
Abstract— Whereas the research in service-oriented

architecture (SOA) in general is well-past the early phase, the

research in the area of architectural or quality metrics for SOA

is still in the early stages. A number of formal models for SOA

have been proposed in the literature, and many metrics have

been derived from them. This paper serves to project that such

a recurrence of formal-model-proposals is not of such a

magnitude as to be characterized as multiplicity or excess, and

that a certain degree of proliferation is a welcome sign, and will

only aid an increased understanding of SOA, rather than

impede the same in any way. To support this entire view, this

paper discusses the important existing formal models,

associated metrics, and demonstrates that these models

themselves are a fertile ground to create newer metrics.

Thereby, it presents many new metrics, and discusses future

research possibilities.

Index Terms— Derive, Service-Oriented Architecture,

Metric, Model.

I. INTRODUCTION

 Service-oriented architecture (SOA) is an architectural

style where systems consist of service users and service

providers [1]. A related term, service-oriented computing

(SOC), means the computing paradigm that utilizes services

as fundamental elements for developing applications [2]. As

an analogy, SOC is to SOA, what OOP is to OOAD.

SOA can be much better understood in terms of two basic

concepts: layers and binding. Fig. 1 shows the SOA layers or

the SOA stack [5, 6, 7]. In static binding (see Fig. 2) the service

requesters are bound to provided services at design time,

whereas in case of the dynamic, run-time scenario (see Fig.

3), service requesters dynamically discover, select the

requisite services from a registry, and bind thereof to selected

services.

 Whereas the research in service-oriented architecture

(SOA) in general is well-past the early phase, the research in

the area of architectural or quality metrics for SOA is still in

early stages. A number of formal models for SOA have been

proposed in the literature, and many metrics have been

derived from them. We feel that such a recurrence of

Manuscript received June 22, 2009; revised Jan 14, 2010; accepted Feb 28,

2010.

formal-model-proposals is not of such a magnitude as to be

characterized as multiplicity or excess, and that a certain

degree of proliferation is a welcome sign, and will only aid an

increased understanding of SOA, rather than impede the

same in any way. In fact, a certain multitude re-enforces the

belief that architecture is indeed multiple-view based [4]. Also

since architecture plays a central role in fulfilling the quality

requirements, all such architectural metrics in their varying

model-based versions and types provide ample opportunities

to quantify an otherwise generally elusive concept of quality.

Furthermore, this will provide a large universe of metrics to

eventually churn out the most relevant ones, conceptually

and empirically. To support this entire view, this paper

discusses the important existing formal models, associated

metrics, and demonstrates that these models themselves are a

fertile ground to create newer metrics. We present many new

metrics. Some of these are derived in analogy to metrics of

other fields within software engineering, and hence are

already in the published and debated research space. Such an

exercise contributes to the common conceptual foundation

for all ideas in software engineering.

 The remaining paper is structured as follows. Sections II-V

discuss various existing formal models and associated

metrics in brief. Sections VI-VIII propose a variety of metrics

derivable from the existing models. Section IX concludes and

discusses future research possibilities.

II. THE PEREPLETCHIKOV-RYAN-FRAMPTON-SCHMIDT

MODEL
[8, 19, 10]

 In the general case, a service-oriented system SOS is

formally defined as: SOS =<SI, BPS, C, I, P, H, R>, where SI

is a set of all service interfaces in the system; BPS is a set of

all business process scripts; C is a set of all OO classes; I is a

set of all OO interfaces; P is a set of all procedural

packages; and H is a set of all package headers. Generically, the

elements of these sets are called service implementation

elements, e. Given a system, SYS, a service s can be defined as:

s = <sis, BPSS, Cs, Is, Ps, Hs, Rs> is a service of SYS if and only

if sis SI (BPSs BPS Cs C Is I Ps P Hs

H) (BPSS U Cs U Is U Ps U Hs <> s). Note that <> symbol

represents service membership. A service boundary is logical

rather than physical, thus we need to examine the possible call

paths in response to invocations of service operations via the

service interface in order to determine whether an element is a

On Formal Models and Deriving Metrics for

Service-Oriented Architecture

Hardeep Singh
Deptt. of Computer Science and Engg.

