
Testing Conformance of BPEL Business Process
Based on Model Checking
 Rongsheng Dong, Zhao Wei, Xiangyu Luo, Fang Liu

School of Computer and Control, Guilin University of Electronic Technology, Guilin, China
Email:ccrsdong@guet.edu.cn

Abstract—Formalized analysis method is a technology that
insures quality of software reliability. It can detect
mistakes and flaws effectively in software design. Based on
the research of model checking techniques for composition
of web services, we establish an automatic test framework
for web services composition of BPEL. Static test method is
used and test cases are generated automatically in this
framework. According to the input, outputs of cases and
the requirement properties, we can test the conformance
for business flow of BPEL. We analyze “Airline Tickets
Reservation System” which is described by BPEL with our
test framework and test the conformance of the system. In
addition, we compare our method to model checking
method which is used to verify web services composition
from three areas including states stored, searching depth
and consuming times. We can conclude that our method
have a better efficiency when checking the web services
which owns more states.

Index Terms—BPEL; Web services composition; model
checking; testing

I. INTRODUCTION
BPEL [1] is a business process description language

which can realize a complex web services composition.
It defines syntax rules for the control flow and data flow
of web services composition. The business flow of web
services composition is designed mainly rely on the
experience of designers. Since the absence of modeling
and validation process, writing correct process
descriptions in BPEL is not an easy task. It is very easy
to cause some errors. Such as deadlock, unreachability
of business functions. It is necessary to verify
correctness of web services composition before
implement. Testing web services composition is an
effective method which can find some errors in business
flow and guarantee the reasonable implement of web
services composition. In this area, the main research
results include the following two aspects:

A. Testing a individual web service
Suet Chun [2] and Jeff Offutt [3] describe the

application of mutation analysis and data perturbation in
the testing of web services. Their targets are the
individual web services and not their composition.

B. Testing web services composition
 Antonia Bertolino [4] propose a framework for

dynamic testing of web services interoperability. They

n” before the
DI registry. In

co

r researcher.

ai Huang [5] that web services
co

 established for BPEL of web service
co

introduce a testing stage called “auditio
services are published on a UD

mbination with verification techniques, Huang et al [5,
6] describe a method to test composite web services.
They explicitly specify the web services behavior using
OWL-S and define the desired properties by hand. Then,
they use model checking to ascertain whether the
properties hold. An efficient algorithm is presented by
Zeng Yun-feng [7] to generate BPEL unit test case.
Firstly, BPEL process source code is translated into
BPEL flow diagram (FGBPEL) with the transformation
rules, and then CTP algorithmis presented to generate
test cases.

How to test web services composition with static
method and less manual operation and How to generate
test cases automatically? These are very concerned
problems fo

For these problems, according to the feature of
automatically generating counter-examples in model
checking from the research of Angelo Gargantini [8] and
based on the research of H

mposition of OWL-S is tested with model checking
technique, an automatic testing framework is established
for BPEL composition of web service based on the
formalized analysis model proposed by this research
study. This framework can test conformance for BPEL
business flow depending on the test case of input, output
and requirement properties. Ticket reservation system is
taken as an example in the use of this framework to test
the system's conformance. In addition, we compare our
method to model checking method which is used to
verify Web services composition from three areas which
include states stored, searching depth and consuming
times. We can conclude that our methods have a better
efficiency when checking the Web services which owns
more states.

Our research results include test method of based on
model checking is used to test conformance of web
services composition and an automatic testing
framework is

mposition. This framework include formalized
analysis model for BPEL and provide a method
transferring analysis model to Promela code. This paper
is organized as follow: Section 2 introduces BPEL;
Section 3 gives an automatic testing framework for
BPEL of web service composition. Section 4 takes
Ticket reservation system for example, the system's
conformance is tested in the use of this framework and

1030 JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.9.1030-1037

Figure 1. An automated test framework for BPEL of web services
composition

experiment results are provided. Section 5 presents a
comparing for the method of test and model checking for
web services composition; Section 6 presents a
conclusion and discussion of future work.

