
Performance Analysis of System Model Based on
UML State Diagrams and Continuous-time

Markov Chains

Yefei Zhao
Department of Computer Science, East China Normal University, Shanghai, China

Email: derekzhaoecnu@gmail.com

Zongyuan Yang, Jinkui Xie and Qiang Liu
Department of Computer Science, East China Normal University, Shanghai, China

Email: yzyuan@cs.ecnu.edu.cn, jkxie@cs.ecnu.edu.cn, lqiangecnu@gmail.com

Abstract—If software architecture is assigned with formal
semantics, then automatic verification and validation can
be performed during the process of model refinement. In
this paper, we emphasized on the formal semantics of UML
state diagrams oriented performance analysis. The exact
definitions of the basic elements and composition
mechanism of UML state diagrams are proposed, UML
state diagrams is abstracted as a multi-tuple, CTMC
models are abstracted as stochastic Kripke structure,
mapping rules between the above two mathematics models
are proposed, furthermore the corresponding formal
semantics are generated. Finally, an asynchronous parallel
composition queuing network is presented to illustrate how
the theory is applied to formalize UML state diagrams. The
key properties of system are manually deduced and
validated. The results are analyzed and compared with the
automatic executing results through model checker, which
validated the practicability and validity of the theory.

Index Terms—UML state diagrams, Markov process,
CTMC, Probabilistic model checking, Software assurance

I. INTRODUCTION

With the maturity of software component technology
and the occurrence of CBSE (Component Based
Software Engineering), CBSE becomes the mainstream
software development technology. Presently
shareholders always focus on software component in
implementation phase and only care about functional
property of system model. However, if some key
performance properties of system are lately found not
meet the requirement in the phase of development, it will
cost more and reward less to modify the almost-finish
system.

In [1], software component in design phase is
described design component. Static topology structure
and dynamic behavior of design component can be

presented with UML diagrams. If UML diagrams are
assigned with formal semantics oriented performance
analysis, then system model can be automatically
reasoned and analyzed key performance properties in the
phase of requirement and design, thus the quantitative
measure of key properties can be attained.

UML(Unified Modeling Language) is an object-
oriented modeling language, which includes several sub-
diagrams to describe different aspects of a system.
Presently UML has become the de factor standard
modeling language in industry ([2], [3]). UML state
diagrams describes the responds to events and transitions
between states of system model in its life cycle, thus is
suitable to specify the structure, behavier and
composition mechanism of software component.
However, UML is a meta-model with only static
semantics but without dynamic formal semantics, thus
automatic analysis and verification can’t be performed.

The research work to assign UML diagrams with
formal semantics comprises of two categories: function
verification and performance analysis. Firstly for
function verification, UML diagrams is assigned with
LTS (Label Transition System) semantics in [6], [7] and
[11] or Kripke structure semantics in [8] and [12], thus
the key system properties of system, such as atomic,
liveliness, consistency and so on, can be automatically
reasoned and verified by process algebras or model
checking. Secondly for performance analysis, UML
diagrams is assigned with formal semantics extended
with time or probability, such as probabilistic Kripke
structure semantics in [10] and [13] or stochastic LTS
semantics in [9], thus the key quantitative performance
measure can be automatically reasoned and solved by
probabilistic model checking and stochastic process
algebras.

In [4], probabilistic model checking is proposed by
Marta Kwiakowska, Gethin Norman and Dave Parker
from Oxford University. Probabilistic model checking
extends the classical model checking with time and
probability: system states of discrete-time (continuous-

Project number: No. 60703004, No. 20060269002, No. 09JC1405000,
No. 09ZR1409500 and No. 2009054.
Corresponding author: Zongyuan Yang.

974 JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.9.974-981

time) markov process is presented by probabilistic
(stochastic) Kripke structure, while the key system
properties to be verified is presented by PCTL
(Probabilistic Computation Tree Logic) or CSL
(Continuous Stochastic Logic), finally probabilistic
model checker automatically reasons and analyze the
property to determine whether it holds or get the
quantitative performance measure through the method of
exhausting system states. Presently probabilistic model
checking has been widely used in probabilistic network
protocol analysis, security-critical system validation, and
so on. However, probabilistic model checking is
program-level and difficult to understand, furthermore,
the system designer is required to grasp some
mathematics knowledge. To combine probabilistic model
checking with graphical UML meta-model is a possible
research direction in future.

