
An Approach to Formally Modeling and
Verifying Distributed Real-time Embedded

Software

Liqiong Chen
Department of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, China

Email: lqchen@sit.edu.cn

Guisheng Fan1,2 and Yunxiang Liu3

1Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China
2 Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai, China
3 Department of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, China

Email: gsfan@ecust.edu.cn, yxliu@sit.edu.cn

Abstract—As computer systems become increasingly inter-
networked, Distributed Real-time Embedded (DRE) systems
has became increasingly common and important, a
challenging problem faced by researchers and developers of
DRE software is devising and implementing an method that
can effectively analyze requirements in varying operational
conditions. In this paper, a Hierarchical Distributed Real-
time Embedded net (HDRE-net) is proposed as software
analysis tool. The basic task, function module and
communication process are modeled by using HDRE-net,
thus forming the whole application through the synthesis
operation of Petri net. Time Reachability Graph is adopted
to analyze the correctness of HDRE-net, the basic properties
of DRE software are also considered. Finally, a specific
example is given to simulate the analysis process, and the
results show that the method can be a good solution to
analyze DRE software.

Index Terms—Distributed real-time and embedded system;
Petri net; Time Reachability Graph; modeling; verifying

I. INTRODUCTION

As computer systems become increasingly inter-
networked, most of critical systems in the world are
embedded systems that control physical, chemical,
biological, or defense processes and devices in real-time.
Increasingly, these embedded systems are part of larger
DRE system [1]. A typical DRE software will consist of
multiple subsystems, which may be concentrated in a
highly localized area, distributed over a wide geographic
region, or may involve combinations of both local and
distributed deployment. These subsystems will
communicate with each other to exchange information
and carry out coordinated actions [2].

Because DRE software is often characterized by
complexity and volatility of requirements, developers

require tools that support the rapid evaluation of design
models against system-level temporal and functional
properties. Such a validation activity helps identify
requirement. However, a challenging problem faced by
researchers and developers of DRE software is how to
devise and implement a method that can effectively
analyze requirements in varying operational conditions.
Basically, in a DRE system, if the basic properties are not
met, the consequences can be disastrous, including great
damage of resources or even loss of human lives [3].

Therefore it is necessary to model and analyze DRE
software early in the lifecycle. In these early development
phases, the cost effectiveness and ease of use of
validation tools is significant, as well as the level of rigor
supplied by the modeling language and environment.
Despite recent advances in DRE systems development,
however, there remain significant challenges that make it
hard to develop large-scale DRE software [4, 5]. The key
unresolved challenges include the lack of methods for
effectively modeling, integrating, and verifying.

To address these challenges, we extend for Place
Timed Petri net and propose a Hierarchical Distributed
Real-time Embedded net (HDRE-net). The tasks and the
relationships between tasks of DRE software are
described in detail. In particular, we abstract
communication process as a task, and using HDRE-net to
describe resource and time delay of communication
process, thus forming the whole application. Based on the
constructed model, Time Reachability Graph is adopted
to analyze the correctness of HDRE-net, the basic
properties of DRE software are also considered.

The remainder of this paper is organized as follows.
Section 2 presents the computation model. Section 3
shows how HDRE-net can be used to model DRE
systems. Section 4 proposes analysis technologies of
DRE software. In section 5, a specific example is given to
simulate the modeling and analysis process. Section 6
presents some related works while section 7 is
conclusions.

990 JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.9.990-997

II. BASIC CONCEPT AND DEFINITION

A. Definition of HDRE-net
Timed Petri nets (TPN) is a mathematical formalism,

which allows to model the features present in most
concurrent and real-time systems, such as concurrent,
asynchronism and distribution, etc. Some recent
researches indicate that TPN is powerful enough to
describe behavioral features of DRE software [6, 7]. The
basic concepts of it can refer to [8]. In this paper, we
extend for TPN and establish a model for analyzing DRE
software.

Definition 1: A tuple Σ=(TPN,I,γ) is called Distributed
Real-time Embedded net (DRE-net) iff:

 (1) TPN =(PN, C, M0) is a Timed Place Petri net;
 (2) I⊂P is a special place, which is called the

interface of Σ and denoted by the dotted circle;
 (3) γ is the priority function of transition. γ(ti)=(αi,βi),

where αi,βi are called the primary and secondary priority
of transition ti;

The distribution of token in each place at time θ is
called the marking of DRE-net model, denoted by M. The
marking M(p) denotes the number of tokens in the place p.
M=Ma ∪Mu, where Ma is the available tokens of M, Mu is
the unavailable tokens of M. For any x∈(P∪T), we
denote the pre-set of x as ●x={y|y∈ (P∪T)∧(y,x)∈F}
and the post-set of x as x●={y|y∈ (P∪T)∧(x,y) ∈F}.