II. BPEL
BPEL is a business process language based on XML.

It extends WSDL and expresses the action of web
services composition. It com rol flow and
data flow. This also rm two characteristics:
be

sing model checking tools to test Web services
com on is a new method. The tool SPIN[9] of
a i
software testin web services
co

ystem realize the given system faithfully.
A

. A formalized analysis model for BPEL of web
s

ne
th

A
ervices composition

Based on finite state automata theory [10], we defi
e formalized analysis model of the business flow

described by BPEL. The protocol P denotes the business
flow described in BPEL. An agent A denotes a partner
who has two attributes: partnerLink and partnerRole.
The Definitions of the formalization are as follows:

Definition 1 (Protocol). A protocol is the message
ex is posed of cont

 fo s its
change sequences between two or more agents. To

define formally: A protocol , , ,P A M C= Ω , where
 A is the set of agents,

havior specification and message type. BPEL
describes composition of web services with WSDL. A
BPEL links with many partners described by WSDL.
SOAP defines the message type. In BPEL, there are
many control types, such as sequence, while, switch, etc.
and many atomic work such as invoke, receive, reply
(sending and receiving messages), and assign (updating
the value of variable).

III. AN AUTOMATIC TEST FRAMEWORK FOR BPEL OF
WEB SERVICES COMPOSITION

s,

hain,
 M is the set of message
 C is the communication c

 is the set of message exchange sequences. Ω

, each element is denoted by
, 1

k

s k
i j

mr ra m −

⎯⎯⎯⎯→ , it In Ω

U
positi

nalyz ng and verifying system is used in the field of
g to test the conformance of

mposition.
Conformance is usually defined as testing to see if an

implementation faithfully meets the requirements of a
standard or specification. So it can check whether the
implemented s

n automated test framework is shown in Figure 1 for
BPEL web services composition. Now, five steps of the
framework are introduced as follow.

means hat when the agent ir sends th to

jr , km is generated after t e execution of action

e message kmt

h sa

rior exchange of 1km − .
Definition 2 (Agent). A

and the p
gent A is denoted by

sta
a finite

te automata. It consists of six elements. To define
formally: 0, , , , ,ra A a S L Fδ∀ ∈ = Θ , where

 S i inite state s a finite set of states. A f automata
must be in one determinate state anytime.

 L is a transitional label.
elation: S L Sδ ⊆ × δ is a transition r × ,

sition , ,(, ,) (l)tran s l s sτ δ= ∈ ⎯⎯→ t
the proces
transition condition is true, changing from state

s means tha
e transition when the s executes th

s S⊂ to state ,s S⊂ . If π denotes current
state in FSM ,such 0Sas π = denotes initial state;
c denotes condition , & &s c trueif π = == , a
transition τ is enabled. The set of enabled
transitions in a state s is denoted by ()enabled s .
Note that when it exits empty input
will not execute any transition, and not generate
any output.

0r

event, FSM

Θ is the set of initial states for agent A . FSM
can receive input from this state.

 F is the set of final states. FSM can not receive

m

any input, when it reaches the final state.
There are at least two agents or more to exchange
essage in the way of synchronous or asynchronous in

the chain. If it is synchronous exchange, the chain
C = ∅ ; If it is asynchronous exchange , the change of

 m→ is shown as follow :
When agent ia A

chain C
∀ ∈ sends the first message in the

pr

/ ())i i i i i i
m

otocol, m→ denotes as follow:

,() (: ls s sπ τ δ∃ → ∈
1

enabled s

C

τ= ∧ ∈

⇒∅→

JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010 1031

© 2010 ACADEMY PUBLISHER

Where , denotes chain C
receive a message m.

1 {? | }iC m m M= ∈ ?m

When agent i∀ ∈ , and receive a message,
 denotes as follow:

, ,
i ia A a a∧ ≠

))

m→

,

1

() (: / (l
i i i i i i

k m k

s s s enabled s

C C

π τ δ τ
−

= ∧ ∃ → ∈ ∈

⇒ →

Only when agent receive a message from , two
agent complete a message exchange sequence .

