transition ti; 

Second, modifying the wait time of tokens which are 
generated before the firing of transition ti: 

 TS′(Pi
k)=max{(TS(Pi

k)-ω),0},TS(Pi
k)≥0. 

The computation of wait time is mainly based on the 
generated time of token: for the newly generated tokens, 
the wait time is equal to the delay time of the 
corresponding place; if the token is generated before the 
firing of transition and not be removed, the wait time 
needs to be adjusted. 

III.  FORMALLY MODELING DRE SOFTWARE 

In this section, we will use HDRE-net model to 
describe task, resource and communication mechanism of 
DRE system, thus forming the model of the whole 
application. In order to distinguish substituted nodes and 
interface nodes, which is marked by the capital letters, 
and others place and transition are marked by the 
lowercase letters. 

A.  Requirements of DRE software 
DRE software can be regarded as a number of 

modules; each module also contains a number of partially 
ordered, serial or parallel implemented sub tasks [9, 10].  
The function of DRE systems will be distributed to a 
number of interrelated embedded devices, each device is 
responsible for certain functions, and has certain 
autonomy, but relies on the computation of other 
embedded devices. Among them, DRE system has n 
tasks; each task is composed by a series of interrelated 
sub tasks set and a bus controller. The effective and 
reliable communication between tasks is done by bus and 
bus controller. In this paper, we assume the 
communication between tasks is done by Controller Area 
Network (CAN). 

 As DRE software has strong performance 
requirements such as predictability, efficiency, reliability 
and security, et al. Therefore, it is necessary to consider 
above characteristics when describe the requirements of 
DRE software. 

 Definition 8: DRE software requirement model is a 7-
tuple Ξ={TK,NT,RS,RL,CP,RT,D}: 

(1) TK is a finite tasks set; 
(2) N={N1,N2,……Nn} is the collection of tasks set, Ni 

is the corresponding task set of module i, the jth task of 
module Ni is denoted by TKi,j; 

(3) RS is the finite resources set; 
(4) RL is the relation between tasks, which may be 

sequence, choice, parallel et al; 

(5) CP:TK→(N*×N*) is the property function of task, 
which describes the running time and priority of task; 

(6) RT:TK→RS* is the resource function, whose 
function is to assign necessary resources to each task, RS* 
represents the multiple set of resource, that is, a task can 
use multiple sources; 

 (7) D is the operation deadline of whole application. 
In order to clearly describe the modeling and analysis 

process of DRE software, we assume the tasks in DRE 
system have the following characteristics: 

 (1) Static priority schedule is adopted to realize 
preemption.  

(2) A task may also need other resources in addition to 
processor, such as variables or buffer; meanwhile each 
task has two ways to access the resource: exclusive 
access and sharing access.  

(3) Each task can not suspend itself before completion.  
(4) The overhead of task switching can be neglected.  
B. Modeling DRE software 
In this section, we will use HDRE-net to abstract and 

model for task, communication between tasks, resource 
of DRE software, then composing the HDRE-net model 
of each module according to the relationships between 
modules, thus forming the model of whole application. In 
order to distinguish the page of transition and place in 
each net, the task and module is marked in the 
corresponding transition and place. The transition and 
place introduced in the system model will not mark. For 
example, the beginning transition of task TKi,j is denoted 
by ti,j

st.  
The model of task TKi,j is shown in Figure 1, where 

place pi,j
ac describes the running state of task TKi,j; while 

transition ti,j
st, ti,j

en describe the beginning and termination 
position of each task. 

Assuming each task of DRE software has constructed 
the corresponding HDRE-net model which is shown in 
Figure 1. We will compose HDRE-net model of each task 
by their relationship. 

Operator > represents the sequence relationship: If the 
firing of task TKi,j can lead to the firing of task TKi,k, then 
the relationships between task TKi,j and TKi,k is sequence. 
TKi,j is the forward task of TKi,k, while TKi,k is the 
afterward task of TKi,j. The set Forw(TKi,j), Back(TKi,j)⊂ 
TK are the forward and afterward task set of task TKi,j. 
The HDRE-net model of TKi,j>TKi,k is shown in Figure 
2(a), the substituted node TKi,j and TKi,k corresponds to 
the page of task TKi,j and TKi,k, while interface node Pi,j

pa , 
Pi,j

ou represent the input and output of substituted node 
TKi,j, and mapped into the interface pi,j

pa, pi,j
ou of task 

TKi,j. Because the relation between task and substituted 
node is one by one, the substituted node is also called 
task in the following. In order to describe the sequence 
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Figure 2.   HDRE-net Model of basic Relation 

i
sop

i
stp

i
stt

i
ent

i
enp

i
i
d Dp ,

i
dt

i
dmp

i
dfp

 
Figure 3.   HDRE-net Model of Module Ni 
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Figure 4.   HDRE-net Model of Communication Process 

relationship, we introduce transition tou to transfer the 
result of task TKi,j to the input interface of task TKi,k. 