G.N.D. University, Amritsar, India

E-mail: hardeep_gndu@rediffmail.com

Rupinder Singh
Deptt. of Information Technology

Adesh Inst. of Engg. & Tech., Faridkot, India

E-mail: rupi_pal@yahoo.com

866 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.8.866-871

member of a service. Also note that sis is a singleton set since a

service s will have just one service interface sis. R is the set of

overall coupling relationships in a service-oriented design

defined on E X E, i.e., R E x E, where E is the set of all

service implementation element e, i.e. E= SI UBPSUCUI

UPU H.

 The relationships R can be categorized as:

Incoming relationships, IR(s)

 = {(e1, e2): e1 (BPS-BPSsU C-CsU I - IsU P - PsU H - Hs)

e2 (BPSSU CsU IsU PsU Hs)}

Fig. 1 The SOA Layers

Outgoing relationships, OR(s)

 = {(e1, e2): e1 (BPSSU CSU IsU PS U Hs) e2 (BPS- BPSS

U C- CSU I - IsU P - PsU H - Hs)}

Service incoming relationships, SIR(s) = {(e, si): e (BPS -

BPSs U C - CSU P - Ps) si= sis }

Service outgoing relationships, SOR(s) = {(e, si): e (BPSSU

Cs U Ps) si sis }

Interface to implementation relationships, IIR(s) = {(si, e): si =

sis e (BPSsU CsU Ps)}

 The papers [8, 9, 10] discuss this model and associated

metrics in detail. Here we describe one metric from this

suite, Weighted Extra-Service Incoming Coupling of

Element (WESICE).

 WESICE for a given service implementation element e of a

particular service s is the weighted count of the number of

system elements not belonging to the same service that

couple to this element. Formally, WESICE (e) = | {(e, e1)*

WeightFactors: (e, e1) IR(s) } | . WeightFactor is a value

assigned to different types of relationships based on their perceived

influence on system coupling. For example, CP (OO Class

Procedural Package) type of relationship is weighted higher than IC

(OO interface OO Class) type since the coupling is expected to

be ‘stronger’ in the former case.

III. RUD- SCHMIETENDORF -DUMKE SUITE
[11, 12]

 A service-oriented system consists of a set of providers’

nodes. Each node is providing one or more non-mobile

services, each service has one or more operations (business

functions). Services can be either atomic or composite, i.e.

represent structured collaborations of other services. A few

fundamental metrics of the model are:

N, Set of service providers’ nodes;

S[n], Set of services provided by the node n N; and

A, Set of tuples (relation)= {<InvokerNode, Invoker,

ServiceNode, Service, Operation>: The meaning of each

tuple is “Software component (i.e. a service, a

composition engine or an end-user GUI application)

Invoker that is located on the node InvokerNode invokes the

operation Operation of the service Service that is located on

the node ServiceNode.”}

 The details of this model and associated metrics can be

found in [11, 12]. We discuss three metrics from this suite.

AIS[s], Absolute Importance of the Service s S[n], n N is

defined as count of clients which depend on s, i.e. which

invoke its operations. Note that it does not count here clients

that are located on the node n.

AIS[s] = | Invoker (InvokerNode n, Service=s (A))|. is a

standard relational-algebra operation, which

means projection. is another operation meaning

selection.

ADS[s], Absolute Dependence of the Service s S[n], n N

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 867

© 2010 ACADEMY PUBLISHER

is defined as count of other services this service depends on:

ADS[s] = | Service (Invoker=s, ServiceNode n (A))|.

ACS[s], Absolute Criticality of the Service s S[n], n N is

the product of its absolute importance and absolute

dependence: ACS[s] = AIS[s] x ADS[s].