,
ia ia

When the protocol enter the final state, denotes
as follow:

m→

,

1

() (: / (l
i i i i i i

m

))s s s enabled s

C

π τ δ τ= ∧ ∃ → ∈ ∉

⇒ → ∅

A business flow of BPEL is a sequence of message
“M”, which at least two agents “A” exchange message in
the chain “C”. We define formalized analysis model for
business flow of BPEL with P and A, It is shown as
follow:

In , , ,P A M C= Ω , agent A is a partner in BPEL ,it
is signed by name, which is extracted from variable
<partners> . Take Airline Tickets Reservation system[11]
for example, “< partners >< partner name = "Traveler" ...
/ >< partner name = "TravelAgent"... / >< partner name
= "Airline" ... / >< / partners >”,
So . {Traveler,TravelAgent,Airline}A =

Message M is also extracted from “<variables>”. For
example, message “reserveickets” is extracted from

“< variables >
< variable name = "ordertrip" ... / >
< variable name = "checkseats" ... / >
< variable name = "reserveickets" ... / > [...]
</variables >” .In WSDL document, the data structure

of message “reserveickets” is shown as follow:
 “<message name=" reserveicketsM">
<part name=" ordertripID " type="xsd:int"/>
<part name=" airlineID " type="xsd:int"/>
<part name=" airline_flag " type="xsd:bool"/>
<part name=" money_ID " type="xsd:int"/>
</message>”,

So , In the Airline Tickets

Reservation system , denotes message “ordertrip” ,

 denotes message “checkseats”, denotes message
“reserveickets”, et al.

0 1 2{ , ,}M m m m=

0m

1m 2m

C denotes communication chain which is extracted
from “portType”; Ω is the set of message exchange

sequences; denotes transition of business flow of
BPEL.

m→

0, , , , ,ra A a S L Fδ∀ ∈ = Θ , S is a set of states in
business flow of BPEL for an agent; is a set of
initial states; F is a set of final states; L is a transitional
label in business flow of BPEL for an agent. State
transition function

0rΘ

δ denotes activity in business flow of
BPEL for an agent. For example, <receive
operation=”approve” variable=”accept”/>, it means if
accept=”approve_in", state will change from t1 to t2.

There are two types of activities: primitive activity
and structured activity in BPEL. Now ,we represent
these activities with FSM model .In this model, a
transition connects two states and is labeled following
the syntax “S-R-OP” , where S denotes the address of
sender, R denotes port on which message to be received,
OP denotes operation to be performed .

1) Primitive activities
Primitive activities include message exchange

activities “<invoke>, <receive>, <reply>”, data
manipulation activities “<assign>”, and others activities
“<terminate>,<wait>,<empty> , <throw>”.

Message exchange activities correspond to the WSDL
operations. There are four types of WSDL operations:

A: One-way operation: only receives a message
without sending any response.

B: Request-response operation: receive a message and
send a response back to the sender.

C: Solicit-response operation: send a message to a
service and wait for a response.

D: Notification operation: send a message to another
service.

Figure 2 shows the FSM models of these four types of
WSDL operations:

<Invoke> Activity:
Invoking an operation can be a synchronous

request/response or an asynchronous one-way operation.
A synchronous invocation requires both an input
variable and an output variable. An asynchronous
invocation requires only the input variable of the
operation.

<Receive> Activity:
A receive activity specifies the partner link it expects

to receive from, and the port type and operation that it
expects the partner to invoke. In addition, it may specify
a variable used to receive the message data being
expected.

<Reply> Activity:
A reply activity is used to send a response to request

previously accepted through a receive activity. Such
responses are only meaningful for synchronous
interactions. An asynchronous response is always sent
by invoking the corresponding one-way operation on the
partner link. A reply activity may specify a variable that
contains the message data to be sent in reply.

1032 JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

Figure 2. FSM models of four types of WSDL operations

<Assign> Activity:
The assign construct can be used to update the values

of containers with new data.
<Terminate> Activity:
The terminate construct allows you to immediately

terminate a business process.
<Empty> Activity:
The empty construct allows you to insert a "no-op"

instruction into a business process.
<Throw> Activity:
The throw construct generates a fault from inside the

business process.
Figure 3 shows the FSM models of these primitive

activities: Figure 4. FSM models of structured activities

2) Structured activities
<Sequence> Activity:
Sequential execution of activities. The activities are

performed in the order in which they are listed within
the <sequence> element.

<Switch> Activity:
Test and branch conditions. The activity consists of an

ordered list of one or more conditional branches.
<While> Activity:
Process iterations. This activity provides a construct

to perform iterative execution of activities until a
Boolean condition is evaluated to true.

<Pick> Activity:
Event driven selection of transitions. This activity

awaits the occurrence of one of a set of events and then
performs the activity associated with the event that
occurred.

<Flow> Activity:
Concurrent message transitions. The flow completes

when each activity contained within the flow scope has
completed, and each activity is executed concurrently.

