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Abstract—CT image De-noising is an important research topic 

both in image processing and biomedical engineering. 

Independent component analysis (ICA) is a statistical 

technique where the goal is to represent a set of random 

variables as a linear transformation of statistically independent 

component variables. The curvelet transform as a multiscale 

transform has directional parameters occurs at all scales, 

locations, and orientations. This paper proposes a new model 

for CT medical image de-noising, which is using independent 

component analysis and curvelet transform. Firstly, a random 

matrix was produce to separate the CT image into a separated 

image for estimate. Then curvelet transform was applied to 

optimize the coefficients. At last, the coefficients were selected 

for image reconstruction by inverse of the curvelet transform. 

By contrast, this approach could remove more noises and 

reserve more details, and the efficiency of our approach is 

better than other traditional de-noising approaches.  

Keywords- independent component analysis; de-noising; 

curvelet; optimize 

I. INTRODUCTION

In recent years, The independent component analysis 
(ICA) [1] as a kind of new signal processing method 
developed quickly and widely used ,especially in image 
processing. Meanwhile Candes and Donoho [2]develeped a 
new theory of multiresolution analysis called the curvelet 
transform. This mathematical transform differs from wavelet 
and related other mathematical transform. Curvelets take the 
form of basis elements, which exhibit a very high directional 
sensitivity and are highly anisotropic. In two dimensions, for 
instance, curvelets are localized along curves and in three 
dimensions along sheets. Because this new mathematic 
transform is based on the wavelet transform and radon 
transform. It has overcome some limitations of wavelet 
transform in medical image fusion. Because of the character 
of these two image processing method, we apply of 
independent component analysis and curvelet transform to 
optimize the coefficients for medical image de-noising. 

As a signal analysis technique, ICA is a useful method for 

separating the independent signals from overlapping signals 

[3]. It was greatly developed as a potential statistical 

technique for blind source separation (BSS). It aims at 

finding the hidden components inside the original signals, 

and the components capture the essential structures of the 

signals. ICA is often used by the image processing. Through 

making full use of the high-order statistical characteristics of 

the source, i.e., the fourth-order central moment, ICA can 

effectively resolve the independent components (ICs) from 

the measured mixed signals without any additional 

information about the source signals. It had been widely 

applied in the signal processing fields, such as biomedical 

signals, image processing and financial analysis.  

Curvelet transform [2]as a newly developed mathematical 

transform is often used as time-frequency and 

multiresolution analysis tool in the signal and image 

processing domain. It combined the anisotropic of ridgelet 

with the multiscale characteristic of wavelet. The prominent 

characteristic of curvelet is multiscale and high anisotropic, 

the curvelet transform is well-adapted to analyze and 

synthesize medical images containing edges. So in the view 

of the combination ICA technique and curvelet transform, 

this research is initial. For this reason, an image de-noising 

extended model based on ICA and curvelet transform are 

proposed in the paper. 

 Computed tomography (CT) [4]as a medical imaging 

method is widely used for diagnostic purposes. It is a 

method of body imaging in which a thin x-ray beam rotates 

around the patient. Small detectors measure the amount of x-

rays that make it through the patient or particular area of 

interest. A computer analyzes the data to construct a cross-

sectional image. These images can be stored, viewed on a 

monitor, or printed on film. In addition, three-dimensional 

models of organs can be created by stacking the individual 

images, or "slices". Due to its ability to provide clear images 

of bone, muscle, and blood vessels, CT imaging is a valuable 

tool for the diagnosis and treatment of musculoskeletal 
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disorders and injuries. It is often used to measure bone 

mineral density and to detect injuries to internal organs. CT 

imaging is even used for the diagnosis and treatment of 

certain vascular diseases that undetected and untreated. By 

analyzing the characters of CT medical images, we find that 

when we denoised the medical image we should decompose 

the image by ICA. Because a great deal of medical image 

sequences are taken by the same instrument at different time, 

so the image decomposition signal could be optimized by 

curvelet transform. 

In this paper we use CT medical image of  human’s 

abdomen as the research object, which is shown in Figure 1. 

The CT medical image sequences of different parts of 

human’ abdomen are shown in Figure 2. 

There is always some noise produced by the CT imaging 

equipments and the processing of transmission. For this 

reason, this paper proposes a new model which could 

denoise the CT image of human’s abdomen by ICA and 

curvelet transform. By experiment, the CT image after this 

approach’s processing can display the details much more 

clearly and smoothly. 
The rest of this paper is organized as follows. The 

independent component analysis is given in Sections II.  

.

Curvelet transform analysis is given in Sections III. Section 
IV describes the experiment which is using ICA and curvelet 
transform, then discusses the results. Conclusions are 
presented in Section V. 

