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Abstract—If software architecture is assigned with formal 
semantics, then automatic verification and validation can 
be performed during the process of model refinement. In 
this paper, we emphasized on the formal semantics of UML 
state diagrams oriented performance analysis. The exact 
definitions of the basic elements and composition 
mechanism of UML state diagrams are proposed, UML 
state diagrams is abstracted as a multi-tuple, CTMC 
models are abstracted as stochastic Kripke structure, 
mapping rules between the above two mathematics models 
are proposed, furthermore the corresponding formal 
semantics are generated. Finally, an asynchronous parallel 
composition queuing network is presented to illustrate how 
the theory is applied to formalize UML state diagrams. The 
key properties of system are manually deduced and 
validated. The results are analyzed and compared with the 
automatic executing results through model checker, which 
validated the practicability and validity of the theory. 
 
Index Terms—UML state diagrams, Markov process, 
CTMC, Probabilistic model checking, Software assurance 
 

I.  INTRODUCTION 

With the maturity of software component technology 
and the occurrence of CBSE (Component Based 
Software Engineering), CBSE becomes the mainstream 
software development technology. Presently 
shareholders always focus on software component in 
implementation phase and only care about functional 
property of system model. However, if some key 
performance properties of system are lately found not 
meet the requirement in the phase of development, it will 
cost more and reward less to modify the almost-finish 
system.  

In [1], software component in design phase is 
described design component. Static topology structure 
and dynamic behavior of design component can be 

presented with UML diagrams. If UML diagrams are 
assigned with formal semantics oriented performance 
analysis, then system model can be automatically 
reasoned and analyzed key performance properties in the 
phase of requirement and design, thus the quantitative 
measure of key properties can be attained. 

UML(Unified Modeling Language) is an object-
oriented modeling language, which includes several sub-
diagrams to describe different aspects of a system. 
Presently UML has become the de factor standard 
modeling language in industry ([2], [3]). UML state 
diagrams describes the responds to events and transitions 
between states of system model in its life cycle, thus is 
suitable to specify the structure, behavier and 
composition mechanism of software component. 
However, UML is a meta-model with only static 
semantics but without dynamic formal semantics, thus 
automatic analysis and verification can’t be performed. 

The research work to assign UML diagrams with 
formal semantics comprises of two categories: function 
verification and performance analysis. Firstly for 
function verification, UML diagrams is assigned with 
LTS (Label Transition System) semantics in [6], [7] and 
[11] or Kripke structure semantics in [8] and [12], thus 
the key system properties of system, such as atomic, 
liveliness, consistency and so on, can be automatically 
reasoned and verified by process algebras or model 
checking. Secondly for performance analysis, UML 
diagrams is assigned with formal semantics extended 
with time or probability, such as probabilistic Kripke 
structure semantics in [10] and [13] or stochastic LTS 
semantics in [9], thus the key quantitative performance 
measure can be automatically reasoned and solved by 
probabilistic model checking and stochastic process 
algebras. 

In [4], probabilistic model checking is proposed by 
Marta Kwiakowska, Gethin Norman and Dave Parker 
from Oxford University. Probabilistic model checking 
extends the classical model checking with time and 
probability:   system states of discrete-time (continuous-
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time) markov process is presented by probabilistic 
(stochastic) Kripke structure, while the key system 
properties to be verified is presented by PCTL 
(Probabilistic Computation Tree Logic) or CSL 
(Continuous Stochastic Logic), finally probabilistic 
model checker automatically reasons and analyze the 
property to determine whether it holds or get the 
quantitative performance measure through the method of 
exhausting system states. Presently probabilistic model 
checking has been widely used in probabilistic network 
protocol analysis, security-critical system validation, and 
so on. However, probabilistic model checking is 
program-level and difficult to understand, furthermore, 
the system designer is required to grasp some 
mathematics knowledge. To combine probabilistic model 
checking with graphical UML meta-model is a possible 
research direction in future. 