<Links> Activity:
Transitional conditions between constructs. This

activity is used to determine when activity transitions
can be made given the requirement that other activities
have successfully completed.

<Scope> Activity: Scope sub-process of activities for
compensation.

<Compensate> Activity: Force compensation.
<FaultHandlers> Activity: Define either global or

scope fault handling.
Figure 3. FSM models of primitive activities

Figure 4 shows the FSM models of these structured

activities.

JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010 1033

© 2010 ACADEMY PUBLISHER

B. Translating the formalized analysis model into
Promela code

1 2

1 1

, 1, , , ,
()&&()

{ ! , , ; ;
()&&()

{ ?var,;
::var

i i i i

i

i i i i

i

i

i

state i P
state condition true

atomic chanmsgagent agenti xmsg xmsg j data state
state condition true

atomic chanagent parm
if xmsg j

+ +

+ + }

=Θ ≥ ∀Θ Θ Θ ∈
==Θ == ⇒

= =
==Θ == ⇒

== → 1 1

1 2 2

; ;
::var ; ;

;}

i i

i i i

data state
xmsg j data state

fi

+ +

+ + +

= =Θ
== → = =Θ

Now, we translate analysis model
“

Θ
, , ,P A M C= Ω 0, , , , ,ra A a S L Fδ∀ ∈ = Θ, ” to a

Promela programs. It is shown as follow:
(1)Each agent “A” is defined as a global constant,
such as: #define 100 . iagent
(2)The type of corresponding messages “M” is

defined as mtype in Promela (the definition of control
flow in BPEL). mtype={xmsg1,xmsg2,…}. The content
of corresponding messages (the definition of data flow
in BPEL) can be defined with the following structure:

i P∀Θ ∈ Remark: , iΘ , are defined as constants.
Suppose j, var, parm is a variable, “state” is a variable

which denotes different states, and “condition” is a
variable which determines if the condition is met or not.

idata

{ 1;
 int 2;
 int 3;......}

itypedef msg
bool data

data
data

 (9) 0rΘ is the initial state for agent of Promela
programs ; F is the final state for agent of Promela
programs .

(3) “C” is transformed into Promela message
hannel as follow: All agents exchange message through
the communication channels. Communication channels
can be defined as two models. If the delay of
communication is not considered and the message
delivery is instantaneous, the channel can be defined as
chan channel=[0] of {mtype, bool, int, …} (mtype is the
messages type and “bool, int…” are the data types of the
message content). Two interactive agents share one
channel, one sending messages and the other receiving
messages through the corresponding communication
channel. If the message delivery is not instantaneous, the
channel can be defined as chan channel=[N] of {mtype,
bool, int, …} (

C. Identify testing specification and requirements
In order to produce test cases for BPEL, test

requirements must be identified .As it has been said, this
is commonly done by hand in the field of software
testing. However, this paper provides a method to
automated produce test cases. These properties defined
by LTL and the counter-examples generated by model
checking are used in this method. It is described as
follow:

Figure 5 shows a finite state transition diagram .We
assume a finite state system is described by this diagram
and give the definition of this system for a deterministic
finite state machine . N 1≥) and an additional agent—message

broker agent “msgagent”. In order to manage all
messages as a whole, every message from agent will be
firstly sent to msgagent, and then msgagent transmits
every message to the corresponding agent according to
the receiving object of the message in this model. The
format of message sending is:

0(, , , , ,)M Q q Fδ= ΣTo define formally: ,where

0 1 2 3 4 5 6 7{ , , , , , , , }Q q q q q q q q q= is a finite set of states , i
={c1,c2,……cm} is a set of input , : Q Qδ = ×Σ →Σ is

a state transition function , is the initial state, 0q Q∈

7F Q F q∈ ∧ = is the final state ,The variables , ,! xmsg msgagent i iichannel .
Notice that in this paper we adopt two model of channel
definition because many of the web services
compositions involve synchronous and asynchronous
message sending etc.

0 1 2 3 4 5 6 7, , , , , , ,x x x x x x x x denote the state of
respectively in the system. The initial value is defined to
“0” for all variables. If the state can be reach, then the
value of the variable corresponding to state is changed to
1.