Figure 1. CT image of human’s abdomen 

Figure 2. CT medical image sequences 
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II. INDEPENDENT COMPONENT ANALYSIS

Independent component analysis (ICA) [3]is a modern 

factor analysis tool developed in the last two decades, which 

researches the signal’s independence relations according to 

higher order statistics, as opposed to the principal 

component analysis that researches the pertinent relation 

among signals based on the second order statistics. ICA can 

decompose the random to many mutual independent 

components which are the most possible independent. It is 

widely used for an image processing that can strengthen the 

signal non-Gauss. In order to get the de-noising independent 

components after separating, we can exchange it to the clean 

image. Fast ICA is a fast way of ICA which has good effect 

to the various noises. 

The concept of ICA firstly put forward by Herault in 

1988 [5]. The standard ICA model can be defined as follows: 

x=As                                         (1) 

This model describes that the observation variables are 

mixed from source variable. The source variable is unknown, 

could not be observed, and matrix is not known yet. Only 

random variables can be observed. Consequently, we have 

to estimate matrix and the independent components 

according to a assumption: The source variable is statistic 

independent and non-gauss distributing. Through estimating 

matrix, we could get the contradictory of A, it also be called 

abruption matrix. So W estimate  could be obtained from .s

u=Wx=WAs                                   (2)

In order to separate a set of estimate of

independent statistic signal source by 

independent component analysis from a set of observation 

signal 
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Figure 3. Separate Mixing Image by ICA 

Fast ICA arithmetic is put forward by Hyvarinen [6-7]. 

By system learning this arithmetic find a way to let the 

projection  of the cell vector w  is the most Gauss.  

Before running Fast ICA, assume it has pretreatment of ICA, 

such as get rid of mean and whiten processing. Fast ICA is 

to find the biggest of non-gauss w  based on fixed-point 

theory. The Fast ICA separate only one independent 

component once from observation signal, so it is a fast way 

of ICA. It is useful to ICA image processing. 

Tw x

T x

The goal of ICA is to restore the original sources by 

estimating the separating matrix. This can be achieved by 

optimizing contrast functions. Currently, there are a number 

of contrast functions in use including information 

maximization, maximum likelihood, high-order cumulants 

and negentropy. In the Fast ICA algorithm, the initial step is 

a preliminary whitening of the observations. By a linear 

transformation, the observations are made uncorrelated and 

unit-variance. The whitening facilitates the separation of the 

underlying independent signals, and it can be accomplished 

by classical PCA. 

III. CURVELET TRANSFORM ANALYSIS 

The curvelet transform [2], like the wavelet transform, is 

a multiscale transform, with frame elements indexed by 

scale and location parameters. Unlike the wavelet transform, 

it has directional parameters, and the curvelet pyramid 

contains elements with a very high degree of directional 

specificity. In addition, the curvelet transform is based on a 

certain anisotropic scaling principle which is quite different 

from the isotropic scaling of wavelets. The elements obey a 

special scaling law, where the length of the support of frame 

elements and the width of the support are linked by the 

relation: 

width length2

 Curvelet is based on combining several ideas, which are 

briefly reviewed: 

nx a s a s a s
i m                      (3)

We supposed each observation variable ix
 and each 

source variable js
 are all random variables and those mean 

are zero. Then Let the vector x as observation variable, and 

 as source variable, s ( )A m n as matrix . Separate 

Mixing Image by ICA model was illustrated as follows:  

ija

Ridgelets, a method of analysis suitable for objects 

with discontinuities across straight lines. 
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Multiscale Ridgelets, a pyramid of windowed 

ridgelets, renormalized and transported to a wide 

range of scales and locations. 

Bandpass filtering, a method of separating an object 

out into a series of disjoint scales. 

A.  Ridgelet Transform 

The ridgelet transform is special member of the family of 

multiscale orientation-selective transforms, which has 

recently led to an advanced research activity in the field of 

computational and applied harmonic analysis. It has good 

directional selectivity and is able to locally and sparsely 

represent the signal when compared with the traditional 

transforms such as wavelet transform. As a new multiscale 

representation for functions on continuous spaces it is 

smooth away from discontinuities along lines. Ridgelet 

analysis makes available representations of functions by 

superpositions of ridge functions or by simple elements that 

are in some way related to ridge functions 

; these are functions of n variables, 

constant along hyperplanes  = ; the 

graph of such a function in dimension two looks like a 

"ridge". The terminology "Ridge function" arose first in 

tomography, and ridgelet analysis makes use of a key 

tomographic concept, the Radon transform [8]. 

)( 11 nnxaxar

nnxaxa 11 c

Before the ridgelet transform, some attribute should be 

defined firstly as follows: 

The layer contains objects with frequencies near 

domain  | | [ ].  

sf

222 2,2 ss

We expect to find ridges with width width   
s22

Windowing creates ridges of width width and

length .

s22
s22

The renormalized ridge has an aspect ratio of width

.
2length

By using the ridgelet transform, we would like to encode 

those ridges efficiently. 