The significance and content of this paper lie in: 
(1) Probabilistic model checking is based on 

probabilistic Kripke structure and stochastic 
Kripke structure which is low in abstract level, 
while UML meta-model is the de factor standard 
in industry, thus easily accepted by most people 
because of its graphical and direct feature. If 
UML is assigned with formal semantics of 
probabilistic model checking, the complex 
mathematics knowledge in model checking 
theory can be hidden, thus graphical UML 
diagrams can replace mathematics model to 
perform automatic validation and analysis. 

(2) In this paper, we emphasize on the exact 
definitions of basic elements and composition 
mechanism of UML state diagrams, as well as 
the mapping rules between UML state diagrams 
and stochastic Kripke structure. UML state 
diagrams is abstracted as a multi-tuple, while 
CTMC models are abstracted as stochastic 
Kripke structure. The transformation algorithm 
and mapping rules between the above two 
mathematics models are presented, which makes 
the theory be more general in applications, 
finally CTMC formal semantics are generated. 

(3) Once UML state diagrams is assigned with 
CTMC formal semantics, the key system 
properties to be verified are presented with CSL, 
probabilistic model checker automatically 
reasons and verifies the CSL formula to get the 
quantitative performance measure. Not only 
quantitative measure but also functional property 
can be described by CSL formula, thus function 
validation and performance analysis can be 
performed simultaneously to improve software 
quality. 

The structure of this paper is as follows: In section 2, 
the abstracting representation of UML state diagrams 
CTMC models are presented, the mapping rules between 
the above two mathematics models are found up, the 
exact definitions of basic elements and composition 
mechanism of UML state diagrams are also presented. In 
section 3, an asynchronous parallel composition CTMC 

system comprised of two models is presented to illustrate 
how to apply the theory to formalize UML state 
diagrams, the key performance properties are manually 
deduced and solved, the manual results are analyzed and 
compared with automatically executing results from 
probabilistic model checker. 

II.  FORMAL SEMANTICS OF UML STATE DIAGRAMS 

A. Abstract representation of UML state diagrams 
UML state diagrams is abstracted as a multi-tuple <S, 

initS , E, G, A, FS , L, T>, S represents the set of system 
states, G represents the set of guard conditions, A 
represents the set of actions, FS  represents the set of 

final states, L is a labeled function: s→ AP2 , where s∈S 
∧ val(AP)=true, function L takes input as state s and 
returns the set of atomic propositions that hold true in 
state s. T is a transition function: s×e×g×a→ 's , where 
s∈S ∧ e∈E ∧ val(g)=true ∧ a∈A ∧ 's ∈S, which 
represents: the current system state is s, if event e occurs 
and the value of guard condition g is true, then action a is 
executed and system transforms to state 's . 

In this paper, we emphasize on the formal semantics 
of UML state diagrams oriented performance analysis, 
there are implicit mapping relationships between UML 
state diagrams and CTMC semantics. 

B.  Abstract representation of CTMC 
In CTMC, each transition of system states relates 

with a rate, the cumulative distribution function of 
system states is exponential with parameter rate, thus 
CTMC is suitable to model markov process with time. 
For more detailed information, please refer to [16]. 

CTMC is abstracted as stochastic Kripke structure, 
which represents as a multi-tuple <M, V, 'E , 'G , R, 

sV , 'T >, where M represents module, a CTMC system 
comprises of one or more modules assembled by 
synchronous or asynchronous parallel composition, V 
represents the set of variables, 'E  represents the set of 
events, 'G  represents the set of guard conditions, R 
represents the set of rates, sV  represents the set of 

variables that record system state, 'T  represents the 
transition of system variable value. 

PRISM input language is the abstract language-level 
representation of stochastic Kripke structure. For more 
detailed information, please refer to [5]. 