 
Operator || represents the parallel relationship: If the 

relation between TKi,j and TKi,k is parallel. Let task TKi,f 
be the public forward task of task TKi,j and TKi,k, while 
task TKi,r is the public afterward task of task TKi,j and 
TKi,k. The corresponding HDRE-net model of TKi,j|| TKi,k 
is shown in Figure 2(b), we introduce transition tf,jk and 
tjk,r, which make ●tf,jk=Pi,f

ou, tf,jk
●={Pi,j

pa, Pi,k
pa}, tjk,r

●= 
Pi,r

pa, ●tjk,r= {Pi,j
ou, Pi,k

ou}. 
 Operator TKi,j+TKi,k represents the choice relationship, 

which means only one task can be chosen to fire. If task 
TKi,j◊TKi,k, which explains there has exclusive relation 
between them. The corresponding model of TKi,j+TKi,k 
and TKi,j ◊ TKi,k are shown in Figure 2(c)-(d).  

We will construct the HDRE-net model of each 
module according to the requirement model and the 
relationships between tasks, which is shown in Figure 3. 
The operation process of module Ni is: Calling the tasks 
in the module according to the task and relationships 
between tasks after initializing; meanwhile the local clock 
begins to time, if all task has finished operating in the 
deadline, then calling termination operation to make it be 
in normal termination state, otherwise, calling overtime 
handling operation to make it be in overtime state. 

In Figure 3, we introduce place pi
st, pi

en to describe the 
beginning and termination operation of module. Place pi

d 
is used to control running time of module Ni, place pi

dm  
describes overtime state of module Ni, transition ti

d 
describes overtime handling operation of module Ni, 
where ●pi

d=●pi
df=ti

st, pi
df
●={ti

d, ti
en}, ●ti

d=pi
d, ti

d
●= pi

dm. If 

task TKi,j doesn't have forward task, then ●ti
st=● ti

st ∪ pi,j
pa; 

If task TKi,j doesn't have afterward task, then ti
st
●= ti

st
●∪ 

pi,j
ou. 

According to the communication principle of CAN 
bus, the communication process of task TKi,j sending 
message to task TKg,f is abstracted as a communication 
task TKi,j→g,f, and set running time mi,j→g,f of TKi,j→g,f 
according to the size of message. The HDRE-net model 
of task TKi,j→g,f is shown in Figure 4. In Figure 4, place 
pi,j

ou and pg,f
pa are the input and output interface of task 

TKi,j→g,f, while place pb and pp describe idle buffer and 
bus token resource. The execution process of 
communication task TKi,j→g,f is: beginning to 
operation(ti,j→g,f

st) after getting data packet and entering 
into idle buffer waiting position pi,j→g,f

gp. Once getting the 
idle buffer, then writing data into buffer(ti,j→g,f

gp) and 
entering into waiting bus token position (pi,j→g,f

wgb); the 
system will release buffer and bus token(ti,j→g,f

en) after 

finishing data transmission.  
 In the HDRE-net model, the token represents 

resource. According to the characteristics of DRE 
software, the steps of modeling resource are: for the 
sharing resources rs such as cache, processor, bus, data, 
I/O and so on, we establish a place prs to represent the 
distribution of resource. According to the function RT in 
requirement model, we can determine the relationship 
between tasks and resources; the message is defined as a 
resource in the model.  

We can form the HDRE-net model of whole 
application based on the above model. The operation 
processes of whole application are: 

(1) Each module is abstracted as a substituted node; 
(2) Constructing data process of the whole application 

according to the relationships between modules; 
(3) Introducing place pst, pen to describe the beginning 

and termination state of application, transition tst, ten 
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represent the beginning and termination operation of 
whole application. 