The significance and content of this paper lie in:
(1) Probabilistic model checking is based on

probabilistic Kripke structure and stochastic
Kripke structure which is low in abstract level,
while UML meta-model is the de factor standard
in industry, thus easily accepted by most people
because of its graphical and direct feature. If
UML is assigned with formal semantics of
probabilistic model checking, the complex
mathematics knowledge in model checking
theory can be hidden, thus graphical UML
diagrams can replace mathematics model to
perform automatic validation and analysis.

(2) In this paper, we emphasize on the exact
definitions of basic elements and composition
mechanism of UML state diagrams, as well as
the mapping rules between UML state diagrams
and stochastic Kripke structure. UML state
diagrams is abstracted as a multi-tuple, while
CTMC models are abstracted as stochastic
Kripke structure. The transformation algorithm
and mapping rules between the above two
mathematics models are presented, which makes
the theory be more general in applications,
finally CTMC formal semantics are generated.

(3) Once UML state diagrams is assigned with
CTMC formal semantics, the key system
properties to be verified are presented with CSL,
probabilistic model checker automatically
reasons and verifies the CSL formula to get the
quantitative performance measure. Not only
quantitative measure but also functional property
can be described by CSL formula, thus function
validation and performance analysis can be
performed simultaneously to improve software
quality.

The structure of this paper is as follows: In section 2,
the abstracting representation of UML state diagrams
CTMC models are presented, the mapping rules between
the above two mathematics models are found up, the
exact definitions of basic elements and composition
mechanism of UML state diagrams are also presented. In
section 3, an asynchronous parallel composition CTMC

system comprised of two models is presented to illustrate
how to apply the theory to formalize UML state
diagrams, the key performance properties are manually
deduced and solved, the manual results are analyzed and
compared with automatically executing results from
probabilistic model checker.

II. FORMAL SEMANTICS OF UML STATE DIAGRAMS

A. Abstract representation of UML state diagrams
UML state diagrams is abstracted as a multi-tuple <S,

initS , E, G, A, FS , L, T>, S represents the set of system
states, G represents the set of guard conditions, A
represents the set of actions, FS represents the set of

final states, L is a labeled function: s→ AP2 , where s∈S
∧ val(AP)=true, function L takes input as state s and
returns the set of atomic propositions that hold true in
state s. T is a transition function: s×e×g×a→ 's , where
s∈S ∧ e∈E ∧ val(g)=true ∧ a∈A ∧ 's ∈S, which
represents: the current system state is s, if event e occurs
and the value of guard condition g is true, then action a is
executed and system transforms to state 's .

In this paper, we emphasize on the formal semantics
of UML state diagrams oriented performance analysis,
there are implicit mapping relationships between UML
state diagrams and CTMC semantics.

B. Abstract representation of CTMC
In CTMC, each transition of system states relates

with a rate, the cumulative distribution function of
system states is exponential with parameter rate, thus
CTMC is suitable to model markov process with time.
For more detailed information, please refer to [16].

CTMC is abstracted as stochastic Kripke structure,
which represents as a multi-tuple <M, V, 'E , 'G , R,

sV , 'T >, where M represents module, a CTMC system
comprises of one or more modules assembled by
synchronous or asynchronous parallel composition, V
represents the set of variables, 'E represents the set of
events, 'G represents the set of guard conditions, R
represents the set of rates, sV represents the set of

variables that record system state, 'T represents the
transition of system variable value.

PRISM input language is the abstract language-level
representation of stochastic Kripke structure. For more
detailed information, please refer to [5].