Rule 1. (∑L(s)⇒V) ∧  (E⇒ 'E ) ∧  (G⇒ 'G ) ∧  
(A⇒R) ∧  (T⇒ 'T ) ∧  (num(s)⇒ sv  

“(E ⇒ 'E ) ∧ (G ⇒ 'G ) ∧ (T ⇒ 'T )” represents 
event E, guard condition G and transition T in UML state 
diagrams are respectively mapped to event 'E , guard 
condition 'G  and transition 'T  in stochastic Kripke 
structure, which doesn’t change in semantics. 
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“(∑L(s)⇒V)” represents the union of set of labels in 
state s, which is mapped to the set of variables V in 
stochastic Kripke structure. “(A ⇒ R)” represents: in 
CTMC, the distribution of the executing time for action 
is exponential with parameter rate, thus the semantics of 
action (A) in UML state diagrams changes and is 
mapped to rate (R) in stochastic Kripke structure. 
“(num(s)⇒ sv )” represents that each state s in UML 

state diagrams is mapped to a unique number sv , where 

sv ∈ sV . 

C.  System initialization 
System initialization comprises of initialization of 

variable value and state value. 
Definition 1 Variable initialization. Variable 

initialization in UML state diagrams is represented as: 
for all s ∈ initS ⇒ (val(L(s))=true), where for all 

s∈ initS , the value of labels related with state s is set 
true, otherwise is set false. 

Rule 2. Q  (∑L(s) ⇒ V) (Rule 1) ，∴  (for all 
v ∈ ∑L(s) ⇒ init(v) := true) ∧  (for all 
v∉∑L(s)⇒ init(v) := false) 

Rule 3. Initialization of state value in UML state 
diagrams is mapped to such semantics in stochastic 
Kripke structure as follows: for all s∈ initS ⇒ ((init(s) 

:= sv  ∧  ( sv ∈ sV )), where for each state s belongs to 
the set of initial states, the initial value of s is set as true 
and sv  belongs to the set of system variables sV . 

 
Figure 1.  System initialization 

For more detailed information about PRISM, PCTL 
and CSL, please refer to [15]. 

In Fig. 1, “ 0s ” represents that system is in state 0s , 
“{a, b}” represents the set of labels which hold true in 
state 0s . Given ∑L(s) = {a, b, c, d} ∧  
∑num(s)={0,..,N}. 

From definition 1, rule 2 and rule 3, we can get the 
PRISM source code in Fig.1 as follows: 

s : [0..N] init 0; 
a : bool init true;    b : bool init true; 
c : bool init false;    d : bool init false; 

D. Sequential transition 
Definition 2 Sequential transition. In UML state 
diagrams, sequential transition is expressed as seqT : 
s × e × g × a → t, where (s ∈ S) ∧  
(e∈E)∧ (g∈G)∧ (a∈A)∧ (t∈S) 

Rule 4. Q (a⇒ r)∧ (e⇒ 'e )∧ (g⇒ 'g ) (Rule 1), 

∴  sequential transition is expressed as '
seqT  in 

stochastic Kripke structure:  
'e × 'g  →  r× (next(v) := ?(v∈L(t))× (next(s) := 

num(t)), which represents: given event 'e  occurs and 
guard condition 'g  holds true, if v∈L(t), then the value 
of variable v in next state is set as true with rate r, 
otherwise is set as false with the same rate, the number 
of system state is assigned with num(t), which represents 
the number of target state t. 

 
Figure 2.  Sequential transition 

In Fig. 2, is  and js  respectively represents the ith 
and jth system state, which is source or target state of 
sequential transition. “event” represents event, “guard” 
represents guard condition, the semantics of “rate” in 
UML state diagrams is action, however, it changes in 
stochastic Kripke structure and transforms to rate. 

From definition 2 and rule 4, we can get the PRISM 
source code in Fig.2 as follows: 
[event] (guard & s=i)  rate : (s’=j) & (b’=true) & 
(a’=false); 
   ( 'b =true) and ( 'a =false) represent that the variable 
changed in next state is assigned with new value. 

Definition 3 Internal transition. In UML state 
diagrams, internal transition is expressed as intT : 
s×e×g×a→ s, where source state and target state are 
the same state, others are the same as sequential 
transition. 