(4) Analyzing the resource of the DRE software, and 
adding the corresponding place and arcs; 

(5) Adding the model of communication task 
according to the communication requirements between 
tasks; 

(6) Setting initial marking M0(pst)=1 and the 
distribution of initial resource. 

In this paper, the allocation rules of transition's priority 
are as follows: all transitions in a module have the same 
primary priority, that is, all transitions in a module, 
including internal transition of the task, have the same 
main priority; the secondary priority of termination 
operation has the highest priority, including the 
termination operation of task, module and communication 
task, which is 0; Overtime handling has the lowest 
priority, for example, if the secondary priority is divided 
into k levels, then the secondary priority of overtime 
handling transitions in all modules is set to k, the 
secondary priority of the rest transitions in the module 
were less than k; the primary priority of communication 
task can be set according to the actual requirements,  and 
does not follow the above rules, but the main priority of 
communication tasks which have conflict are not the 
same, the priority of all inner transitions of 
communication model are equal; the priority of transition 
that introduced to describe the process is equal to (0,0).  

IV.  ANALYSIS TECHNOLOGIES OF DRE SOFTWARE 

A.  Timed reachability graph 
For the bounded HDRE-net, because its reachability 

state set  R(S0) is a finite set, therefore, R(S0) is viewed as 
a vertex set,  and the direct reachability relation between 
states is viewed as arc set, and the transition is marked in 
the corresponding arc, which  constructs a directed arc. 
The directed graph is called Timed Reachable Graph in 
HDRE-net model. We can analyze state change, 
transition firing sequence and implementation time of 
system by using Timed Reachable Graph, thus getting the 
related properties of HDRE-net model. 

 According to the construction algorithm of Petri net 
reachability graph, we can construct Timed Reachable 
Graph of HDRE-net model. The model uses initial state 
as root node, and gradually computes each node in Timed 
Reachable Graph, and does following operations for 
current state S: 

   (1) Marking S to ensure that each state only has been 
visited once; 

   (2) Computing effective firing set FT(S) of  S; 
   (3) Computing next state S' by arbitrarily choose a 

transition from FT(S); 
   (4) If S' has been in the constructed node set, then 

directly adding the corresponding arc and the side 
marked, otherwise S' is added into the node set, and add 
the corresponding  arc and side marked. 

   We can analyze different properties of Ω by using 
RG(Ω).  

B. Basic Properties of DRE Software 
The main purpose of modeling by using Petri net is to 

analyze the properties and function of actual system. This 
section discusses the basic properties of HDRE-net 
model, these properties has closely related with DRE 
software.  

 In this paper, places are used to represent the resource 
of DRE software, message storage location, and also can 
be used to indicate the availability of resources. Making 
sure whether these storage has overflowed or whether the 
capacity of resources have overflowed are very 
important. The boundedness of model is to check whether 
the described resource of HDRE-net model has 
overflowed. We will prove the constructed HDRE-net 
model is bounded in the following. 

Property 1: HDRE-net model is bounded. 
Proof: According to definition of boundness, we can 

prove that each place in the model is bounded in different 
cases, thus getting the model is bounded. Many resources 
(such as bus, input device of hardware and buffer) are 
shared resource in DRE software. In those system, there 
may easily result in deadlock and complete halt, 
therefore, it is necessary to analyze resource scheduling 
rules and deadlock-free properties. 

Property 2: HDRE-net model ensure that each resource 
can allocate to one task one time. 

 Proof: Because the firing of transitions in the model is 
instant, and the resource in the model is characterized by 
a token. According to the semantic of HDRE-net model, 
we can get there doesn't exist a token that can be 
consumed by two tokens. That is, HDRE-net model 
ensure that each resource can be allocated to one task one 
time. 

Property 3: HDRE-net model is deadlock-free. 
 Proof: Because tasks in HDRE-net model can execute 

only after getting all required resources, and will not 
require additional resources during proceeding, then 
HDRE-net model does not meet one of necessary 
condition of deadlock generated: the transition is 
obstructed due to requiring resource, and not releases the 
got resources. Therefore, HDRE-net model does not have 
deadlock. So the model does not have deadlock. 

Property 4: The constructed HDRE-net model can 
ensure the principles of CAN bus protocol. 

