
Abstract— Whereas the research in service-oriented 

architecture (SOA) in general is well-past the early phase, the 

research in the area of architectural or quality metrics for SOA 

is still in the early stages. A number of formal models for SOA 

have been proposed in the literature, and many metrics have 

been derived from them. This paper serves to project that such 

a recurrence of formal-model-proposals is not of such a 

magnitude as to be characterized as multiplicity or excess, and 

that a certain degree of proliferation is a welcome sign, and will 

only aid an increased understanding of SOA, rather than 

impede the same in any way. To support this entire view, this 

paper discusses the important existing formal models, 

associated metrics, and demonstrates that these models 

themselves are a fertile ground to create newer metrics. 

Thereby, it presents many new metrics, and discusses future 

research possibilities. 

Index Terms— Derive, Service-Oriented Architecture, 

Metric, Model. 

I. INTRODUCTION

     Service-oriented architecture (SOA) is an architectural 

style where systems consist of service users and service 

providers [1]. A related term, service-oriented computing 

(SOC), means the computing paradigm that utilizes services 

as fundamental elements for developing applications [2]. As 

an analogy, SOC is to SOA, what OOP is to OOAD. 

SOA can be much better understood in terms of two basic 

concepts: layers and binding. Fig. 1 shows the SOA layers or 

the SOA stack [5, 6, 7]. In static binding (see Fig. 2) the service 

requesters are bound to provided services at design time, 

whereas in case of the dynamic, run-time scenario (see Fig. 

3), service requesters dynamically discover, select the 

requisite services from a registry, and bind thereof to selected 

services. 

   Whereas the research in service-oriented architecture 

(SOA) in general is well-past the early phase, the research in 

the area of architectural or quality metrics for SOA is still in 

early stages. A number of formal models for SOA have been 

proposed in the literature, and many metrics have been 

derived from them. We feel that such a recurrence of 
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formal-model-proposals is not of such a magnitude as to be 

characterized as multiplicity or excess, and that a certain 

degree of proliferation is a welcome sign, and will only aid an 

increased understanding of SOA, rather than impede the 

same in any way. In fact, a certain multitude re-enforces the 

belief that architecture is indeed multiple-view based [4]. Also 

since architecture plays a central role in fulfilling the quality 

requirements, all such architectural metrics in their varying 

model-based versions and types provide ample opportunities 

to quantify an otherwise generally elusive concept of quality. 

Furthermore, this will provide a large universe of metrics to 

eventually churn out the most relevant ones, conceptually 

and empirically. To support this entire view, this paper 

discusses the important existing formal models, associated 

metrics, and demonstrates that these models themselves are a 

fertile ground to create newer metrics. We present many new 

metrics. Some of these are derived in analogy to metrics of 

other fields within software engineering, and hence are 

already in the published and debated research space. Such an 

exercise contributes to the common conceptual foundation 

for all ideas in software engineering. 

   The remaining paper is structured as follows. Sections II-V 

discuss various existing formal models and associated 

metrics in brief. Sections VI-VIII propose a variety of metrics 

derivable from the existing models. Section IX concludes and 

discusses future research possibilities.  

II. THE PEREPLETCHIKOV-RYAN-FRAMPTON-SCHMIDT 

MODEL 
[8, 19, 10]

   In the general case, a service-oriented system SOS is

formally defined as: SOS =<SI, BPS, C, I, P, H, R>, where SI 

is a set of all service interfaces in the system; BPS is a set of 

all business process scripts; C is a set of all OO classes; I is a 

set of all OO interfaces; P is a set of all procedural 

packages; and H is a set of all package headers. Generically, the 

elements of these sets are called service implementation 

elements, e. Given a system, SYS, a service s can be defined as: 

s = <sis, BPSS, Cs, Is, Ps, Hs, Rs> is a service of SYS if and only 

if sis  SI  (BPSs  BPS  Cs  C  Is I  Ps  P  Hs

H)  (BPSS U Cs U Is U Ps U Hs <> s). Note that <> symbol 

represents service membership. A service boundary is logical 

rather than physical, thus we need to examine the possible call 

paths in response to invocations of service operations via the 

service interface in order to determine whether an element is a 
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member of a service. Also note that sis is a singleton set since a 

service s will have just one service interface sis. R is the set of 

overall coupling relationships in a service-oriented design  

defined on E X E, i.e., R E x E, where E is the set of all 

service implementation element e, i.e. E= SI UBPSUCUI

UPU H.