IV. LIU-TRAORE COMPLEXITY METRIC
[14]

 This metric employs what is called User-system Interaction

Elements (USIE) model. For example, a USIE composite

service graph is a tree that captures the service hierarchy

underlying a particular composite service. We discuss their

metric, Average Service Depth (ASD)

 Given a composite service c, ASD (c) =

(NumofServiceDependency (n) / | N|

Fig. 2 Static binding

Fig.3 Dynamic binding

Where n denotes an atomic service in c; runs over n N;

NumOfServiceDependency (n) = the number of direct or

indirect dependencies of n; N is total number of

atomic-service nodes in c.

 The ASD metric actually computes the average number of

dependency relationships per atomic service node;

therefore, high ASD values indicate high degree of

dependencies in the service. Liu and Traore demonstrate in

[14] through a case study the empirical relationship between

software complexity and attackability, confirming to some

extent the widely held belief that complexity has a negative

impact on security.

V. OTHER MODELS AND METRICS

There are a fair number of other models, metrics and

measurement work [13-15, 17-22] which we do not treat here in

any detail for reasons of space constraints. For example, in

[21] Korostelev et al. derive a fault model for error detection

from the SOA, and introduce metrics to evaluate efficiency of

this model.

VI. COHESION METRICS

 All proposed metrics are marked PM (for proposed metric).

Van der Hoek et al. [23, 24] have proposed two metrics for PLA

(product line architecture). PLA refers to generic architecture

for an entire product family / line and it explicitly specifies all

mandatory components, optional components and variant

components (only one of these variant components can be

included in a product instance of PLA, in other words, a

member of product line/ family). Every component in a

product instance provides some services (in van-der-Hoek

model public- access things like operations, methods,

functions etc are called a service) and requires some service.

So, given a product instance, they define two metrics,

Provided Service Utilization (PSU) and Required Service

Utilization (RSU) as follows:

PSU (X) = (Actual number of provided services of

component X utilized within the product instance, Pactual) /

(total number of services provided by X, Ptotal).

That is, some of the services provided by X may not be

utilized in a product instance.

RSU (X) = (Actual number of required services of X

available within product instance, Ractual) / (total number of

services required by X, Rtotal).

The fact that all required services are not available for X in

the product may sound counter-intuitive. But, this is

acceptable in product line/ family because some of the

required services of a component of a product may not be

critical to system working, and can be optionally supplied as

add-on.

A PSU close to 0 suggests that there is lot of extra

functionality in X that is not utilized within the product, i.e. it

is“bloated”. A value of 1 signifies that it is well utilized.

Similarly, RSU close to 0 means it may not function well in

products. Further, they derive two metrics CPSU (P) and

CRSU (P) for a given product instance.

CPSU (P) = Pactual / Ptotal and CRSU (P) = Ractual /

Rtotal.

C stands for compound and the summations run over all

components X in the product instance.

 We use the formal model of Perepletchikov et al. (see

Section II). The metrics for SOA can be derived as

follows. We consider an e of service of SOA to be an

analogue of component of van der Hoek model and a

868 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

service of SOA itself to be analogue of product instance/

simply product of van der Hoek model. Also the

provided operations of an e are analogous to provided

services of a component and required operations of an e

are analogous to required services of a component. In fact,

this makes sense easily; because an SOA may be

some sort of complex PLA wherein a service, whether

implemented initially or composed of other services, is

indeed a product. Accordingly and analogously, we may

define,

PM1: POU (e) = (Actual number of provided operations of

an e utilized within the service) / (total number of operations

provided by the e).

PM2: ROU (e) = (actual number of required operations of e

available within service) / total number of operations

required by e). (S of van der Hoek model replaced with O)

Then, CPOU (PM 3) and CROU (PM4) will signify if an

entire service is more self-contained/ cohesive/ autonomous.

Values close to 1 for CPOU and CROU indicate highly

autonomous services.

Such metrics may be useful in SOA because SOA is an

evolutionary, integrating architecture, wherein disparate

legacy components, and new components and external

components (external to enterprise) when exposed as

services come together, and so it may not be possible to

design highly cohesive services from scratch, and it may not

be even cost-effective to do so (for example, repeating same

type of e in various services).