Rule 1. (∑L(s)⇒V) ∧ (E⇒ 'E) ∧ (G⇒ 'G) ∧
(A⇒R) ∧ (T⇒ 'T) ∧ (num(s)⇒ sv

“(E ⇒ 'E) ∧ (G ⇒ 'G) ∧ (T ⇒ 'T)” represents
event E, guard condition G and transition T in UML state
diagrams are respectively mapped to event 'E , guard
condition 'G and transition 'T in stochastic Kripke
structure, which doesn’t change in semantics.

JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010 975

© 2010 ACADEMY PUBLISHER

“(∑L(s)⇒V)” represents the union of set of labels in
state s, which is mapped to the set of variables V in
stochastic Kripke structure. “(A ⇒ R)” represents: in
CTMC, the distribution of the executing time for action
is exponential with parameter rate, thus the semantics of
action (A) in UML state diagrams changes and is
mapped to rate (R) in stochastic Kripke structure.
“(num(s)⇒ sv)” represents that each state s in UML

state diagrams is mapped to a unique number sv , where

sv ∈ sV .

C. System initialization
System initialization comprises of initialization of

variable value and state value.
Definition 1 Variable initialization. Variable

initialization in UML state diagrams is represented as:
for all s ∈ initS ⇒ (val(L(s))=true), where for all

s∈ initS , the value of labels related with state s is set
true, otherwise is set false.

Rule 2. Q (∑L(s) ⇒ V) (Rule 1) ，∴ (for all
v ∈ ∑L(s) ⇒ init(v) := true) ∧ (for all
v∉∑L(s)⇒ init(v) := false)

Rule 3. Initialization of state value in UML state
diagrams is mapped to such semantics in stochastic
Kripke structure as follows: for all s∈ initS ⇒ ((init(s)

:= sv ∧ (sv ∈ sV)), where for each state s belongs to
the set of initial states, the initial value of s is set as true
and sv belongs to the set of system variables sV .

Figure 1. System initialization

For more detailed information about PRISM, PCTL
and CSL, please refer to [15].

In Fig. 1, “ 0s ” represents that system is in state 0s ,
“{a, b}” represents the set of labels which hold true in
state 0s . Given ∑L(s) = {a, b, c, d} ∧
∑num(s)={0,..,N}.

From definition 1, rule 2 and rule 3, we can get the
PRISM source code in Fig.1 as follows:

s : [0..N] init 0;
a : bool init true; b : bool init true;
c : bool init false; d : bool init false;

D. Sequential transition
Definition 2 Sequential transition. In UML state
diagrams, sequential transition is expressed as seqT :
s × e × g × a → t, where (s ∈ S) ∧
(e∈E)∧ (g∈G)∧ (a∈A)∧ (t∈S)

Rule 4. Q (a⇒ r)∧ (e⇒ 'e)∧ (g⇒ 'g) (Rule 1),

∴ sequential transition is expressed as '
seqT in

stochastic Kripke structure:
'e × 'g → r× (next(v) := ?(v∈L(t))× (next(s) :=

num(t)), which represents: given event 'e occurs and
guard condition 'g holds true, if v∈L(t), then the value
of variable v in next state is set as true with rate r,
otherwise is set as false with the same rate, the number
of system state is assigned with num(t), which represents
the number of target state t.

Figure 2. Sequential transition

In Fig. 2, is and js respectively represents the ith
and jth system state, which is source or target state of
sequential transition. “event” represents event, “guard”
represents guard condition, the semantics of “rate” in
UML state diagrams is action, however, it changes in
stochastic Kripke structure and transforms to rate.

From definition 2 and rule 4, we can get the PRISM
source code in Fig.2 as follows:
[event] (guard & s=i) rate : (s’=j) & (b’=true) &
(a’=false);
 ('b =true) and ('a =false) represent that the variable
changed in next state is assigned with new value.

Definition 3 Internal transition. In UML state
diagrams, internal transition is expressed as intT :
s×e×g×a→ s, where source state and target state are
the same state, others are the same as sequential
transition.