   The relationships R can be categorized as: 

Incoming relationships, IR(s) 

 = {(e1, e2): e1  (BPS-BPSsU C-CsU I - IsU P - PsU H - Hs)

e2  (BPSSU CsU IsU PsU Hs)} 

Fig. 1 The SOA Layers 

Outgoing relationships, OR(s) 

 = {(e1, e2):  e1  (BPSSU CSU IsU PS U Hs)    e2  (BPS- BPSS

U C- CSU I - IsU P - PsU H - Hs)} 

Service incoming relationships, SIR(s) = {(e, si): e  (BPS - 

BPSs U C - CSU P - Ps)  si= sis }

Service outgoing relationships, SOR(s) = {(e, si): e  (BPSSU

Cs U Ps)  si sis } 

Interface to implementation relationships, IIR(s) = {(si, e): si =

sis e  (BPSsU CsU Ps)} 

   The papers [8, 9, 10] discuss this model and associated 

metrics in detail. Here we describe one metric from this 

suite, Weighted Extra-Service Incoming Coupling of 

Element (WESICE).

   WESICE for a given service implementation element e of a 

particular service s is the weighted count of the number of 

system elements not belonging to the same service that 

couple to this element. Formally, WESICE (e) = | {(e, e1)*

WeightFactors: (e, e1)  IR(s) } | . WeightFactor is a value 

assigned to different types of relationships based on their perceived 

influence on system coupling. For example, CP (OO Class 

Procedural Package) type of relationship is weighted higher than IC 

(OO interface  OO Class) type since the coupling is expected to 

be ‘stronger’ in the former case.    

III. RUD- SCHMIETENDORF -DUMKE SUITE
[11, 12]

   A service-oriented system consists of a set of providers’ 

nodes. Each node is providing one or more non-mobile 

services, each service has one or more operations (business 

functions). Services can be either atomic or composite, i.e. 

represent structured collaborations of other services. A few 

fundamental metrics of the model are: 

N, Set of service providers’ nodes;  

S[n], Set of services provided by the node n   N; and 

A, Set of tuples (relation)= {<InvokerNode, Invoker, 

ServiceNode, Service, Operation>: The meaning of each 

tuple is “Software component (i.e. a service, a 

composition engine or an end-user GUI application) 

Invoker that is located on the node InvokerNode invokes the 

operation Operation of the service Service that is located on 

the node ServiceNode.”}

   The details of this model and associated metrics can be 

found in [11, 12]. We discuss three metrics from this suite. 

AIS[s], Absolute Importance of the Service s S[n], n  N is 

defined as count of clients which depend on s, i.e. which 

invoke its operations. Note that it does not count here clients 

that are located on the node n.

AIS[s] = | Invoker ( InvokerNode n, Service=s (A))|.  is a

standard relational-algebra operation, which  

means projection.  is another operation meaning  

selection.

ADS[s], Absolute Dependence of the Service s  S[n], n  N
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is defined as count of other services this service depends on:

ADS[s] = | Service ( Invoker=s, ServiceNode n (A))|.

ACS[s], Absolute Criticality of the Service s  S[n], n  N is 

the product of its absolute importance and absolute 

dependence: ACS[s] = AIS[s] x ADS[s].

IV. LIU-TRAORE COMPLEXITY METRIC
[14]

   This metric employs what is called User-system Interaction 

Elements (USIE) model. For example, a USIE composite 

service graph is a tree that captures the service hierarchy 

underlying a particular composite service. We discuss their 

metric, Average Service Depth (ASD)

   Given a composite service c, ASD (c) = 

(NumofServiceDependency (n)    /   | N| 

Fig. 2 Static binding 

Fig.3 Dynamic binding 

Where n denotes an atomic service in c;  runs over n  N; 

NumOfServiceDependency (n)     = the number of direct or 

indirect dependencies of n; N is total number of 

atomic-service nodes in c.