 
Figure 3.  Internal transition 

In Fig. 3, system state transforms to itself, so no 
variable value changes. From definition 3 and rule 4, we 
can get the PRISM source code in Fig.3 as follows: 
[event] (guard & s=i)  rate : (s’=i); 

E. Selection transition 
Definition 4 Selection transition. In UML state 

diagrams, selection transition is expressed as selT : 

s × e× ∑( ig × ia ) → it , which represents: for some 
source state s, if event e occurs, under different guard 
condition ig , specific action ia  is executed, then 

system transforms to state it . 

Rule 5. Q  (e⇒ 'e ) ∧ ( ig ⇒ ig ' ) ∧ ( ia ⇒ ir ) 

(Rule 1), ∴ sequential transition is expressed as '
selT  in 
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stochastic Kripke structure: ∑( 'e × ig '  →  ir × ( 'v  := 

?(v∈L( it ))× ( 's  := num( it ))) 

“( 'v =? (v∈L( it ))” represents that: all the variables 

whose value changed in target state it  are assigned with 

new value “? (v∈L( it )”. 

 
Figure 4.  Selection transition 

In Fig. 4, for a same source state, under different 
event, guard condition and rate, system will transform to 
respective target state. 

From definition 4 and rule 5, we can get the PRISM 
source code in Fig.4 as follows: 
[e1] (guard1 & s=i)  rate1 : (s’=t1) & (a’=false) & 
(b’=true); 
[e2] (guard2 & s=i)  rate2 : (s’=t1) & (a’=false) & 
(c’=true); 
…… 
[en] (guardn & s=i)  raten : (s’=t1) & (a’=false) & 
(d’=true); 

In CTMC models, there isn’t the constraint that the 
probability summation of all transitions from a source 
state for specific event should always be 1, so there isn’t 
also non-determination selection transition. 

F. Module declaration and module renaming 
Definition 5 Model declaration. In UML diagrams, 

model declaration is presented with a name of complex 
state prefixed with keyword “module”, the complex state 
comprises of a system initialization, several sequential 
transitions, internal transitions, selection transitions. 

Rule 6. “module CSName” ⇒  m ∧  m∈M, which 
means: a complex state CSName prefixed with keyword 
“module” in UML state diagrams is mapped to an 
element m of set M in stochastic Kripke structure. 

 
Figure 5.  Module declaration 

In Fig. 5, “m” is name of a complex state name, 
which comprises of a system initialization and a 
selection transition. 

From definition 5 and rule 6, we can get the PRISM 
source code in Fig.5 as follows: 
module m 
  s : [0..N] init 0; 
endmodule 

Rule 7. In UML state diagrams, given a defined 
module, if another module is all the same as the defined 
module except for variable name, then a new module can 
be defined by module renaming, which is mapped to 
such stochastic Kripke structure semantics as: im  = jm  

[ Π ( kv = '
kv ) ∧  { im , jm } ⊆ M ∧  

(∑ kv ∪∑ '
kv )⊆V ] 

 
Figure 6.  Module renaming 

From rule 7, we can get the PRISM source code of 
model renaming in Fig.6 as follows: 
module     

n = m [s=t, a=e, b=f, c=g, d=h] 
endmodule 

G. Synchronous parallel composition and asynchronous 
parallel composition 

Definition 6 Synchronous parallel composition. In 
UML state diagrams, a complex state prefixed with 
keyword “system” comprises of several module 
declarations, different modules synchronously execute 
on the same actions. 