0 1 7, ,......q q q

(4) is a sequence of Promela programs . Ω
Let’s consider how to test whether a state satisfy

reachability. For example, testing the state is
expressed as

0, , , , ,ra A a S L Fδ∀ ∈ = Θ(5) , Each agent is a
FSM . It is expressed in a proctype type in Promela. An
instance of a proctype is a process where Promela
processes run concurrently and are executed non-
deterministically.

1q

1[]!x in LTL. The meaning is: There is not
a state which could satisfy reachability. According to
the figure of the finite state system, it is possible to reach
the state. Hence, we can obtain a false result with this
LTL formula.

1q

(6)S is a set of finite states for a agent .
1q

(7)Transitional label L denotes input and output
behavior .such as, input behavior ,it means a agent
receive messages from chan; output behavior ,it
means a agent send messages to chan .

?C X After executing the model checker, the model
checking tool SPIN will search all states exhaustively in
order to find a transition which is not satisfied the
attributes. So, it can generate counter-examples and the
counter-examples sequence may be {q0, q1}. As a result
of the depth-first search in model checking, it will return
and not search further if finding an error and generating

!C X

(8) The regulations for the transition of state
behavior of each agent δ are provided as follows:

1034 JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

Figure 5. A finite state transition diagrams

a counter-example. So the counter-examples sequence
may not include the final state.
a counter-example. So the counter-examples sequence
may not include the final state.

If we need that the final state q is included in
counter-examples sequence, we will change the LTL
formula to [

If we need that the final state q is included in
counter-examples sequence, we will change the LTL
formula to [

7

1 7](! || !)

7

1 7](! || !)x x .The meanings is: There is not a
condition and states which could satisfy
reachability synchronously. In the same way, this
attribute is not satisfied after execute model checker.
The counter-example sequence may be .

1q 7q

1 7q q→
Now, we observe the change of variables x1 and x7.

When the system is in the initial state, x1 = 0; x7 = 0,
after executing model checker and generating counter-
examples, x1 = 1; x7 = 1. In others words, the input of
test cases is x1 = 0; x7 = 0; the output of test cases is x1
= 1; x7 = 1. According to the figure 5, the system may
execute the state q1 and q7.So x1 = 1; x7 = 1. When
executing model checker and generating counter-
examples, x1 = 1; x7 = 1.It is the output of test cases.
Comparing the requirements and the output of test cases,
So we can decide whether the system can satisfy the
conformance.

The above methods will be used in BPEL of web
services composition. We conclude that the LTL formula
of input and output of test cases is defined
to [](! || ! _)X BPEL End . (Where X denotes a state in
BPEL, BPEL_End denotes the final state.) The
requirement functions are obtained from user requiring
book.

D. The execution of model checker
This step is an automation of the verification process.

After executing the model checker, the model checking
tool SPIN will search all states exhaustively in order to
find a transition which is not satisfied the LTL formula.
If the result is true, it means the transition is not
executed. Or we can get test cases from the business
flow of BPEL. In the same way, we must run SPIN
many times with this method, and find all correlative
counter-examples which include all transitions. In order
to find all counter-examples, we must select option “Set
Advanced Options-Save All Error trails” in SPIN.

E. Analysis of test cases
We analyze test cases from 3.4. According to system

requirements defined in 3.3, we observe internal
variables, record the initial input values and the output

value generated from counter-examples. Then, we
compare the system requirements and input value, output
value. This is conformance test.

IV. CASE STUDIES
This paper take airline tickets reservation for example,

we test the conformance of the system with the test
framework. Due to the limit of space, We only present
how to generate test cases, how to analyze it, and
experiment results.

Test specification: For the web services of the
Traveler, BOOL variable flag_ start is defined (its initial
value is false). It denotes the executing of the state t1. In
the same way, if Traveler service sends message about
reserving seat, the variable value of flag_ start will
change from false to true. Flag_end denotes system
termination. The meanings of the Test specification is: if
Traveler sends traveling message, the system will enter
the termination state in the end. It is express by LTL
formula as follow:

 [](!(flag_start = = 1)|| !(flag_end = = 1))
Requirements: Five requiring functions are defined

for airline tickets reservation system as follow:
Property P1: If a traveler sends travel information,

ticket reservation system can reserve seat in the effective
time, the traveler can get a ticket.

Property P2: If a traveler sends travel information,
ticket reservation system can not reserve seat in the
effective time, the traveler will receive a failed
notification.

Property P3: If a traveler sends travel information,
ticket reservation system execute the operation of
canceling reserve seat, the traveler will receive a cancel
notification.