Similarly, we propose CPOU and CROU for composite

services (PM 5 and PM 6), and in this case we will treat the

constituent services as components providing and requiring

operations, i.e. either being invoked as subsidiary services or

invoking other services. This metric will be of more use when

some external services (external to an enterprise) are being

used to compose such composite services. Use of external

services signifies less cohesive composite services.

VII. COMPLEXITY METRICS

A. Fan-in and Fan-out Variants

 Menkhaus and Andrich [25] have proposed a metric suite for

embedded software systems. The basic model they

use is a directed graph containing “blocks” at vertices, and

edges as dependencies. We adapt one of their metrics IOB,

instability of block. Blocks that are stable are both

independent and highly responsible. Blocks are independent

if they do not depend upon the results of the other blocks.

Blocks are responsible, if changes of this block have a strong

and wide-ranged impact upon other blocks. We have simply

substituted e in place of block. A similar metric, but on an

absolute scale has been suggested in [27]. In both [26] and

[27], a higher value signifies “instable” or “most easily

affected.” Actually, these are either variants or direct

adaptation of the classic fan-out complexity metric. And all

outgoing coupling metrics of Perepletchikov et al [10] (also

Section II) are also direct adaptation of fan-out. And so is the

ADS of Rud et al. (Section III). The IOB differs in that it

takes into account fan-in in the denominator. This is

factored-in with | IR (e) +1 | in the metric below.

 The instability of element, IOE (e), is defined as

IOE (e) = [|OR(e)| + |SOR(e)|] / [|IR (e)| +1+ |OR (e)|+

|SOR(e)|] e si (PM 7)

Where OR(e) is a set formed by including the pairs in OR

(s), which have occurrence of e; SOR(e) is a set formed by

including the pairs in SOR (s), which have occurrence of e;

and IR (e) is a set formed by including the pairs in IR (s),

which have occurrence of e. The term 1 in Dr. accounts for

incoming coupling, whether direct or indirect, from si of s to

which it belongs. OR (s), SOR (s) and IR (s) are defined as in

Perepletchikov formal model discussed in Section II. The

scale is [0, 1]. 0 means very less instable, and hence stable,

and 1 means highly instable. For the special case of the

element si,

IOE (si) = |IIR(s)| / [| IIR(s)| +|SIR(s)|] e = si (PM8

)

IIR(s) and SIR (s) are as defined in the Perepletchikov formal

model of Section II.

 Zhao et al. [17] have suggested a metric, change cost, for

what they call service component as an element of service

module. It is actually total number of direct and indirect

dependencies upon a service component, normalized to total

number of service components in service module. The

authors suggest that the change metric can be calculated with

respect to complete SOS. We adapt this later version, and in

that sense, it is complement of the above metric, because it

signifies the influence or the effect on the rest of the system,

or in other words, the “stability” or “strength” it signifies.

Actually, this is akin to fan-in or incoming coupling metrics
[9]. It is also similar to AIS [Section III]. However, we include

fan-out in Dr to factor-in the dependence. The change cost of

element e

CC (e) = [|IR(e)| +1] / [|IR(e)| +1+ |OR(e)| + |SOR(e)|]

e si (PM 9)

Clearly, IOE (e) +CC (e) =1.

Similarly, for the special case of si

CC (si) = |SIR(s) | / [|IIR(s) | + |SIR(s) |] e = si (PM10)

Again, IOE (si) +CC (si) =1

B. Extending McCabe’s Cyclomatic Complexity (MCC)

 We consider applying McCabe’s cyclomatic complexity

metric. Perepletchikov et al. [8-10] also caution in their work,

and rightly so, that traditional procedural and OO metrics are

not immediately applicable to SOS. However, for example,

basing on CBO (from CK-metrics-suite), and with some

adjustments, they derive some metrics at level of e’s, which

can be aggregated to higher level of service. However, we do

not see any problem in adapting McCabe’s cyclomatic

complexity (MCC) to SOA, and in fact, we take the cue from

Vasconcelos et al. [18] who have adapted this to derive a

complexity metric for what they call ISA (Information

System Architecture). MCC has had wide applicapabilty,

having been applied to parallel program [27], concurrent

network models [28] and embedded software [25].