Figure 3. Internal transition

In Fig. 3, system state transforms to itself, so no
variable value changes. From definition 3 and rule 4, we
can get the PRISM source code in Fig.3 as follows:
[event] (guard & s=i) rate : (s’=i);

E. Selection transition
Definition 4 Selection transition. In UML state

diagrams, selection transition is expressed as selT :

s × e× ∑(ig × ia) → it , which represents: for some
source state s, if event e occurs, under different guard
condition ig , specific action ia is executed, then

system transforms to state it .

Rule 5. Q (e⇒ 'e) ∧ (ig ⇒ ig ') ∧ (ia ⇒ ir)

(Rule 1), ∴ sequential transition is expressed as '
selT in

976 JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

stochastic Kripke structure: ∑('e × ig ' → ir × ('v :=

?(v∈L(it))× ('s := num(it)))

“('v =? (v∈L(it))” represents that: all the variables

whose value changed in target state it are assigned with

new value “? (v∈L(it)”.

Figure 4. Selection transition

In Fig. 4, for a same source state, under different
event, guard condition and rate, system will transform to
respective target state.

From definition 4 and rule 5, we can get the PRISM
source code in Fig.4 as follows:
[e1] (guard1 & s=i) rate1 : (s’=t1) & (a’=false) &
(b’=true);
[e2] (guard2 & s=i) rate2 : (s’=t1) & (a’=false) &
(c’=true);
……
[en] (guardn & s=i) raten : (s’=t1) & (a’=false) &
(d’=true);

In CTMC models, there isn’t the constraint that the
probability summation of all transitions from a source
state for specific event should always be 1, so there isn’t
also non-determination selection transition.

F. Module declaration and module renaming
Definition 5 Model declaration. In UML diagrams,

model declaration is presented with a name of complex
state prefixed with keyword “module”, the complex state
comprises of a system initialization, several sequential
transitions, internal transitions, selection transitions.

Rule 6. “module CSName” ⇒ m ∧ m∈M, which
means: a complex state CSName prefixed with keyword
“module” in UML state diagrams is mapped to an
element m of set M in stochastic Kripke structure.

Figure 5. Module declaration

In Fig. 5, “m” is name of a complex state name,
which comprises of a system initialization and a
selection transition.

From definition 5 and rule 6, we can get the PRISM
source code in Fig.5 as follows:
module m
 s : [0..N] init 0;
endmodule

Rule 7. In UML state diagrams, given a defined
module, if another module is all the same as the defined
module except for variable name, then a new module can
be defined by module renaming, which is mapped to
such stochastic Kripke structure semantics as: im = jm

[Π (kv = '
kv) ∧ { im , jm } ⊆ M ∧

(∑ kv ∪∑ '
kv)⊆V]

Figure 6. Module renaming

From rule 7, we can get the PRISM source code of
model renaming in Fig.6 as follows:
module

n = m [s=t, a=e, b=f, c=g, d=h]
endmodule

G. Synchronous parallel composition and asynchronous
parallel composition

Definition 6 Synchronous parallel composition. In
UML state diagrams, a complex state prefixed with
keyword “system” comprises of several module
declarations, different modules synchronously execute
on the same actions.

Rule 8. Synchronous parallel composition is mapped
to such semantics in stochastic Kripke structure as:

1m || 2m ||…|| nm ∧ { 1m , 2m , … nm }⊆M

Figure 7. Synchronous parallel and Asynchronous parallel

From definition 6 and rule 8, we can get the PRISM
source code in Fig.7 as follows:
system
 1m || 2m ||…|| nm
endsystem

Definition 7 Asynchronous parallel composition.
In UML state diagrams, a complex state prefixed with
keyword “system” comprises of several module
declarations, each module has its own initial state,
different modules asynchronously execute on all actions.

JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010 977

© 2010 ACADEMY PUBLISHER

Rule 9. Asynchronous parallel composition is
mapped to such semantics in stochastic Kripke structure
as: 1m ||| 2m |||…||| nm ∧ { 1m , 2m , … nm }⊆M

From definition 7 and rule 9, we can get the PRISM
source code in Fig.7 as follows:
system
 1m || 2m ||…|| nm
Endsystem

Besides above two composition mechanisms, there is
still constraint parallel composition, for more detailed
information, please refer to [15].