Rule 8. Synchronous parallel composition is mapped 
to such semantics in stochastic Kripke structure as: 

1m || 2m ||…|| nm  ∧  { 1m , 2m , … nm }⊆M 

 
Figure 7.  Synchronous parallel and Asynchronous parallel 

From definition 6 and rule 8, we can get the PRISM 
source code in Fig.7 as follows: 
system 
  1m || 2m ||…|| nm  
endsystem 

Definition 7 Asynchronous parallel composition. 
In UML state diagrams, a complex state prefixed with 
keyword “system” comprises of several module 
declarations, each module has its own initial state, 
different modules asynchronously execute on all actions. 
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Rule 9. Asynchronous parallel composition is 
mapped to such semantics in stochastic Kripke structure 
as: 1m ||| 2m |||…||| nm  ∧  { 1m , 2m , … nm }⊆M 

From definition 7 and rule 9, we can get the PRISM 
source code in Fig.7 as follows: 
system 
  1m || 2m ||…|| nm  
Endsystem 

Besides above two composition mechanisms, there is 
still constraint parallel composition, for more detailed 
information, please refer to [15]. 

III. AUTOMATIC ANALYSIS AND VALIDITY VERIFICATION 

A. Formal CTMC semantics of UML state diagrams 
In this section, a queuing network queue size is 

presented, which illustrates how to apply above theory to 
generate formal CTMC semantics of UML state 
diagrams. 

The UML state diagrams in Fig. 8 represents a 
queuing network comprised of two asynchronous 
composition parallel modules from the aspect of static 
topology structure and dynamic behavior. The first 
module “jobs” is a client-server queuing network, 
“client” sends request with rate 3, “server” provides 
service with rate 5 and size of the queuing network is 3. 
If no request is unprocessed, then system is labeled with 
“empty”, otherwise if more than 3 requests is 
unprocessed, then system is labeled with “full”. The 
second module “queue” is the renaming module of 
“jobs” (definition 6 and rule 8). The whole system is 
asynchronous parallel composition of module “jobs” and 
“queue”.  

 
Figure 8.  An asynchronous parallel composition CTMC system 

From the basic elements and composition mechanism 
of UML state diagrams, as well as exact definition and 
mapping rules between UML state diagrams and 
stochastic Kripke structure, we can get the PRISM 
source code in Fig. 8 as follows: 
ctmc 
const int t; 
module jobs 
  s : [0..3] init 0; 
  empty : bool init true; 
  full : bool init false; 

 
  [] s=0 -> 3 : (s'=1) & (empty'=false); 
  [] s=1 -> 3 : (s'=2) + 5 : (s'=0) & (empty'=true); 
  [] s=2 -> 3 : (s'=3) & (full'=true) + 5 : (s'=1); 
  [] s=3 -> 5 : (s'=2) & (full'=false); 
endmodule 
module  
  queue = jobs[ s=p, empty=m, full=n ] 
endmodule 
system jobs ||| queue endsystem 

The above PRISM source code can be attained by the 
definitions and mapping rules in section 2. In the second 
line, an int type variable t is manually added to express 
time interval, which will be used in simulation 
experiment for key system property in section 3.2. 

B.  Automatic analysis and verification of key system 
properties 

PRISM is a probabilistic model checking tool sets 
proposed by Marta Kwiakowska etc. from Oxford 
University. The concepts of time and probability are 
introduced into classical model checking framework so 
that DTMC, MDP and CTMC models can be processed 
in probabilistic model checking. In DTMC and MDP 
models, the key system properties to be verified is 
described with PCTL, in CTMC models, the key system 
properties to be analyzed is described with CSL. In 
PRISM, the method of exhausting system states is used 
to realize automatic verification and analysis and get 
quantitative performance measure. 

For more detailed information about the syntax and 
semantics of CSL, please refer to [16]. The key system 
properties to be analyzed are described with CSL 
formula as follows: 

Definition 8 System steady-state solution. It is 
defined as the probability of being in a state in the long-
run. 
CSL formula:  S=? [ full ]       S<0.1 [ full ] 

S=? [ s=0 ]       S=? [ s=1 ] 
S=?[s=2]        S=? [ s=3 ] 

“S=? [ full ]” represents the steady-state probability 
in case system fulfils the label “full”. “S=? [ s=0 ]” 
represents the steady-state probability in case system 
fulfils state s=0, likewise, for s=1, s=2 and s=3. Only if 
s=3, label “full” holds true, so “S=? [ full ]” ≡  “S=? [ 
s=3 ]”. 