 (PM11): For each operation in a service, there is control

flow graph (CFG) across some e’s in a service. This graph is,

of course, cs1U cs2Ucs3U…Ucsl, where cs’s are l number of

collaboration sequences in an operation, and U denotes graph

union. cs is defined in the Perepletichikov model (Section II)

as set of elements e that are invoked in response to specific

inputs on an operation. From CFG of each operation,

cyclomatic complexity is calculated as usual as

(edges-nodes+2). Then, cyclomatic complexities are

calculated for all operations in a service. All these values are

added, giving cyclomatic complexity for that service.

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 869

© 2010 ACADEMY PUBLISHER

C. Inter-connection Complexity

 Maertz and Lindner [30] have proposed a complexity metric,

what they call complexity of interconnection, for digital

instrumentation and control software. However, it is based on

generic graph. The metric is basically an average value

reflecting the multiplicity of usage of the individual

functional blocks for the computation of various output

signals of a logic diagram of I&C software. We adapt it as

follows. We juxtapose functional block with the service

implementation elements (e), and output signal to an

operation in a service; the entire service being juxtaposed to a

logic diagram. Complexity of interconnection V(s), where s

is a service,

V (s) = |VE (oi) | / |{e’s implementing service s}|

(PM12)

The summation is over all operations oi.

VE (oi) denotes the set of e’s implementing oi. Obviously,

each VE(oi) may have some common elements with another

VE (oj). The metric V(s) actually gives an average of

multiplicity of usage of every element for implementing each

operation of the service.

The metric V(s) will have a limited range of values, which

is in the interval between 1 and the number of operations of a

service i.e. 1 V(s) number of operations of service. As

such, V(s) can be normalized to the interval [0, 1] thus giving

a relative metric for the complexity of interconnection.

VIII. MODIFIED RESPONSE FOR OPERATION

 The paper [9] does provide a definition for a metric

Response for Operation, RFO. RFO for a given operation o

of a service interface si is the cardinality of the sets of

implementation elements and other service interfaces that

can be executed in response to invocations of o with all

possible parameters. So, RFO = | CS (o)| , as defined in [10],

where CS is set of collaboration sequences, cs, of operation o.

The original CK-metrics-suite [29] definition is: The response

set of a class is a set of methods that can potentially be

executed in response to a message received by an object of

that class. This definition has been strictly followed in its

essence in [18] to derive a metric, Average Response for

Service, ARFS, but for Information System Architecture

(ISA). We also follow the CK-metrics-definition strictly in

its full essence, and derive a metric, Modified Response for

Operation, RFOm.

 (PM 13): Construct composite graph (which is in fact

control flow graph, CFG, in this case) as: cs1Ucs2U

cs3…Ucsl (graph union over all elements of CS (o)). The

cardinality of this graph set gives RFOm (m for modified, to

distinguish it from RFO as above).

IX. CONCLUSION AND FUTURE WORK

 We have demonstrated in this paper that the existing work

on metrics in SOA and related domains of software

engineering offer ample scope of expanding and deepening

existing models. Thereby, we illustrate that multiple formal

models of SOA will benefit the metrics work in SOA.

 This paper is intended to be an initial warm-up to our future

plan of conducting research along the following tentative

plan. We have also proposed MCC for business process

workflow, derived the Liu-Traore metric for atomic service,

and derived a service granularity metric. We intend to expand

our initial work. An important avenue is to investigate all

modeling work done so far, especially those that have lead to

formulation of important metrics, including both generic

models like UML and specific ones, e.g. that of

Perepletchikov et al. and conduct a comparison and critical

analysis vis-à-vis commonly understood and implemented

SOA concepts, and those of software architecture, and in light

of current SOA practice. It is likely some consolidated work

will reveal more insights and depths, and possibly

development of some more quality metrics. Another

interesting area could be to explore if and how various metrics

are related to other metrics within a suite, and to metrics

external to suite. Specifically, metrics from different suites but

measuring the same attributes should not reflect any conflict

whatsoever.