III. AUTOMATIC ANALYSIS AND VALIDITY VERIFICATION

A. Formal CTMC semantics of UML state diagrams
In this section, a queuing network queue size is

presented, which illustrates how to apply above theory to
generate formal CTMC semantics of UML state
diagrams.

The UML state diagrams in Fig. 8 represents a
queuing network comprised of two asynchronous
composition parallel modules from the aspect of static
topology structure and dynamic behavior. The first
module “jobs” is a client-server queuing network,
“client” sends request with rate 3, “server” provides
service with rate 5 and size of the queuing network is 3.
If no request is unprocessed, then system is labeled with
“empty”, otherwise if more than 3 requests is
unprocessed, then system is labeled with “full”. The
second module “queue” is the renaming module of
“jobs” (definition 6 and rule 8). The whole system is
asynchronous parallel composition of module “jobs” and
“queue”.

Figure 8. An asynchronous parallel composition CTMC system

From the basic elements and composition mechanism
of UML state diagrams, as well as exact definition and
mapping rules between UML state diagrams and
stochastic Kripke structure, we can get the PRISM
source code in Fig. 8 as follows:
ctmc
const int t;
module jobs
 s : [0..3] init 0;
 empty : bool init true;
 full : bool init false;

 [] s=0 -> 3 : (s'=1) & (empty'=false);
 [] s=1 -> 3 : (s'=2) + 5 : (s'=0) & (empty'=true);
 [] s=2 -> 3 : (s'=3) & (full'=true) + 5 : (s'=1);
 [] s=3 -> 5 : (s'=2) & (full'=false);
endmodule
module
 queue = jobs[s=p, empty=m, full=n]
endmodule
system jobs ||| queue endsystem

The above PRISM source code can be attained by the
definitions and mapping rules in section 2. In the second
line, an int type variable t is manually added to express
time interval, which will be used in simulation
experiment for key system property in section 3.2.

B. Automatic analysis and verification of key system
properties

PRISM is a probabilistic model checking tool sets
proposed by Marta Kwiakowska etc. from Oxford
University. The concepts of time and probability are
introduced into classical model checking framework so
that DTMC, MDP and CTMC models can be processed
in probabilistic model checking. In DTMC and MDP
models, the key system properties to be verified is
described with PCTL, in CTMC models, the key system
properties to be analyzed is described with CSL. In
PRISM, the method of exhausting system states is used
to realize automatic verification and analysis and get
quantitative performance measure.

For more detailed information about the syntax and
semantics of CSL, please refer to [16]. The key system
properties to be analyzed are described with CSL
formula as follows:

Definition 8 System steady-state solution. It is
defined as the probability of being in a state in the long-
run.
CSL formula: S=? [full] S<0.1 [full]

S=? [s=0] S=? [s=1]
S=?[s=2] S=? [s=3]

“S=? [full]” represents the steady-state probability
in case system fulfils the label “full”. “S=? [s=0]”
represents the steady-state probability in case system
fulfils state s=0, likewise, for s=1, s=2 and s=3. Only if
s=3, label “full” holds true, so “S=? [full]” ≡ “S=? [
s=3]”.

Definition 9 Reachable transient probability. It is
defined as the transient probability in case that system
starts a certain state, after some time intervals, reaches
another state or fulfils some guard condition.

CSL formula:
P=? [true U[0,3] s=1 {s=0}]
P=? [true U[0,7.5] full {s=0}]
P=? [true U[0,7.5] full {s=1}]
P=? [true U[0,7.5] full {s=2}]
P=? [true U[0,7.5] full {s=3}]
“P=? [true U[0,3] s=1 {s=0}]” represents the

transient probability in case that system starts from state
s=0, after [0, 3] time intervals, reaches the state s=1.
“P=? [true U[0,7.5] full {s=0}]” represents the transient
probability in case that system starts from state s=0, after

978 JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

[0, 7.5] time intervals, reaches the state that fulfils “full”
is true. Likewise, for s=1, s=2 and s=3.