Definition 9 Reachable transient probability. It is 
defined as the transient probability in case that system 
starts a certain state, after some time intervals, reaches 
another state or fulfils some guard condition. 

CSL formula:  
P=? [ true U[0,3] s=1 {s=0} ] 
P=? [ true U[0,7.5] full {s=0} ]     
P=? [ true U[0,7.5] full {s=1} ] 
P=? [ true U[0,7.5] full {s=2} ]     
P=? [ true U[0,7.5] full {s=3} ] 
“P=? [ true U[0,3] s=1 {s=0} ]” represents the 

transient probability in case that system starts from state 
s=0, after [0, 3] time intervals, reaches the state s=1. 
“P=? [ true U[0,7.5] full {s=0} ]” represents the transient 
probability in case that system starts from state s=0, after 
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[0, 7.5] time intervals, reaches the state that fulfils “full” 
is true. Likewise, for s=1, s=2 and s=3. 

Definition 10 Transient simulation probability. 
The value range and variation steps of a variable can be 
specified, then PRISM can automatically draw the graph 
about transient probability simulation solution. 
CSL fomula:    P=? [ true U[0,t] s=3 ] 

“P=? [ true U[0,t] s=3 ]” represent the probability in 
case that system reaches state s=3 in 0~t time intervals, 
where t is an integer variable, the value range and steps 
of t can be specified by user, then PRISM can 
automatically draw the simulation probability of the CSL 
formula in graph. 

Software and hardware environment of the 
experiment are: Windows XP, Pentium 2.4G, 1G 
memory, probabilistic model checker PRISM 3.2. The 
CTMC formal semantics of the UML state diagrams in 
Fig. 8 is represented as the PRISM source code described 
in section 3.1, the key system properties to be analyzed is 
described with above CSL formula. The experiment 
result is shown in Fig. 9 as follows: 

 
Figure 9.  Automatic experiment result 

   Fig. 9 shows the automatic experiment result in 
PRISM, we extract the result shown in Tab. 1. 

TABLE 1. AUTOMATIC EXPERIMENT RESULT OF KEY PROPERTIES 

Property CSL formula Result 
Steady-
state 
solution 

S=? [ full ] 0.09926 
S<0.1 [ full ] true 
S=? [ s=0 ] 0.4595 
S=? [ s=1 ] 0.2757 
S=? [ s=2 ] 0.1654 
S=? [ s=3 ] 0.09926 

Reachable 
transient 
probability 

P=? [ true U[0,3] 
s=1 {s=0} ] 

0.9998 

P=? [ true U[0,7.5] 
full {s=0} ] 

0.9255 

P=? [ true U[0,7.5] 
full {s=1} ] 

0.9344 

P=? [ true U[0,7.5] 
full {s=2} ] 

0.9571 

P=? [ true U[0,7.5] 
full {s=3} ] 

1.0 

C.  Manually computation and analysis of key system 
properties 
(1). Steady-state solution 

In [16], the algorithm and steps to solve steady-state 
probability of CTMC models are proposed. First, we 
generate the rate transition matrix Q. Second, global 
balance equation and normalized condition equation are 
listed. Third, steady-state probability is solved. We 
manually solve the steady-state probability of the CTMC 
models in Fig. 8 as follows: 

Let π  is a row vector, which represents the steady-
state solution, π = ( 1p , 2p , 3p , 4p ). From the CTMC 
model in Fig. 8, we can get the rate transition matrix 

Q=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

5500
3850
0385
0033

 

From global balance equation π ×Q = 0, we have: 

( 1p , 2p , 3p , 4p )×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

5500
3850
0385
0033

 = 0 ⇒  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=−
=+−
=+−

=+−

05.25.1
05.245.1
05.245.1

05.25.1

43

432

321

21

pp
ppp
ppp

pp

,  

The solution is:  

41 27
125 pp = , 42 9

25 pp = , 43 3
5 pp =  -- (1) 

From normalized condition equation ∑
=

n

i
i

0

π = 1, ∴ 

1p + 2p + 3p + 4p = 1, 1p , 2p  and 3p  are substituted 
for the above formulas, we can get the solution:  

4595.01 =p , 2757.02 =p , 1654.03 =p , 

0992.04 =p  
The above manual result is consistent with the 

automatic experiment result from PRISM, which proved 
that the theory is practicability and validity for steady-
state solution. 
(2). Reachable transient probability 

In [16], Each CTMC model has an embedded DTMC 
model. 