There are some key properties before defined ridgelet 

transform as follows [9]: 

Divides the frequency domain to dyadic coronae: 

[ ]
12,2 ss

In the angular direction, samples the s-th corona at 

least  times. 
s2

In the radial direction, samples using local wavelets. 
The ortho-ridgelet element has a formula in the frequency 

domain:  

likjlikj ,,,,2
1 ˆˆˆ 2

1

   (4) 

where,

il are periodic wavelets for [- ,  ). 

is the angular scale and l [0,i 12 1i
] is the 

angular location. 

jk are Meyer wavelets for .

j
 is the ridgelet scale and k  is the ridgelet location. 

Each normalized square is analyzed in the ridgelet system: 

The ridge fragment has an aspect ratio  

of
ss 22 2
.

After the renormalization, it has localized frequency 

in band [ ]. 
12,2 ss

A ridge fragment needs only a very few ridgelet 
coefficients to represent it. 

We define an integrable bivariate function 

relative. The continuous ridgelet transform (CRT) [10]in 

2)( Rxf

2R
is defined as follows: 

dxxfxbaCRT baRf ,,2,,
           (5) 

where the ridgelets )(,, xba in 2-D are defined from a 

wavelet-type function in 1-D )(x  as follows: 

a

bxx
axba

)sin()cos( 212

1

,,

  (6) 

A ridgelet is constant along lines: 

)sin()cos( 21 xx  = const. Transverse to these 

ridges it is a wavelet. 
Given an integrable bivariate function f(x), we define its 

ridgelet coefficients by 

dxxfxbaR baRf ,,2,,
                            (7) 

The reconstruction formula 

4
,,

3

2

0
,,

0

d
db

a

da
xfxbaRxf baf

     (8) 

The (separable) continuous wavelet transform (CWT) in 
2R of  can be written as follows: )(xf

dxxfxbbaaCWT bbaaRf 2121
2 ,,,2121 ,,,

     (9) 

where the wavelets in 2-D are tensor products    

2121 ,,, bbaa (x)= 
)()( 22,21, 11

xx baba                 (10) 

of 1-D wavelets, 
a

bt
atba

2

1

, .
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By comparison, we can see, the CRT is similar to the 2-D 

CWT except that the point parameters ( ) are replaced 

by the line parameters (b, 

21,bb

). That is to say, these 2-D 

multiscale transforms have the relations as follows [11]: 

Wavelets position-pointscale,

Ridgelets position-linescale,

Therefore, wavelets are very effective in representing 
objects with isolated point singularities, while ridgelets are 
very effective in representing objects with singularities along 
lines. In fact, one can think of ridgelets as a way of 
concatenating 1-D wavelets along lines. Hence the 
motivation for using ridgelets in image processing tasks is 
appealing since singularities are often joined together along 
edges or contours in images. 

It is easy to extend the 1-D case to the 2-D case, points 
and lines are related via the Radon transform, thus the 
wavelet and ridgelet transforms are linked via the Radon 
transform. More precisely, denote the Radon transform as 
follows: 

dxtxxxftR
Rf sincos)(, 212

    (11) 

then the ridgelet transform is the application of a 1-D 
wavelet transform to the slices (also referred to as projections) 
of the Radon transform, 

dttRtbaCWT fbaRf ,,, ,2

            (12) 

In the Fourier domain, the implementation of the ridgelet 
transform can be performed quickly [10]. 

Firstly, compute the two dimensional Fourier 

transform,  (u, v) for the input image  (x, y). 
Using an interpolation scheme, substitute the 
sampled values of the Fourier transform obtained on 
the square lattice with the sampled values on a polar 
lattice. 

F f

Secondly, Cartesian-to-polar conversion is used for 

an image of size n n, 2n. 

Thirdly, one-dimensional inverse Fourier transform 
is applied on each line, i.e., for each value of the 
angular parameter. 

Finally, one-dimensional wavelet transform is 
applied along the radial variable in Radon space. 

Here, wavelet transform could be used in conjunction 
with nonlinear processing such as hard-thresholding of 
individual wavelet coefficients particularly. 

B.  Curvelet Transform  

Generally speaking, curvelet transform extends the 
ridgelet transform to multiple scale analysis. This means that 
ridgelet can be tuned to different orientations and different 
scales to create the curvelets, It is in the similar to Gabor 
filters. But different from Gabor filters which only cover part 

of the spectrum in the frequency domain [12], curvelets have 
a complete cover of the spectrum in frequency domain. That 
means, there is no loss of information in curvelet transform 
in terms of fusing the frequency information from images. 

The curvelet transform opens us the possibility to analyse 
an image with different block sizes, but with a single 
transform. The idea is to first decompose the image into a set 
of wavelet bands, and to analyze each band by a ridgelet 
transform. The block size can be changed at each scale level. 