 Recommending thresholds for various SOA metrics is very

important from practical-implementation viewpoint.

Thresholds [31] are heuristic values used to set ranges of

desirable and undesirable metric values for measured

software. These thresholds are used to identify anomalies,

which may or may not be an actual problem.

 As has been pointed out earlier in this paper, the research in

quality, metrics and evaluation for SOA is in early stages.

Many of the metrics suites need empirical validation. A

metric that is demonstrated to empirically co-relate with the

attribute it is supposed to measure finds wide acceptability.

This option offers ample avenues for future research.

ACKNOWLEDGMENT

We thank Andre van der Hoek, Mikhail Perepletchikov

and Dmytro Rud for providing clarifications and inputs on

their work discussed in this paper.

REFERENCES

[1] P. Bianco, R. Kotermanski, and P. Merson, “Evaluating a

Service-Oriented Architecture,” CMU/ SEI-2007-TR-015.

http://www.sei.cmu.edu/pub/documents/07.reports/07tr015.pdf

[2] G. Swart, B. Aziz, S.N. Foley and J. Herbert, “Trading off Security in a

Service Oriented Architecture,” In Proc.of the 19th Annual IFIP WG

11.3 Working Conference on Data and Applications Security.

http://www.cs.ucc.ie/~herbert/pubs/ifip2005.pdf

[3] M.P. Papazoglou, and D. Georgakopoulos, “Service-Oriented

Computing,” Communications of the ACM, 2003/ vol.46, No 10

[4] G. Chastek and R. Ferguson, “Toward Measures for Software

Architecture,” CMU/SEI-2006-TN-013.

http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tn013.pdf

[5] B. Portier, “SOA Terminology overview, Part1: Service, architecture,

governance, and business terms,” 2007.

http://www.ibm.com/developerworks/webservices/library/ws-soa-ter

m1/?S_TACT=105AGX04&s

[6] D. Russell and J. Xu, “Service Oriented Architecture in the Provision

of Military Capability,” UK e-Science All Hands Meeting, 2007.

http://www.comp.leeds.ac.uk/NEC/doc/SOACapabilityAHM2007.pdf

[7] C. Emig et al. , “ The SOA’s Layers,”

http://www.cm-tm.uka.de/CM-Web/07.Publikationen/%5BEL+06%5

D_The_SOAs_Layers.pdf

[8] M. Perepletchikov, C. Ryan, K.Frampton, and H. Schmidt

“Formalising Service-Oriented Design,” Journal of Software, Vol.3,

No. 2, Feb. 2008

[9] M. Perepletchikov, C. Ryan, and K.Frampton, “Coupling Metrics for

Predicting Maintainability in Service-Oriented Designs,” In 18th

International Conference on Software Engineering (ASWEC2007),

Melbourne, Australia, 2007

[10] M. Perepletchikov, C. Ryan, and K.Frampton, “Cohesion Metrics for

Predicting Maintainability of Service-Oriented Software,” In 7th

International Conference on Quality Software, Portland, USA, 2007

870 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

[11] D. Rud, A. Schmietendorf, and R. Dumke, “Product metrics

for service-oriented infrastructures,” In Proc. 16th International

Workshop on Software Measurement/DASMA Metrik Kongress 2006,

Potsdam, Germany.

http://www.cs.uni-magdeburg.de/~rud/papers/Rud-07.pdf

[12] D. Rud, A. Schmietendorf, and R. Dumke, “Resource metrics

for service-oriented infrastructures,” In Proc. SEMSOA 2007, pp.

90-98, May 10-11, 2007, Hannover, Germany .

http://www.cs.uni-magdeburg.de/~rud/papers/Rud-13.pdf

[13] T. Xu, K. Qian, and X. He, “Service Oriented Dynamic Decoupling

Metrics,” The 2006 Intl. Conf. on Semantic Web and Web Services

(SWWS’ 06), June 26-29, 2006 WORLDCOMP’ 06, Las Vegas, USA.