),( ')( ssP Cemb = 
⎪
⎩

⎪
⎨

⎧

==
>

otherwise
sssEif

sEifsEssR

,0
)(&)0)((,1
)0)((),(/),(

'

'

， 
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From [16], the probability that CTMC model 
transforms from is  to js  in certain time interval [ 1t , 2t ] 
can be solved by such formula as follows: 

Pr(C( is , [ 1t , 2t ], js )) = Pr(C( is )) ×  

),()(
ji

Cemb ssP × )( 21 )()( tsEtsE ji ee ×−×− −  
For CSL formula “P=? [ true U[0,3] s=1 {s=0} ]”, 

substitutes terms for corresponding data in the above 
formula, we get the solution: 

Pr(C(s=0, [0, 3], s=1)) = Pr(C(s=0)) 
× )1,0()( == ssP Cemb × )( 3)0(0)0( ×=−×=− − sEsE ee   

= 1×1× )( 3303 ×−×− − ee  = 1 - 9−e  = 0.9998 
The above manual solution is consistent with the 

automatic experiment result (0.9998) from PRISM, 
which proved that the theory is practicability and validity 
for reachable transient probability. 
(3). Transient simulation probability 

For CSL formula “P=? [ true U[0,t] s=3 ]”, the value 
range of variable t is specified as [0, 10] and the steps is 
set as 1, PRISM automatically drew the graph about 
simulation solution in Fig. 10 as follows: 

 
Figure 10.  Transient simulation solution of CTMC model 

In Fig. 10, probability p=0 in case time t=0, 
probability p≈ 0.95 in case time t=10. With the increase 
of time t, probability p becomes larger and larger. The 
probability that CTMC model transform from state s=0 
to state s=3 becomes larger and larger with time increase, 
which is consistent with experience expectation, thus the 
practicability and validity of the theory is validated. 

IV.  CONCLUSION AND FUTURE WORK 

In this paper, we emphasized on the formal semantics 
of UML state diagrams oriented performance analysis. 
UML state diagrams is abstracted as a multi-tuple, 
CTMC model is abstracted as stochastic Kripke 
structure, the mapping rules between the above two 
mathematics models are found up, we also proposed the 
exact definitions of basic elements and composition 
mechanism of UML state diagrams. Finally an 
asynchronous parallel composition CTMC system 
comprised of two modules is presented to illustrate how 
to apply the above in performance analysis of UML state 
diagrams. The manual solution is consistent with the 
automatic experiment result from PRISM, which proved 
the practicability and validity of the theory. 

In previous research work, we proposed that UML 
diagrams can be assigned with pi-calculus semantics in 
[11], Kripke structure semantics in [12] and probabilistic 
Kripke structure semantics in [13], thus formal function 
validation and performance analysis can be automatically 
performed during the process of model refinement. 

Possible future work: according to the theory, we will 
develop a set of automatic tool sets which can formalize 
UML state diagrams with stochastic Kripke structure 
semantics. A possible practical route: Poseidon for UML 

 XMI text format  Java DOM (Docuement Object 
Model) parser  PRISM input code. 

Presently probabilistic model checking can only 
process Markov process based system model, given 
current system state, probabilistic model checker can 
automatically reason and analyze system state in the 
future. If probabilistic model checking can be extended 
with additional operator about time and probability to 
apply Bayes formula, given current system state, then 
probabilistic model checker can automatically reason 
system state in the past, which will extend the reasoning 
range and ability of probabilistic model checking. 
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