Definition 10 Transient simulation probability.
The value range and variation steps of a variable can be
specified, then PRISM can automatically draw the graph
about transient probability simulation solution.
CSL fomula: P=? [true U[0,t] s=3]

“P=? [true U[0,t] s=3]” represent the probability in
case that system reaches state s=3 in 0~t time intervals,
where t is an integer variable, the value range and steps
of t can be specified by user, then PRISM can
automatically draw the simulation probability of the CSL
formula in graph.

Software and hardware environment of the
experiment are: Windows XP, Pentium 2.4G, 1G
memory, probabilistic model checker PRISM 3.2. The
CTMC formal semantics of the UML state diagrams in
Fig. 8 is represented as the PRISM source code described
in section 3.1, the key system properties to be analyzed is
described with above CSL formula. The experiment
result is shown in Fig. 9 as follows:

Figure 9. Automatic experiment result

 Fig. 9 shows the automatic experiment result in
PRISM, we extract the result shown in Tab. 1.

TABLE 1. AUTOMATIC EXPERIMENT RESULT OF KEY PROPERTIES

Property CSL formula Result
Steady-
state
solution

S=? [full] 0.09926
S<0.1 [full] true
S=? [s=0] 0.4595
S=? [s=1] 0.2757
S=? [s=2] 0.1654
S=? [s=3] 0.09926

Reachable
transient
probability

P=? [true U[0,3]
s=1 {s=0}]

0.9998

P=? [true U[0,7.5]
full {s=0}]

0.9255

P=? [true U[0,7.5]
full {s=1}]

0.9344

P=? [true U[0,7.5]
full {s=2}]

0.9571

P=? [true U[0,7.5]
full {s=3}]

1.0

C. Manually computation and analysis of key system
properties
(1). Steady-state solution

In [16], the algorithm and steps to solve steady-state
probability of CTMC models are proposed. First, we
generate the rate transition matrix Q. Second, global
balance equation and normalized condition equation are
listed. Third, steady-state probability is solved. We
manually solve the steady-state probability of the CTMC
models in Fig. 8 as follows:

Let π is a row vector, which represents the steady-
state solution, π = (1p , 2p , 3p , 4p). From the CTMC
model in Fig. 8, we can get the rate transition matrix

Q=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

5500
3850
0385
0033

From global balance equation π ×Q = 0, we have:

(1p , 2p , 3p , 4p)×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

5500
3850
0385
0033

 = 0 ⇒

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=−
=+−
=+−

=+−

05.25.1
05.245.1
05.245.1

05.25.1

43

432

321

21

pp
ppp
ppp

pp

,

The solution is:

41 27
125 pp = , 42 9

25 pp = , 43 3
5 pp = -- (1)

From normalized condition equation ∑
=

n

i
i

0

π = 1, ∴

1p + 2p + 3p + 4p = 1, 1p , 2p and 3p are substituted
for the above formulas, we can get the solution:

4595.01 =p , 2757.02 =p , 1654.03 =p ,

0992.04 =p
The above manual result is consistent with the

automatic experiment result from PRISM, which proved
that the theory is practicability and validity for steady-
state solution.
(2). Reachable transient probability

In [16], Each CTMC model has an embedded DTMC
model.

),(')(ssP Cemb =
⎪
⎩

⎪
⎨

⎧

==
>

otherwise
sssEif

sEifsEssR

,0
)(&)0)((,1
)0)((),(/),(

'

'

，

JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010 979

© 2010 ACADEMY PUBLISHER

From [16], the probability that CTMC model
transforms from is to js in certain time interval [1t , 2t]
can be solved by such formula as follows:

Pr(C(is , [1t , 2t], js)) = Pr(C(is)) ×

),()(
ji

Cemb ssP ×)(21)()(tsEtsE ji ee ×−×− −
For CSL formula “P=? [true U[0,3] s=1 {s=0}]”,

substitutes terms for corresponding data in the above
formula, we get the solution:

Pr(C(s=0, [0, 3], s=1)) = Pr(C(s=0))
×)1,0()(== ssP Cemb ×)(3)0(0)0(×=−×=− − sEsE ee