 Definition 2: A six tuple Ω=(Σ,Γ,TI,TA,PI,PA) is
called Hierarchical Distributed Real-time Embedded Net
(HDRE-net) model, where:

(1) Σ is DRE-net model, which describes the basic
structure of Ω;

(2) Γ={Γi|i∈Z*} is the finite set of DRE-net and
HDRE-net, each element is called a page of Ω;

(3) TI⊂T is the set of substituted operation, each page
of HDRE-net corresponds to a substituted node and
denoted by the double rectangle;

(4) TA is the page allocation function, whose function
is to allocate the corresponding page to the substituted
node;

(5) PI⊂P is the set of interface node, which describes
the input and output of substituted node, and denoted by
double circle;

(6) PA is the mapping function of interface, which
maps the interface node into the input and output of the
operation.

From the definition, we can get that DRE-net is a
special case of HDRE-net, that is, Γ in HDRE-net model
is empty. In this paper, the firing of transition in DRE-net
model is instantaneous and the invocation of transition is
determined by its priority. By default, the delay time of
place is 0; the priority of transition is (0,0). The time unit
can be set according to the specific circumstances. We
will analyze the operation mechanism of HDRE-net
model in the following.

B. Operation mechanism of HDRE-net
Because the tokens in HDRE-net model include time

factor, only using marking can't sufficient to describe the

state of the system. In order to better describe time
characteristics, we introduce the concept of wait time in
this paper.

Definition 3: Let Ω be a HDRE-net model, which
reaches marking M at time θ, ∀Pi∈P, place Pi has j
tokens in marking M, Pi

k is the kth token of Pi. Vector :
TS(Pi)=(TSi

1,TSi
2,……,TSi

j)
is the wait time of place Pi, where TS(Pi

k)= max{ci-(θ-
ξk),0}, ξk is the time that token Pi

k generated.
TS(Pi

k) is the wait time of token Pi
k. TS(Pi

k)=m
explains the model must wait M time units before using
token Pi

k. While TS(Pi
k)=0 represents the token is

available. Recorded TS(M,θ) as the wait time set of
places under marking M.

Definition 4: Let Ω be a HDRE-net model, a pair S =
(M, TS) is called a state of Ω at time θ. Where M is
marking, which describes the distribution of resources;
TS(M, θ) is the time stamp of marking M, which depicts
time properties of system.

Initial state S0=(M0,TS0) where TS0 is a zero vector, i.e.,
all tokens are available in the initial state. Two ways can
be used to change state:

 (1) time elapse, at the time θ+ω (ω > 0), because the
wait time of tokens have changed which makes the model
reach a new state S′, denoted by S[ω>S′.

(2) transition firing, the firing of transition ti will
generate a new marking, thus the model will reach a new
state S′, denoted by S[ti>S′.

The state S reaches state S'' by firing transition ti after
waiting ω time units is denoted by S[(ti, ω)>S′′.

Definition 5: Let Ω be a HDRE-net model, S=(M, TS)
is a state of Ω at time θ, for transition ti∈T, iff:

(1) ∀pj∈P:pj∈•ti→Ma≥W(pj,ti), ti is called strong
enabled under marking M, denoted by M[ti>, all
transitions that have strong enabled under marking M are
recorded as set SET(M).

(2) ∀pj∈P: pj∈•ti→M≥W(pj,ti)∧Ma<W(pj, ti), ti is called
weak enabled under marking M, denoted by M[ti≥, all
transitions that have weak enabled under marking M are
recorded as set WET(M).

The set ET(M)=SET(M)∪WET(M). If transition ti has
weak enabled under marking M and at least pass through
ω time units to be strong enabled, then ω is called firing
delay of transition ti under marking M. From the above
definition, we can draw that the firing delay of strong
enabled transition is 0. ω=max(TS(●ti)) is called firing
delay of transition ti under state S, denoted by FD(S,ti).

Definition 6: Let Ω be a HDRE-net model, S=(M, TS)
is a state of Ω at time θ, ∀ti∈ET(S),ω∈N*, the firing of
transition ti is effective iff it meets one of the following
conditions:

(1) ti∈SET(M): αi≤min(αj)∧βi≤min(βk), where
tj∈SET(M),tk∈U(ti)

(2) ti∈WET(M): SET(M)=Φ∧ FD(S,ti)≤ FD(S,tj),
tj∈WET(M)

 The set U(ti)={tk| tk∈SET(M) ∧αk=αi} represents the
set of transitions whose primary priority are equal to the
primary priority of ti. All the effective firing transitions
under state S are denoted by FT(S).

JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010 991

© 2010 ACADEMY PUBLISHER

ji
pap , ji

stt ,
ji

ji
ac TCp ,
, , ji

ent , ji
oup ,

Figure 1. DRE-net Model of Task

Definition 7: Let Ω be a HDRE-net model, S=(M, TS)
is a state of Ω at time θ, the model will reach a new state
S'=(M',TS') by effectively firing enabled transition ti,
denoted by S[(ti,ω)>S′, S' is called the reachable state of
S, the computation of M' , TS' are based on the following
rules:

(1) Computing marking:
∀Pj∈●ti∪ti

●,M′(Pj)=M(Pj)- W(Pj,ti)+W(ti,Pj)
(2) Computing wait time:
First, adding wait time to the new generated marking:
 TS′(Pi

k)=ci, Pi
k is generated when firing transition ti;

Second, modifying the wait time of tokens which are
generated before the firing of transition ti:

 TS′(Pi
k)=max{(TS(Pi

k)-ω),0},TS(Pi
k)≥0.

The computation of wait time is mainly based on the
generated time of token: for the newly generated tokens,
the wait time is equal to the delay time of the
corresponding place; if the token is generated before the
firing of transition and not be removed, the wait time
needs to be adjusted.

III. FORMALLY MODELING DRE SOFTWARE

In this section, we will use HDRE-net model to
describe task, resource and communication mechanism of
DRE system, thus forming the model of the whole
application. In order to distinguish substituted nodes and
interface nodes, which is marked by the capital letters,
and others place and transition are marked by the
lowercase letters.

A. Requirements of DRE software
DRE software can be regarded as a number of

modules; each module also contains a number of partially
ordered, serial or parallel implemented sub tasks [9, 10].
The function of DRE systems will be distributed to a
number of interrelated embedded devices, each device is
responsible for certain functions, and has certain
autonomy, but relies on the computation of other
embedded devices. Among them, DRE system has n
tasks; each task is composed by a series of interrelated
sub tasks set and a bus controller. The effective and
reliable communication between tasks is done by bus and
bus controller. In this paper, we assume the
communication between tasks is done by Controller Area
Network (CAN).

 As DRE software has strong performance
requirements such as predictability, efficiency, reliability
and security, et al. Therefore, it is necessary to consider
above characteristics when describe the requirements of
DRE software.

 Definition 8: DRE software requirement model is a 7-
tuple Ξ={TK,NT,RS,RL,CP,RT,D}:

(1) TK is a finite tasks set;
(2) N={N1,N2,……Nn} is the collection of tasks set, Ni

is the corresponding task set of module i, the jth task of
module Ni is denoted by TKi,j;

(3) RS is the finite resources set;
(4) RL is the relation between tasks, which may be

sequence, choice, parallel et al;

(5) CP:TK→(N*×N*) is the property function of task,
which describes the running time and priority of task;

(6) RT:TK→RS* is the resource function, whose
function is to assign necessary resources to each task, RS*
represents the multiple set of resource, that is, a task can
use multiple sources;

 (7) D is the operation deadline of whole application.
In order to clearly describe the modeling and analysis

process of DRE software, we assume the tasks in DRE
system have the following characteristics:

 (1) Static priority schedule is adopted to realize
preemption.

(2) A task may also need other resources in addition to
processor, such as variables or buffer; meanwhile each
task has two ways to access the resource: exclusive
access and sharing access.

(3) Each task can not suspend itself before completion.
(4) The overhead of task switching can be neglected.
B. Modeling DRE software
In this section, we will use HDRE-net to abstract and

model for task, communication between tasks, resource
of DRE software, then composing the HDRE-net model
of each module according to the relationships between
modules, thus forming the model of whole application. In
order to distinguish the page of transition and place in
each net, the task and module is marked in the
corresponding transition and place. The transition and
place introduced in the system model will not mark. For
example, the beginning transition of task TKi,j is denoted
by ti,j

st.
The model of task TKi,j is shown in Figure 1, where

place pi,j
ac describes the running state of task TKi,j; while

transition ti,j
st, ti,j

en describe the beginning and termination
position of each task.

Assuming each task of DRE software has constructed
the corresponding HDRE-net model which is shown in
Figure 1. We will compose HDRE-net model of each task
by their relationship.

Operator > represents the sequence relationship: If the
firing of task TKi,j can lead to the firing of task TKi,k, then
the relationships between task TKi,j and TKi,k is sequence.
TKi,j is the forward task of TKi,k, while TKi,k is the
afterward task of TKi,j. The set Forw(TKi,j), Back(TKi,j)⊂
TK are the forward and afterward task set of task TKi,j.
The HDRE-net model of TKi,j>TKi,k is shown in Figure
2(a), the substituted node TKi,j and TKi,k corresponds to
the page of task TKi,j and TKi,k, while interface node Pi,j

pa ,
Pi,j

ou represent the input and output of substituted node
TKi,j, and mapped into the interface pi,j

pa, pi,j
ou of task

TKi,j. Because the relation between task and substituted
node is one by one, the substituted node is also called
task in the following. In order to describe the sequence