Proof: According to the principles of  CAN bus 
protocol: (1) only one task sends message in the bus at 
any time; (2) If two tasks need to sent message at the 
same time, then low-priority nodes need stop sending. 
Because CAN bus is modeling as resource in this paper, 
we can get principle (1) is established according to 
property 2 and 3, and because C(pbus)= C(pwgb)=0, two 
tasks need send message means that there are two 
transitions that has bus tokens has strong firing, from the 
firing rules of HDRE-net model, we can get the higher 
priority transition will send, and the lower priority 
transition will wait, thus ensuring principle(2).  

Schedulability is an important characteristic for 
guarantying the reliability of DRE systems. We will 
introduce several special states before analyzing the 
schedulability of HDRE-net model. 
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Let Ω be a HDRE-net model, S=(M,TS) is a state of Ω 
at time θ: 

(1) if ∃ pi
dm ∈P which makes M(pi

dm)=1, then S is 
called the overtime state; 

(2) if ti
d∈FT(S), then S is called the dangerous state;  

(3) if M(pen)=1, then S is called the normal termination 
state, denoted by SF. 

Overtime state means that the operation can not be 
completed before the deadline, the model will reach 
overtime state when starts from the dangerous state; 
while the normal termination state is the state that all 
tasks have completed before the deadline; the other states 
in the system are called the normal state. 

Definition 9: Let Ω be a HDRE-net model, then Ω is 
schedulable iff SF is reachable in Ω. 

The model is schedulable if all modules can complete 
before their deadlines, which is called a feasible schedule. 
The feasible schedule is corresponding to a path from 
state S0 to SF in Ω. Therefore, we can get the necessary 
part of state graph based on depth-first-search algorithm, 
thus getting the path. As the path is got from part of 
reachable graph, it may not be optimal.  

The algorithm is based on the Timed Reachability 
Graph of HDRE-net model, which takes the initial state 
as root node, and gradually computing every state in 
feasible schedule, we can do following operations for the 
current state S:  

Step 1: If S is the normal termination state, then 
outputting the feasible schedule, otherwise go to Step 2; 

Step 2: Computing firing set FT(S) of S, if it is empty 
set, then outputting error info, otherwise go to Step 3; 

Step 3: If S is a dangerous state, then stepping back 
and updating the feasible schedule;  

 Step 4: If S is a normal state, then computing the new 
state and continue to judge its state.  

 

V. EXPERIMENTS 

In order to better describe the above modeling process 
and explain the correctness of analysis process, we use an 

actual case -Electronic Toll Collection (ETC) as an 
example. ETC system is an advanced system which 
consists of high-tech equipment and software such as 
microwave technology, electronics technology, computer 
technology, communications and network technology, 
and can achieve the function of automatically charging 
the cost of road without stopping vehicle. Strictly 
speaking, ETC application is the typical DRE software.  

The workflow of Export Control Lane (ELC) is: the 
system will inform lane computer of sending start-up 
instructions to antenna controller when trigger coil 
detects the pass of vehicles. The read information from 
OBE will be sent to data processing center for data 
processing and charging. 

According to the actual requirements, we can divide 
the entire application into four function modules. Module 
1 responses for controlling auxiliary equipment, including 
traffic lights, display screen, lever and coil; Module 2 
responses for reading OBE data. Module 3 responses for 
processing charged data. Module 4 is used to capture the 
peccancy vehicles. 

According to requirement model of ELC sub-system, 
we can model for task, module and communication 
process, and construct the HDRE-net model of ELC sub-
system by merging the corresponding interface. Because 
the conflict task is less, therefore, the setting of priority 
can reduce level, and the communication buffer is set to 
3. Because Module 3 need process a large number of 
data, ARM9 is used in this module, and the rest modules 
use 8051 Single-Chip. All modules use SJA100 as bus 
controller. According to the structure of ELC subsystem, 
and combining with the completed functions of each 
module, we can divide task set for each function module, 
and the corresponding bound is given in table I, in which 
time unit TTU is 2ms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We can model for task, module and communication 

process, and construct the HDRE-net model of ELC sub-
system by merging the corresponding interface, which is 
shown in Figure 5. Because the conflict task is less, 