The Curvelet Transform includes four stages: 
(1) Sub-band decomposition: 

,,, 210 fffPf
                           (13) 

(2) Smooth partitioning: 

fwh sQQ                                     (14) 

A grid of dyadic squares is defined as follows: 

s

kkkk

kks ssssQ Q
2

1

22

1

2,,
2211

21
,,

          (15)

Qs – all the dyadic squares of the grid. 

(3) Renormalization: 

221121 2,22, kxkxfxxfT sss

Q      (16) 

QQQ hTg
1

                                    (17) 

(4) Ridgelet analysis: 

QQ, g ,
                                  (18) 

There is also procedural definition of the reconstruction 
algorithm. The Inverse of the Curvelet Transform: 

(1) Ridgelet Synthesis: 

Q,Qg

                            (19) 

(2) Renormalization: 

QQQ gTh
                                 (20) 

(3) Smooth Integration: 

sQ

QQs hwf
Q                          (21) 

(4) Sub-band Recomposition: 

s

ss ffPPf 00

                       (22) 

Curvelet transform is defined via above concepts. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION

By using independent component analysis for image de-

noising,it could separate a set of estimate of independent 

statistic signal source from a set of observation signal.  
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The key of ICA is to produce a appropriate matrix. This a 

random matrix (3 3): 

3.02.05.0

1.06.03.0

4.02.04.0

A

                        (23) 

By using this matrix we could effectively resolve the 

independent components from the measured mixed signals 

without any additional information about the source signals. 

Before the experiment, we get a lot of CT image from the 

First Affiliated Hospital of Soochow University. In our 

experiment, we adds Gaussian white noise of zero mean 

noise with 0.01variance and salt & pepper noise with 0.015 

density to the image. Then we de-noise these CT medical 

images separately. The steps of this processing method are 

as follows: 

We separated the CT image by a random matrix into 

independent component image.  

Then we use curvelet transform to optimize the 

coefficients.

At last, we applied inverse of the curvelet transform 

for image reconstruction a new denoised CT medical 

image.   
The steps we presented are illustrated as follows: 

For the sake of testifying this paper’s method is superior, we 
use other filter to process the source noise image which is 
shown in Figure 5(a). By contrast, the efficiency of our 
method which is shown in Figure 5(d) is better than Median 
and wiener approaches which are shown in Figure 5(b) and 
Figure 5(c) respectively. It removed Gaussian (white) noise 
and salt & pepper noise effectively, and many details were 
reserved. The results of different CT medical image de-
noising methods are shown as follows:  

CT

Image  

ICA

Separate

Ridgelet 

Transform 

Optimize 

Decomposed 

Image 

Reconstruct 

Denoised 

CT

Image 

(a)   

 (b) Figure 4. Image de-noising process 
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(c)

(d) 

For the sake of evaluating the image quality objectively, 
we use reconstruction error as a standard objective measure 
of image quality. There are two of the error metrics used to 
compare the different image de-noising techniques, one is 
the mean square error (MSE) which is the cumulative 
squared error between the de-noising and the original image, 
and another is signal to noise ratio (SNR) which is a measure 
of the image error. The mathematical formulae can be 
expressed as follows: 

M

i

N

j

ijij II
MN

MSE
1 1

2)'(
1

             (24) 

 ])( / )(10lg[  SNR
M

1i

N

1j

2'
M

1i

N

1j

2'' IIII

   (25) 

To contrast the effect of various de-noising methods, we 
define I(x, y) is the original image, I'(x, y) is the de-noising 
image, I''(x, y) is the mean value and M, N are the 
dimensions of the images. If a value for MSE is lower, that is 
to say the de-noising image has lesser error, and there is the 
inverse relation between the MSE and SNR, this create a 
high value of SNR. It means effect of de-noising is good 
because it show that the signal is more to noise in the image.  

TABLE I. EVALUATION OF VARIOUS DE-NOISING METHODS

Processing Method SNR MSE

original 17.72 685

wiener 21.65 246

median 26.17 163

our method 37.35 97

From the table above we can see that our method have a 
higher value of SNR and a lower value of MSE. So it is 
superior to median and wiener filtering methods for CT 
medical image de-noising.  

V. CONCLUSIONS

This paper proposes a new model for CT medical image 

de-noising, which is using independent component analysis 

and curvelet transform. Firstly, a random matrix was 

produce to separate the CT image into a separated image for 

estimate. Then curvelet transform was applied to optimize 

the coefficients. At last, the inverse of the curvelet transform 

was applied for image reconstruction. The de-noising image 

has a higher value of SNR and a lower value of MSE. This 

approach could remove more noises and reserve more 

details. Further investigations on the use of independent 

component analysis and curvelet transform to optimize 3-D 

medical image processing are left for future work. 
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