992 JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

ji
paP ,

jiTK ,
ji

ouP , ki
paP ,

kiTK ,

ki
ouP ,

out

ji
paP ,

jiTK ,
ji

ouP ,

ki
paP , kiTK , ki

ouP ,

fi
ouP ,

ri
paP ,jkft , rjkt ,

ji
paP ,

jiTK ,

ji
ouP ,

ki
paP ,

kiTK ,
ki

ouP ,

fi
ouP , ri

paP ,
jft , rjt ,

kft ,
rkt ,

ji
paP ,

jiTK ,

ji
ouP ,

ki
paP ,

kiTK , ki
ouP ,

jst ,

kst ,

jet ,

ket ,

RSp

Figure 2. HDRE-net Model of basic Relation

i
sop

i
stp

i
stt

i
ent

i
enp

i
i
d Dp ,

i
dt

i
dmp

i
dfp

Figure 3. HDRE-net Model of Module Ni

fgji
wgpp ,, →

fg
pap ,busp

fgji
fgji

ac mp ,,
,, , →

→fgji
gbt ,, →

fgji
ent ,, →

ji
oup ,

fgji
stt ,, →

fgji
wgbp ,, →

fgji
gpt ,, →

pp

Figure 4. HDRE-net Model of Communication Process

relationship, we introduce transition tou to transfer the
result of task TKi,j to the input interface of task TKi,k.

Operator || represents the parallel relationship: If the

relation between TKi,j and TKi,k is parallel. Let task TKi,f
be the public forward task of task TKi,j and TKi,k, while
task TKi,r is the public afterward task of task TKi,j and
TKi,k. The corresponding HDRE-net model of TKi,j|| TKi,k
is shown in Figure 2(b), we introduce transition tf,jk and
tjk,r, which make ●tf,jk=Pi,f

ou, tf,jk
●={Pi,j

pa, Pi,k
pa}, tjk,r

●=
Pi,r

pa, ●tjk,r= {Pi,j
ou, Pi,k

ou}.
 Operator TKi,j+TKi,k represents the choice relationship,

which means only one task can be chosen to fire. If task
TKi,j◊TKi,k, which explains there has exclusive relation
between them. The corresponding model of TKi,j+TKi,k
and TKi,j ◊ TKi,k are shown in Figure 2(c)-(d).

We will construct the HDRE-net model of each
module according to the requirement model and the
relationships between tasks, which is shown in Figure 3.
The operation process of module Ni is: Calling the tasks
in the module according to the task and relationships
between tasks after initializing; meanwhile the local clock
begins to time, if all task has finished operating in the
deadline, then calling termination operation to make it be
in normal termination state, otherwise, calling overtime
handling operation to make it be in overtime state.

In Figure 3, we introduce place pi
st, pi

en to describe the
beginning and termination operation of module. Place pi

d
is used to control running time of module Ni, place pi

dm
describes overtime state of module Ni, transition ti

d
describes overtime handling operation of module Ni,
where ●pi

d=●pi
df=ti

st, pi
df
●={ti

d, ti
en}, ●ti

d=pi
d, ti

d
●= pi

dm. If

task TKi,j doesn't have forward task, then ●ti
st=● ti

st ∪ pi,j
pa;

If task TKi,j doesn't have afterward task, then ti
st
●= ti

st
●∪

pi,j
ou.

According to the communication principle of CAN
bus, the communication process of task TKi,j sending
message to task TKg,f is abstracted as a communication
task TKi,j→g,f, and set running time mi,j→g,f of TKi,j→g,f
according to the size of message. The HDRE-net model
of task TKi,j→g,f is shown in Figure 4. In Figure 4, place
pi,j

ou and pg,f
pa are the input and output interface of task

TKi,j→g,f, while place pb and pp describe idle buffer and
bus token resource. The execution process of
communication task TKi,j→g,f is: beginning to
operation(ti,j→g,f

st) after getting data packet and entering
into idle buffer waiting position pi,j→g,f

gp. Once getting the
idle buffer, then writing data into buffer(ti,j→g,f

gp) and
entering into waiting bus token position (pi,j→g,f

wgb); the
system will release buffer and bus token(ti,j→g,f

en) after

finishing data transmission.
 In the HDRE-net model, the token represents

resource. According to the characteristics of DRE
software, the steps of modeling resource are: for the
sharing resources rs such as cache, processor, bus, data,
I/O and so on, we establish a place prs to represent the
distribution of resource. According to the function RT in
requirement model, we can determine the relationship
between tasks and resources; the message is defined as a
resource in the model.

We can form the HDRE-net model of whole
application based on the above model. The operation
processes of whole application are:

(1) Each module is abstracted as a substituted node;
(2) Constructing data process of the whole application

according to the relationships between modules;
(3) Introducing place pst, pen to describe the beginning

and termination state of application, transition tst, ten

JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010 993

© 2010 ACADEMY PUBLISHER

represent the beginning and termination operation of
whole application.