TABLE  I.   REQUIREMENT MODEL OF  ELC  SUB-SYSTEM 

Actual Mapping of Task Transition TC(TTU) Actual Mapping of Task Transition TC(TTU) 
invoking TK1,1 1 invoking TK2,1 1 

traffic light display TK1,2 1 antenna trigger TK2,2 1 
trigger coil induction vehicle TK1,3 2 connecting OBE TK2,3 1 
sending message to module 2 TK1,4 1 reading data TK2,4 3 
receiving processing results TK1,5 1 sending data TK2,5 3 

displaying information screen TK1,6 2 receiving data TK2,6 1 
open level TK1,7 2 writing data TK2,7 3 
level block TK1,8 2 disconnect TK2,8 1 

downloading latest data TK3,1 2 invoking TK4,1 1 
receiving inherent information TK3,2 1 front capturing TK4,2 3 

querying pull in record TK3,3 1 side capturing TK4,3 3 
computing charge TK3,4 2 storing picture TK4,4 2 

connecting account TK3,5 2 sending data to monitor TK4,5 2 
qmount deducted TK3,6 2 communication task 1 TK1,4→2,1 0.5 

sending processing results TK3,7 2 communication task 2 TK2,5→3,2 0.5 
error info TK3,8 2 communication task 3 TK3,7→1,5 0.5 

storing results and uploading TK3,9 2 communication task 4 TK3,7→2,6 0.5 
   communication task 5 TK3,8→4,1 0.5 
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Figure 6.   Time Reachability Graph for HDRE-net Model of ELC Sub-System 
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Figure 5.   HDRE-net Model of ELC Sub-System 

therefore, the setting of priority can reduce level, and the 
communication buffer is set to 3. 

According to the construction algorithm of Time 
Reachability Graph and the HDRE-net model of ELC 
sub-system, we can get the corresponding Time 
Reachability Graph. Figure 6 lists part of Time 
Reachability Graph. The model has 559 states, according 
to the definition of the basic properties and its analysis 
method, we can draw the model is bound, deadlock free 
and live. The principle of CAN bus is also met. And we 
can draw that the model is scheduling by analyzing Table 
I. 

VI.  Related Works 

In recent year, there has been some related works used 
for DRE systems design including formal methods. 
Subramonian et al[11] presents a reusable library of 
formal models based on Timed Automaton, which have 
developed to capture essential timing and concurrency 
semantics of foundational middleware building blocks 
provided by the ACE framework. Madl et al[12] 
investigates how DRE systems can be represented as 
discrete event systems (DES) in continuous time, and 
proposes an automated method for the performance 
evaluation of such systems. Liu[13] leverages the Two-
Level Grammar (TLG) specification language and the 
Vienna Development Method (VDM) a formal 

methodology for developing DRE components and 
develops system code generation. UniFrame. Slaby et al 
[14] used task graph to describe tasks and relations 
between tasks in DRE systems, and evaluate the 
performance of component based enterprise DRE systems 
and reduce time/effort in the integration phase. Liu et 

al[15] used a timed colored Petri Net-based modeling 
toolkit describes all specifications consistently and 
automatically generates component bridges for DRE 
system integration, and a grammar-based formalism 
specifies context behaviors and validates integrated 
systems using sufficient context-related test cases. 
Hugues et al [16] propose a DRE system design 
framework based on middleware technology, which use 
Petri nets for modeling and verification DRE system. 

VII.  CONCLUSION 

In this paper, we have proposed a HDRE-net to model 
and analyze DRE software. This approach is based on a 
formal model, Petri net, that allows to consider different 
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components of DRE software. The main contributions of 
this paper are: (1) we proposed a HDRE-net model to 
better describe DRE software, thus providing effective 
management to DRE systems; (2) summarizing the 
modeling process of DRE software in detail, such as task, 
resource and communication process; (3) analyzing the 
correctness of constructed model and related properties of 
DRE software, thus ensuring the correctness of 
designment. Using this method to model and analyze the 
DRE systems has the following advantages: (1) with 
modular functionality and a high degree of reusability; 
(2) with a rigorous mathematical foundation, easy to 
analyze and verify the established model; (3) reduce the 
computational complexity.  

The study of Distributed Real-time and Embedded 
systems is still underway at present. Our current research 
is focused on exploring formal method as means to 
improve its mapping into DRE's architecture. The 
following two aspects are the main work in the next 
phase: (1) further improves this method, consider the 
fault-tolerant of each task to guarantee the system's 
schedulability; (2) developing the corresponding tools to 
support the modeling. 
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