Property P4: If a traveler sends travel information,
there is not a available seat in ticket reservation system
when the traveler send not conformed message, the
traveler will receive a failed notification.

Property P5: If a traveler sends travel information,
there is not a confirmed message in ticket reservation
system from the traveler, the traveler will receive a
timeout notification.

P1Test: This is the first test. We execute the model
checker. The result is false. It means the system
executed the t1 state and the final state. Because of false
result, we can get a counter-example. It is a test case. We
analyze the test case and transfer them to specifications
including two inputs (1.The traveler decide to have a
travel; 2. The airline services generate a result that there
is a available seat.) and one output (Traveler receive a
ticket successfully). We compare input and output from
this test to requiring property P1.The result shows
property P1 is satisfied. At the same way, we run SPIN
many times with the same method, and find all counter-
examples including all transitions.

Five test results show that five requiring properties
are satisfied. So, this system is satisfied to conformance.

JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010 1035

© 2010 ACADEMY PUBLISHER

V. COMPARE MODEL CHECKING TO TEST METHOD FOR
WEB SERVICES COMPOSITION

Airline tickets reservation system is verified with
model checking by the method of literature [12] in this
section. Five requiring function properties are checked.
They are expressed by LTL as follow:

 []((p && r)-> <> q)
Property P1 is expressed as follow:

G((ordertrip==1&&book_seat_ok==1)
->F(receive_tickets==1))

It means that if a traveler sends travel information,
and ticket reservation system can reserve seat in the
effective time, the traveler will get a ticket. Executing
model checker, it will not detect an error. It means this
property is satisfied.

The results of test and model checking are in TABLE
I (where A denotes test; B denotes model checking):

According to the data in TABLE I, we can draw the
following conclusions:

For the same requiring property, comparing method of
model checking and test, the performance of the former
is less than the latter in the searching depth, consuming
times and states stored. For property P1, It needs 20341
states to store and takes 0.671 seconds to verify with
model checking. But it needs 216 states to store and
takes 0.156 seconds to verify with test method.

Why? The reason is shown as follow: When we
execute model checker, it will search all states
exhaustively in order to find an error trail violating
property. When we use the test framework to test some
properties in this paper, if the result is true, it means the
system exist errors of unreachability; if the result is false,
it will generate a counter-example. We can check
whether the system is satisfied to conformance by input,
output and system requirements. Because of generating
counter-examples, the model checker will terminate
searching early instead search all states exhaustively. So,
it reduces the verification time and the memory overhead.
When checking the web services which own more states,
we have a better efficiency using the test framework.

VI. CONCLUSION AND FUTURE WORK
Based on the research of model checking techniques

for composition of web services, we establish an
automatic test framework for web services composition
of BPEL. Static test method is used and test cases are
generated automatically in this framework. According to
the input, outputs of cases and the requirement
properties, we can test the conformance for business
flow of BPEL. We analyze “Airline Tickets Reservation
System” which is described by BPEL with our test
framework and test the conformance of the system. In
addition, we compare our method to model checking
method which is used to verify web services
composition from three areas which include states stored,
searching depth and consuming times. We can conclude
that our methods have a better efficiency when checking
the web services which owns more states. In the future
work, we will establish a uniform framework which

combines test and model checking method for web
services composition. So, we can analyze performance
of web services composition efficiently; ensure the
quality of web services composition.

TABLE I.
THE RESULTS OF TEST AND MODEL CHECKING

State
Vector Real

time(s)
States
storedProperty Method Depth

(byte)

ACKNOWLEDGEMENT
This work was partly supported by National Natural

Science Foundation of China under grant No.60763004,
China Postdoctoral Science Foundation under grant
No.20090450389, Natural Science Foundation of
Guangxi Province of China under grant No.0991242 and
Young Science Foundation of Guangxi Province of
China under grant No.GuiKeQing0728090.

REFERENCES
[1] OASIS. Web Services Business Process Execution

Language Version 2.0[EB/OL]. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf,2007.

[2] Chun,S & J.O®utt. Generating Test Cases for XML-
based Web Component Interactions Using Mutation
Analysis[A].12th IEEE International Symposium on
Software Reliability Engineering[C]. Hong Kong:IEEE
Computer Society press.2001:200-209.