(4) Analyzing the resource of the DRE software, and
adding the corresponding place and arcs;

(5) Adding the model of communication task
according to the communication requirements between
tasks;

(6) Setting initial marking M0(pst)=1 and the
distribution of initial resource.

In this paper, the allocation rules of transition's priority
are as follows: all transitions in a module have the same
primary priority, that is, all transitions in a module,
including internal transition of the task, have the same
main priority; the secondary priority of termination
operation has the highest priority, including the
termination operation of task, module and communication
task, which is 0; Overtime handling has the lowest
priority, for example, if the secondary priority is divided
into k levels, then the secondary priority of overtime
handling transitions in all modules is set to k, the
secondary priority of the rest transitions in the module
were less than k; the primary priority of communication
task can be set according to the actual requirements, and
does not follow the above rules, but the main priority of
communication tasks which have conflict are not the
same, the priority of all inner transitions of
communication model are equal; the priority of transition
that introduced to describe the process is equal to (0,0).

IV. ANALYSIS TECHNOLOGIES OF DRE SOFTWARE

A. Timed reachability graph
For the bounded HDRE-net, because its reachability

state set R(S0) is a finite set, therefore, R(S0) is viewed as
a vertex set, and the direct reachability relation between
states is viewed as arc set, and the transition is marked in
the corresponding arc, which constructs a directed arc.
The directed graph is called Timed Reachable Graph in
HDRE-net model. We can analyze state change,
transition firing sequence and implementation time of
system by using Timed Reachable Graph, thus getting the
related properties of HDRE-net model.

 According to the construction algorithm of Petri net
reachability graph, we can construct Timed Reachable
Graph of HDRE-net model. The model uses initial state
as root node, and gradually computes each node in Timed
Reachable Graph, and does following operations for
current state S:

 (1) Marking S to ensure that each state only has been
visited once;

 (2) Computing effective firing set FT(S) of S;
 (3) Computing next state S' by arbitrarily choose a

transition from FT(S);
 (4) If S' has been in the constructed node set, then

directly adding the corresponding arc and the side
marked, otherwise S' is added into the node set, and add
the corresponding arc and side marked.

 We can analyze different properties of Ω by using
RG(Ω).

B. Basic Properties of DRE Software
The main purpose of modeling by using Petri net is to

analyze the properties and function of actual system. This
section discusses the basic properties of HDRE-net
model, these properties has closely related with DRE
software.

 In this paper, places are used to represent the resource
of DRE software, message storage location, and also can
be used to indicate the availability of resources. Making
sure whether these storage has overflowed or whether the
capacity of resources have overflowed are very
important. The boundedness of model is to check whether
the described resource of HDRE-net model has
overflowed. We will prove the constructed HDRE-net
model is bounded in the following.

Property 1: HDRE-net model is bounded.
Proof: According to definition of boundness, we can

prove that each place in the model is bounded in different
cases, thus getting the model is bounded. Many resources
(such as bus, input device of hardware and buffer) are
shared resource in DRE software. In those system, there
may easily result in deadlock and complete halt,
therefore, it is necessary to analyze resource scheduling
rules and deadlock-free properties.

Property 2: HDRE-net model ensure that each resource
can allocate to one task one time.

 Proof: Because the firing of transitions in the model is
instant, and the resource in the model is characterized by
a token. According to the semantic of HDRE-net model,
we can get there doesn't exist a token that can be
consumed by two tokens. That is, HDRE-net model
ensure that each resource can be allocated to one task one
time.

Property 3: HDRE-net model is deadlock-free.
 Proof: Because tasks in HDRE-net model can execute

only after getting all required resources, and will not
require additional resources during proceeding, then
HDRE-net model does not meet one of necessary
condition of deadlock generated: the transition is
obstructed due to requiring resource, and not releases the
got resources. Therefore, HDRE-net model does not have
deadlock. So the model does not have deadlock.

Property 4: The constructed HDRE-net model can
ensure the principles of CAN bus protocol.

Proof: According to the principles of CAN bus
protocol: (1) only one task sends message in the bus at
any time; (2) If two tasks need to sent message at the
same time, then low-priority nodes need stop sending.
Because CAN bus is modeling as resource in this paper,
we can get principle (1) is established according to
property 2 and 3, and because C(pbus)= C(pwgb)=0, two
tasks need send message means that there are two
transitions that has bus tokens has strong firing, from the
firing rules of HDRE-net model, we can get the higher
priority transition will send, and the lower priority
transition will wait, thus ensuring principle(2).

Schedulability is an important characteristic for
guarantying the reliability of DRE systems. We will
introduce several special states before analyzing the
schedulability of HDRE-net model.