= 1×1×)(3303 ×−×− − ee = 1 - 9−e = 0.9998
The above manual solution is consistent with the

automatic experiment result (0.9998) from PRISM,
which proved that the theory is practicability and validity
for reachable transient probability.
(3). Transient simulation probability

For CSL formula “P=? [true U[0,t] s=3]”, the value
range of variable t is specified as [0, 10] and the steps is
set as 1, PRISM automatically drew the graph about
simulation solution in Fig. 10 as follows:

Figure 10. Transient simulation solution of CTMC model

In Fig. 10, probability p=0 in case time t=0,
probability p≈ 0.95 in case time t=10. With the increase
of time t, probability p becomes larger and larger. The
probability that CTMC model transform from state s=0
to state s=3 becomes larger and larger with time increase,
which is consistent with experience expectation, thus the
practicability and validity of the theory is validated.

IV. CONCLUSION AND FUTURE WORK

In this paper, we emphasized on the formal semantics
of UML state diagrams oriented performance analysis.
UML state diagrams is abstracted as a multi-tuple,
CTMC model is abstracted as stochastic Kripke
structure, the mapping rules between the above two
mathematics models are found up, we also proposed the
exact definitions of basic elements and composition
mechanism of UML state diagrams. Finally an
asynchronous parallel composition CTMC system
comprised of two modules is presented to illustrate how
to apply the above in performance analysis of UML state
diagrams. The manual solution is consistent with the
automatic experiment result from PRISM, which proved
the practicability and validity of the theory.

In previous research work, we proposed that UML
diagrams can be assigned with pi-calculus semantics in
[11], Kripke structure semantics in [12] and probabilistic
Kripke structure semantics in [13], thus formal function
validation and performance analysis can be automatically
performed during the process of model refinement.

Possible future work: according to the theory, we will
develop a set of automatic tool sets which can formalize
UML state diagrams with stochastic Kripke structure
semantics. A possible practical route: Poseidon for UML

 XMI text format Java DOM (Docuement Object
Model) parser PRISM input code.

Presently probabilistic model checking can only
process Markov process based system model, given
current system state, probabilistic model checker can
automatically reason and analyze system state in the
future. If probabilistic model checking can be extended
with additional operator about time and probability to
apply Bayes formula, given current system state, then
probabilistic model checker can automatically reason
system state in the past, which will extend the reasoning
range and ability of probabilistic model checking.

ACKNOWLEDGMENT

The work was supported by the National Natural
Science Foundation of China under Grant No. 60703004,
the National Research Fund for the Doctoral Program of
Higher Education of China under Grant No.
20060269002, Key Project of Basic Research of
Shanghai under Grant No. 09JC1405000, Natural
Science Foundation of Shanghai under Gran No.
09ZR1409500, and PhD Program Scholarship Fund of
ECNU 2007 under Grant No. 2009054.

REFERENCES
[1] Keller, Rudolf K, Schauer Reinhard, Design components:

towards software composition at the design level. In:
Proceedings of the 20th International Conference on
Software Engineering, 302–311 ,1998

[2] OMG. OMG Unified Modeling Language specification
version 1.5, March 2003. http://www.omg.org

[3] G. Booch, J. Rumbaugh and I. Jacobson. UML notation
guide, version 1.1. Rational Software Corporation, Santa
Clara, CA, 1997.

[4] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 2.0:
A tool for probabilistic model checking. In Proc. 1st
International Conference on Quantitative Evaluation of
Systems (QEST’04), pages 322–323. IEEE Computer
Society Press, 2004.

[5] A Hinton, M Kwiatkowska, G Norman, D Parker.
PRISM: A Tool for Automatic Verification of
Probabilistic Systems. Lecture Notes in Computer
Science, Springer, 2006.

[6] Korenblat, K., Priami, Extraction of Pi-calculus
specifications from a UML sequence and state diagrams.
DEGAS IST-2001-32072, Technical Report No. DIT-03-
07. 2003.