[3] Offutt,J & W.Xu. Generating Test Cases for Web
Services Using Data Perturbation[N].ACM SIGSOFT
Software Engineering Notes,2004(5).

[4] Bertolino,A & A.Polini, et al. The Audition Framework
for Testing Web Services Inter-operability[A].31st
EUROMICRO Conference on Software Engineering and
Advanced Applications[C].Porto (Portugal): IEEE
press.2005:134-142.

[5] Huang,H & W.Tsai, et al. Automated Model Checking
and Testing for Composite Web Services[A].Eighth
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing [C].Seattle(USA):IEEE
Computer Society press.2005: 300-307.

[6] Huang,H. Model Checking:Novel techniques and
applications[D].Arizona:Arizona state university.2005.

[7] Zeng,Y.F & H.Zhou, et al. Research on BPEL test case
generation[J].Computer Engineer and Design,2008,
29(20): 5243-5249.

A 740 414 0m0.156 261 Property
P1 B 774 671 0m0.671 20341

A 740 413 Om0.125 305 Property
P2 B 744 671 Om0.733 20453

A 740 413 Om0.141 395 Property
P3 B 744 671 Om0.733 21125

A 740 413 Om0.187 547 Property
P4 B 744 744 Om0.733 21195

A 740 671 Om0.249 5078Property
P5 B 744 671 Om0.951 23799

1036 JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf,2007
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf,2007

[8] Gargantini,A & C.Heitmeyer. Using model checking to
generate tests from requirements specications[A].
Proceedings of the 7th European Engineering Conference
Held Jointly with the 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineering[C].
Toulouse:ACM press.1999:146-162.

[9] Holzmann, G.J. The Model checker SPIN[J].IEEE
Transaction on Software Engineering,1997,(23):76-95.

[10] Hopcroft,J.E & R.Motwani,etal. Introduction to Automata
Theory, Languages,and Computation(2nd
Edition)[M].New York: Addison Wesley,2001.

[11] Diaz,G & J.J.Pardo. Verification of Web Services with
Timed Automata[J].Electronic Notes in Theoretical
Computer Science,2006,15(7):19-34.

[12] Dong,R.S & Zhao,W,Xiangyu,L. Model Checking
Behavioral Specification of BPEL Web Services[A].The
2008 International Conference of Computer Science and
Engineering[C].London,U.K,2008,7:198-203.

[13] QUENUM,J.G & S.AKNINE, et al. A Modelling
Framework for Generic Agent Inter-action Protocols[A].
4th International workshop on Declarative Agent
Languages and Technologies N4[C]. Hakodate,Japon:
Springer press.2006:207-224.

[14] Luo,X.Y & K.L.Su, et al. Bounded Model Checking for
Temporal Epistemic Logic in Synchronous Multi-Agent
Systems[J]. Journal of Software, 2006,17(12):2485-2498.

[15] Luo,X.Y & K.L.Su, et al. Verification of Multi-agent
Systems via Bounded Model Checking[A].The 19th
Australian Joint Conference on Artificial Intelligence.
Volume 4304 of Lecture Notes in Computer Science[C].
Hobart:Springer press.2006:69-78.

[16] Clarke, E.M & O.Grumberg, et al. Model
Checking[M].Cambridge:MIT Press,2000.

Rongsheng Dong was born Hubei, China in 1965. He is
currently a professor and interested in network security, formal
technology, protocol engineering, etc.

Zhao Wei was born Guilin, China in 1984. He received the
BS degree in computer science and technology from Guilin
University of Electronic Technology, Guilin, China in 2006
and received the ME degree in computer science and
technology from Guilin University of Electronic Technology in
2009. He is currently a doctoral student in BeiHang University
and interested in network security, formal technology.

Xiangyu Luo was born Guilin, China in 1974. He received
the BS degree in applied mathematics from University of
Electronic Science and Technology of China in 1996 and
received DE degree in computer software and theory from
National Sun Yat-sen University in 2006. He is currently an
associate professor and interested in agent, network security,
etc.

Fang Liu was born Guilin, China in 1984. She received the
BS degree in computer science and technology from Guilin
University of Electronic Technology, Guilin, China in 2007.
He is currently a postgraduate and interested in network
security, formal technology.

JOURNAL OF SOFTWARE, VOL. 5, NO. 9, SEPTEMBER 2010 1037

© 2010 ACADEMY PUBLISHER