994 JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

Let Ω be a HDRE-net model, S=(M,TS) is a state of Ω
at time θ:

(1) if ∃ pi
dm ∈P which makes M(pi

dm)=1, then S is
called the overtime state;

(2) if ti
d∈FT(S), then S is called the dangerous state;

(3) if M(pen)=1, then S is called the normal termination
state, denoted by SF.

Overtime state means that the operation can not be
completed before the deadline, the model will reach
overtime state when starts from the dangerous state;
while the normal termination state is the state that all
tasks have completed before the deadline; the other states
in the system are called the normal state.

Definition 9: Let Ω be a HDRE-net model, then Ω is
schedulable iff SF is reachable in Ω.

The model is schedulable if all modules can complete
before their deadlines, which is called a feasible schedule.
The feasible schedule is corresponding to a path from
state S0 to SF in Ω. Therefore, we can get the necessary
part of state graph based on depth-first-search algorithm,
thus getting the path. As the path is got from part of
reachable graph, it may not be optimal.

The algorithm is based on the Timed Reachability
Graph of HDRE-net model, which takes the initial state
as root node, and gradually computing every state in
feasible schedule, we can do following operations for the
current state S:

Step 1: If S is the normal termination state, then
outputting the feasible schedule, otherwise go to Step 2;

Step 2: Computing firing set FT(S) of S, if it is empty
set, then outputting error info, otherwise go to Step 3;

Step 3: If S is a dangerous state, then stepping back
and updating the feasible schedule;

 Step 4: If S is a normal state, then computing the new
state and continue to judge its state.

V. EXPERIMENTS

In order to better describe the above modeling process
and explain the correctness of analysis process, we use an

actual case -Electronic Toll Collection (ETC) as an
example. ETC system is an advanced system which
consists of high-tech equipment and software such as
microwave technology, electronics technology, computer
technology, communications and network technology,
and can achieve the function of automatically charging
the cost of road without stopping vehicle. Strictly
speaking, ETC application is the typical DRE software.

The workflow of Export Control Lane (ELC) is: the
system will inform lane computer of sending start-up
instructions to antenna controller when trigger coil
detects the pass of vehicles. The read information from
OBE will be sent to data processing center for data
processing and charging.

According to the actual requirements, we can divide
the entire application into four function modules. Module
1 responses for controlling auxiliary equipment, including
traffic lights, display screen, lever and coil; Module 2
responses for reading OBE data. Module 3 responses for
processing charged data. Module 4 is used to capture the
peccancy vehicles.

According to requirement model of ELC sub-system,
we can model for task, module and communication
process, and construct the HDRE-net model of ELC sub-
system by merging the corresponding interface. Because
the conflict task is less, therefore, the setting of priority
can reduce level, and the communication buffer is set to
3. Because Module 3 need process a large number of
data, ARM9 is used in this module, and the rest modules
use 8051 Single-Chip. All modules use SJA100 as bus
controller. According to the structure of ELC subsystem,
and combining with the completed functions of each
module, we can divide task set for each function module,
and the corresponding bound is given in table I, in which
time unit TTU is 2ms.

We can model for task, module and communication

process, and construct the HDRE-net model of ELC sub-
system by merging the corresponding interface, which is
shown in Figure 5. Because the conflict task is less,

TABLE I. REQUIREMENT MODEL OF ELC SUB-SYSTEM

Actual Mapping of Task Transition TC(TTU) Actual Mapping of Task Transition TC(TTU)
invoking TK1,1 1 invoking TK2,1 1

traffic light display TK1,2 1 antenna trigger TK2,2 1
trigger coil induction vehicle TK1,3 2 connecting OBE TK2,3 1
sending message to module 2 TK1,4 1 reading data TK2,4 3
receiving processing results TK1,5 1 sending data TK2,5 3

displaying information screen TK1,6 2 receiving data TK2,6 1
open level TK1,7 2 writing data TK2,7 3
level block TK1,8 2 disconnect TK2,8 1

downloading latest data TK3,1 2 invoking TK4,1 1
receiving inherent information TK3,2 1 front capturing TK4,2 3

querying pull in record TK3,3 1 side capturing TK4,3 3
computing charge TK3,4 2 storing picture TK4,4 2

connecting account TK3,5 2 sending data to monitor TK4,5 2
qmount deducted TK3,6 2 communication task 1 TK1,4→2,1 0.5

sending processing results TK3,7 2 communication task 2 TK2,5→3,2 0.5
error info TK3,8 2 communication task 3 TK3,7→1,5 0.5

storing results and uploading TK3,9 2 communication task 4 TK3,7→2,6 0.5
 communication task 5 TK3,8→4,1 0.5

JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010 995

© 2010 ACADEMY PUBLISHER

0S 1S

2S

stt 3S

4S

5S

1
stt

2
stt

3
stt

4
stt

7S

8S

9S

2
stt
3
stt

4
stt

6S
1,1

stt

10S

11S

3
stt

4
stt

1
stt

13S
2
stt

4
stt

12S
1,3

stt

1
stt

15S3
stt
2
stt

1
stt

14S

17S
18S

19S

2
stt
3
stt

4
stt

29S

28S

30S

1,3
stt

2
stt

4
stt

16S

20S

21S

22S

2
stt

4
stt

1
stt

23S

24S

25S
4
stt

1
stt

1,3
stt

26S

27S

3
stt

1
stt

32S

31S
1,3

stt

1
stt

34S

33S

35S

1,3
stt

1,1
stt

4
stt

36S

37S1,3
stt

1
stt

38S

39S

1,3
stt

4
stt

40S

41S

1,3
stt

2
stt

1,3
stt

1,1
stt

1
stt

42S

43S

44S

1,3
stt

4
stt

1,3
stt

1,1
stt

45S

46S

4
stt
1,3

stt
2
stt

1,3
stt

1,1
stt

4
stt

1,3
stt

1,1
stt

1,3
stt

47S
48S

1,1
ent

49S

2,1
stt

50S

1,3
ent

Figure 6. Time Reachability Graph for HDRE-net Model of ELC Sub-System

stP stt

45,dp dt
dmp

dfp

1
stp

1N 1
enp

4
stp 4N 4

enp

2
stp

2N 2
enp

3
stp 3N 3

enp
ent enp

Figure 5. HDRE-net Model of ELC Sub-System

therefore, the setting of priority can reduce level, and the
communication buffer is set to 3.

According to the construction algorithm of Time
Reachability Graph and the HDRE-net model of ELC
sub-system, we can get the corresponding Time
Reachability Graph. Figure 6 lists part of Time
Reachability Graph. The model has 559 states, according
to the definition of the basic properties and its analysis
method, we can draw the model is bound, deadlock free
and live. The principle of CAN bus is also met. And we
can draw that the model is scheduling by analyzing Table
I.

VI. Related Works

In recent year, there has been some related works used
for DRE systems design including formal methods.
Subramonian et al[11] presents a reusable library of
formal models based on Timed Automaton, which have
developed to capture essential timing and concurrency
semantics of foundational middleware building blocks
provided by the ACE framework. Madl et al[12]
investigates how DRE systems can be represented as
discrete event systems (DES) in continuous time, and
proposes an automated method for the performance
evaluation of such systems. Liu[13] leverages the Two-
Level Grammar (TLG) specification language and the
Vienna Development Method (VDM) a formal

methodology for developing DRE components and
develops system code generation. UniFrame. Slaby et al
[14] used task graph to describe tasks and relations
between tasks in DRE systems, and evaluate the
performance of component based enterprise DRE systems
and reduce time/effort in the integration phase. Liu et

al[15] used a timed colored Petri Net-based modeling
toolkit describes all specifications consistently and
automatically generates component bridges for DRE
system integration, and a grammar-based formalism
specifies context behaviors and validates integrated
systems using sufficient context-related test cases.
Hugues et al [16] propose a DRE system design
framework based on middleware technology, which use
Petri nets for modeling and verification DRE system.

VII. CONCLUSION

In this paper, we have proposed a HDRE-net to model
and analyze DRE software. This approach is based on a
formal model, Petri net, that allows to consider different

996 JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

components of DRE software. The main contributions of
this paper are: (1) we proposed a HDRE-net model to
better describe DRE software, thus providing effective
management to DRE systems; (2) summarizing the
modeling process of DRE software in detail, such as task,
resource and communication process; (3) analyzing the
correctness of constructed model and related properties of
DRE software, thus ensuring the correctness of
designment. Using this method to model and analyze the
DRE systems has the following advantages: (1) with
modular functionality and a high degree of reusability;
(2) with a rigorous mathematical foundation, easy to
analyze and verify the established model; (3) reduce the
computational complexity.

The study of Distributed Real-time and Embedded
systems is still underway at present. Our current research
is focused on exploring formal method as means to
improve its mapping into DRE's architecture. The
following two aspects are the main work in the next
phase: (1) further improves this method, consider the
fault-tolerant of each task to guarantee the system's
schedulability; (2) developing the corresponding tools to
support the modeling.

ACKNOWLEDGMENT

This paper is supported by key Foundation of Shanghai
Educational Committee (07ZZ164, 06OZ016), Foundation of
Shanghai Institute of Technology (YJ2004-05) and key subject
of Shanghai Institute of Technology (Computer science and
technology), Fund of Key Laboratory of Shanghai Science
and Technology (09DZ2272600).

REFERENCES

[1] X. Wang, Y. Chen, C. Lu, and X. Koutsoukos. “Fc-orb: A
robust distributed real-time embedded middleware with
end-to-end utilization control.” Journal of Systems and
Software, 2007, 80(7). pp. 938–950.