[14] Y. Liu and I. Traore, “ Complexity Measures for Secure

service-Oriented Software Architectures,” In the Proc. of the 3rd IEEE

International PROMISE Workshop, May 20, 2007, Minneapolis,

Minnesota, USA

[15] J. Cardoso, “Approaches to Compute Workflow Complexity,” In

Dastguhl Seminar Proc. 06291,

http://drops.dagstuhl.de/opus/volltexte/2006/821/pdf/06291.CardosoJ

orge.Paper.821.pdf

[16] J. Cardoso, “Process Control-flow Complexity Metric: An Empirical

Validation,” IEEE Intl. Conf. on Services Computing (IEEE SCC 06),

Chicago, USA, Sept, 2006, pp 167-173, IEEE Computer Society

[17] W. Zhao, Y. Liu, J. Zhu, and H. Su, “Towards Facilitating

Development of SOA Application with Design Metrics,”

Service-Oriented Computing - ICSOC 2006, 4th International

Conference, Chicago, IL, USA, December 4-7, 2006.

[18] A. Vasconcelos, P. Sousa and J. Triblolet, “Information System

Architectures: An Enterprise Engineering Evaluation Approach,”

http://www.inesc-id.pt/ficheiros/publicacoes/3543.pdf

[19] N. Looker, J. Xu, and M. Munro, “Determining the Dependability of

Service-Oriented Architectures,” International Journal of Simulation

and Process Modelling, pp. 88-97, vol.3, no.1/2,2007

[20] D. Cotroneo, C. Di Flora and S. Russo, “Imroving Dependability of

Service Oriented Architectures for Pervasive Computing,” In Proc. of

The Eighth IEEE Intl. Workshop on Object-Oriented Real-Time

Dependable Systems

[21] A. Korostelev, J. Lukkien, and J. Nesvadba “Error Detection in

Service-Oriented Distributed Systems,” Proc. of IEEE Int. Conf. on

DSN 2006, vol. 2, pp. 278-282, Philadelphia, USA, June 25 - 28, 2006.

[22] V. Gruhn and R. Laue, “Complexity Metrics for Business Process

Models,”

http://ebus.informatik.uni-leipzig.de/~laue/papers/metriken.pdf

[23] A. van der Hoek, E. Dincel, and N. Medvidovic “Using Service

Utilization Metrics to Assess the Structure of Product Line

Architectures,” Ninth IEEE Software Metrics Symposium, September

2003.

[24] E. Dincel, N. Medvidovic and A. van der Hoek, “Measuring Product

Line Architectures” Fourth International Workshop on Product Family

Engineering, October 2001, pages 346–352,

[25] G. Menkhaus and B. Andrich “Metric Suite for Directing the Failure

Mode Analysis of Emdedded Software Systems,” Proc. Of 7th

ICEIS’05 http://www.softwareresearch.net/site/publications/C069.pdf

[26] J. Zhao, “On Assessing the Complexity of Software Architectures,” In

Proc. 3rd International Software Architecture Workshop, pp.163-166,

ACM SIGSOFT, ACM Press, November 1998.

[27] S. VanderWiel, D. Nathanson, and D.J. Lilja “Performance and

Program Complexity in Contemporary Network-based Parallel

Computing Systems,” Technical Report No.HPPC-96-02, March 1996,

University of Minnesota

[28] N. R. Hall and S. Preiser, “Combined Network Complexity Measures,”

IBM J. R. D., Vol. 28, No 1., Jan 1984

[29] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object

Oriented Design,” IEEE Trans. Soft. Engg., vol 20, no 6, 1994

[30] J. Märtz and A. Lindner, “Complexity Measurement of Software in

Digital I&C-Systems for the Quantification of Reliability,” IAEA

Technical Meeting (621-12-TM-26932), Sept 2005, Chatou, France

[31] M. Lorenz and J. Kidd, Object-Oriented Software Metrics: A Practical

Guide, New Jersey: PTR Prentice Hall, 1994, ch. 1.

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 871

© 2010 ACADEMY PUBLISHER