[7] Vitus SWL, Julian P. Consistency checking of sequence
diagrams and statechart diagrams using the π-calculus.
Proc. of the 5th Int’l Conf. on Integrated Formal Methods
(IFM 2005). LNCS 3771, Berlin: Springer-Verlag, 2005.
347−365.

980 JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

[8] P Inverardi, H Muccini, P Pelliccione. CHARMY: an
extensible tool for architectural analysis. ACM SIGSOFT
Software Engineering Notes, 2005

[9] D. N. Jasen, H. Hermanns, and J. P. Katoen. A Qos-
oriented extension of UML state charts. LNCS, 2003.

[10] Jansen, D.N. Probabilistic UML statecharts for
specification and verification: a case study. In: Critical
systems development with UML: proceedings of the
UML'02 workshop, Leipzig, Germany. pp. 121-131.
Technical Report. 2002.

[11] Yefei Zhao, Zongyuan Yang, Jinkui Xie. Pi-calculus
based assembly mechanism of UML state diagram and
Validation of model refinement. International Conference
on Electronic Computer Technology (ICECT 2009).
2009.

[12] Yefei Zhao, Zongyuan Yang, Jinkui Xie. Formal
semantics of UML state diagram and automatic
verification Based on Kripke structure. 22nd IEEE
Canadian Conference on Electrical and Computer
Engineering (CCECE 2009). 2009.

[13] Yefei Zhao, Zongyuan Yang, Jinkui Xie. System
performance analysis Based on extended UML state
diagram and Markov process. 2009. (submitted to
journal)

[14] Poseidong for UML. http://www.gentleware.com/
[15] PRISM model checker,

http://www.prismmodelchecker.org/tutorial/
[16] PRISM CTMC,

http://www.prismmodelchecker.org/lectures/05-ctmcs.pdf

Yefei Zhao was born in Jinlin city, China,
in May, 1978; received B.S. in Computer
Science from North-Eastern University,
Shenyang, China; received M.S. in
Computer Science from East China
Normal University, Shanghai, China. His
research interests include formal method
and software engineering.

He worked as a software engineer in
Avant, SVA and DBtel Corporation from

July, 2001 to July July, 2005 in Shanghai, China. Presently he
works as a PH. D. candidate in Computer Science from East

China Normal University, Shanghai, China. His publications
include:

1. Yefei Zhao, Zongyuan Yang, Jinkui Xie. Formal

semantics of UML state diagram and automatic
verification Based on Kripke structure. 22nd IEEE
Canadian Conference on Electrical and Computer
Engineering (CCECE 2009). May, 2009.

2. Yefei Zhao, Zongyuan Yang, Jinkui Xie. Pi-calculus
based assembly mechanism of UML state diagram and
Validation of model refinement. International Conference
on Electronic Computer Technology (ICECT 2009).
February, 2009.

3. Yefei Zhao, Zongyuan Yang, Jinkui Xie, Qiang Liu.
Formal model and analysis of sliding window protocol
based on NuSMV. Journal of Computers. May, 2009.

4. Qiang Liu, Zongyuan Yang, Yefei Zhao. Design Patterns
in Situation Calculus. International Conference on
Software Technology and Engineering (ICSTE 2009).
July, 2009.

Yefei Zhao is IEEE student member, IACSIT senior

member, editor and reviewer of AICIT and IACSIT and PC
Member of several international conferences. His work was
supported by PhD Program Scholarship Fund of ECNU 2007
(No. 2009054).

Zongyuan Yang was born in August, 1953, Shanghai,

China. He is a professor and PH. D. supervisor in Computer
Science of East China Normal University. His research
interests include software design and method, software
component and formal method.

Jinkui Xie was born in October, 1975, Guilin, China. He

received B.S., M.S. and PH.D. in Shanghai Jiao Tong
University. Presently he works as a teacher in Computer
Science, East China Normal University. His research interests
include software security, trustable computation and type
theory.

Qiang Liu was born in September, 1983 in Hunan province,

China. Presently he is a PH. D. candidate in Computer Science,
East China Normal University. His research interests include
software engineering and formal method.

JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010 981

© 2010 ACADEMY PUBLISHER