[2] E. P. Freitas, M. A. Wehrmeister, C. E. Pereira, F. R.
Wagner, E. T. Silva and F. C. Carvalho, “Using Aspect-
Oriented Concepts in the Requirements Analysis of
Distributed Real-Time Embedded Systems,” IFIP
International Federation for Information Processing,
Embedded System Design: Topics, Techniques and
Trends. Boston, Springer.vol. 231, pp. 221-230, 2007.

[3] E. P. Carlos and C. Luigi, “Distributed real-time embedded
systems: Recent advances, future trends and their impact
on manufacturing plant control,” Annual Reviews in
Control, 2007, 31(1). pp. 81–92.

[4] T. Murata. Petri nets: Properties, analysis and application.
In Proceedings of the IEEE, volume 77, 1989, pp. 541–
580.

[5] K. Balasubramanian, J. Balasubramanian, J. Parsons, A.
Gokhale, and D. C. Schmidt, “A platform-independent
component modeling language for distributed real-time and
embedded systems,” Journal of Computer and System
Sciences, 2007, 73(2). pp.171–185.

[6] Z. Ying, D. TRobert, and C. Krishnendu, “Energy-aware
deterministic fault tolerance in distributed real-time
embedded systems,” In Proceedings of the 41st annual
conference on Design automation. New York, ACM. pp.
550–555, 2004.

[7] G. Trombetti, A. Gokhale, D. Schmidt, J. Greenwald, J.
Hatcliff, G. Jung and G. Singh, “An Integrated Model-

Driven Development Environment for Composing and
Validating Distributed Real-Time and Embedded
Systems,” Model-Driven Software Development. Berlin
Heidelberg, Springer. pp. 329-361.2005.

[8] W. Bin, W. Zhaohui, and C. Wenzhi, “Component model
optimization for distributed real-time embedded software,”
IEEE International Conference on Systems, Man and
Cybernetics, IEEE Computer Society. Washington. Vol.2.
pp. 1158–1163, 2004.

[9] O. S. Unsal, I. Koren and C. M. Krishna, “Power-Aware
Replication of Data Structures in Distributed Embedded
Real-Time Systems,” Lecture Notes in Computer Science,
Parallel and Distributed Processing. Berlin Heidelberg,
Springer. vol. 1800. pp. 839-846. 2000.

[10] L. Patrick, B. Jaiganesh, D. C. Schmidt, T. Gautam, G.
Aniruddha, and D. Thomas, “A multi-layered resource
management framework for dynamic resource
management in enterprise dre systems,” Journal of Systems
and Software. 2007, 80(7). pp. 984–996,

[11] V. Subramonian, C. Gill, C. Sánchez, et al., “Reusable
models for timing and liveness analysis of middleware for
distributed real-time and embedded systems,” In
Proceedings of the 6th ACM & IEEE International
conference on Embedded Software. New York, ACM. pp.
252 – 261, 2006.

[12] G. Madl, N. Dutt, S. Abdelwahed, “Performance
estimation of distributed real-time embedded systems by
discrete event simulations,” In Proceedings of the 7th
ACM & IEEE International Conference on Embedded
Software, ACM. pp. 183-192, 2007.

[13] S. Liu, “Validation of distributed real-time and embedded
system composition in UniFrame,” In Proceedings of the
42nd Annual Southeast Regional Conference. New York,
ACM. pp. 303–304, 2004.

[14] J. M. Slaby, S. Baker, J. Hill, et al, “Applying system
execution modeling tools to evaluate enterprise distributed
real-time and embedded system QoS,” In Proceedings of
the 12th IEEE International Conference on Embedded and
Real-time Computing Systems and Applications. IEEE. pp.
350-362, 2006.

[15] S. Liu, B. R. Bryant, M. Auguston, et al, “A component-
based approach for constructing high-confidence
distributed real-time and embedded systems,” In
Proceedings of Monterey Workshop on Reliable Systems
on Unreliable Networked Platforms. Heidelberg, Springer-
Verlag. pp. 225-247. 2007.

[16] J. Hugues, B. Zalila, L. Pautet, et al, “From the prototype
to the final embedded system using the ocarina AADL tool
suite,” ACM Transactions on Embedded Computing
Systems, 2008, 7(4). no. 42.

Liqiong Chen. She was born in 1982, Ph. D. candidate. Her
research interests include distributed computing, embedded
systems and formal methods.

Guisheng Fan. He was born in 1980, Ph. D. candidate. His

research interests include service oriented computing,
distributed computing and formal methods.

Yunxiang Liu. He was born in 1967, professor, Ph. D.

supervisor, IEEE senior member. His research interests include
software engineering, information security and formal methods.

JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010 997

© 2010 ACADEMY PUBLISHER