   The ASD metric actually computes the average number of 

dependency relationships per atomic service node; 

therefore, high ASD values indicate high degree of 

dependencies in the service. Liu and Traore demonstrate in 

[14] through a case study the empirical relationship between 

software complexity and attackability, confirming to some 

extent the widely held belief that complexity has a negative 

impact on security. 

V. OTHER MODELS AND METRICS 

There are a fair number of other models, metrics and 

measurement work [13-15, 17-22] which we do not treat here in 

any detail for reasons of space constraints. For example, in 

[21] Korostelev et al. derive a fault model for error detection 

from the SOA, and introduce metrics to evaluate efficiency of 

this model. 

VI. COHESION METRICS 

   All proposed metrics are marked PM (for proposed metric). 

Van der Hoek et al. [23, 24] have proposed two metrics for PLA 

(product line architecture). PLA refers to generic architecture 

for an entire product family / line and it explicitly specifies all 

mandatory components, optional components and variant 

components (only one of these variant components can be 

included in a product instance of PLA, in other words, a 

member of product line/ family). Every component in a 

product instance provides some services (in van-der-Hoek 

model public- access things like operations, methods, 

functions etc are called a service) and requires some service.              

So, given a product instance, they define two metrics, 

Provided Service Utilization (PSU) and Required Service 

Utilization (RSU) as follows: 

PSU (X) = (Actual number of provided services of 

component X utilized within the product instance, Pactual) / 

(total number of services provided by X, Ptotal).  

That is, some of the services provided by X may not be 

utilized in a product instance. 

RSU (X) = (Actual number of required services of X 

available within product instance, Ractual ) / (total number of 

services required by X, Rtotal ). 

The fact that all required services are not available for X in 

the product may sound counter-intuitive. But, this is 

acceptable in product line/ family because some of the 

required services of a component of a product may not be 

critical to system working, and can be optionally supplied as 

add-on.

A PSU close to 0 suggests that there is lot of extra 

functionality in X that is not utilized within the product, i.e. it 

is“bloated”. A value of 1 signifies that it is well utilized. 

Similarly, RSU close to 0 means it may not function well in 

products. Further, they derive two metrics CPSU (P) and 

CRSU (P) for a given product instance.  

CPSU (P) =  Pactual /  Ptotal   and CRSU (P) =  Ractual / 

Rtotal.   

C stands for compound and the summations run over all 

components X in the product instance. 

   We use the formal model of Perepletchikov et al. (see 

Section II). The metrics for SOA can be derived as 

follows. We consider an e of service of SOA to be an 

analogue of component of van der Hoek model and a 
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service of SOA itself to be analogue of product instance/ 

simply product of van der Hoek model. Also the 

provided operations of an e are analogous to provided 

services of a component and required operations of an e

are analogous to required services of a component. In fact, 

this makes sense easily; because an SOA may be 

some sort of complex PLA wherein a service, whether 

implemented initially or composed of other services, is 

indeed a product. Accordingly and analogously, we may 

define, 

PM1: POU (e) = (Actual number of provided operations of 

an e utilized within the service) /  (total number of operations 

provided by the e).      

PM2: ROU (e) = (actual number of required operations of e

available within service) / total number of operations 

required by e). (S of van der Hoek model replaced with O) 

Then, CPOU (PM 3) and CROU (PM4) will signify if an

entire service is more self-contained/ cohesive/ autonomous.  

Values close to 1 for CPOU and CROU indicate highly 

autonomous services.  

Such metrics may be useful in SOA because SOA is an 

evolutionary, integrating architecture, wherein disparate 

legacy components, and new components and external 

components (external to enterprise) when exposed as 

services come together, and so it may not be possible to 

design highly cohesive services from scratch, and it may not 

be even cost-effective to do so (for example, repeating same 

type of e in various services). 

Similarly, we propose CPOU and CROU for composite 

services (PM 5  and PM 6), and in this case we will treat the 

constituent services as components providing and requiring 

operations, i.e. either being invoked as subsidiary services or 

invoking other services. This metric will be of more use when 

some external services (external to an enterprise) are being 

used to compose such composite services. Use of external 

services signifies less cohesive composite services. 

VII. COMPLEXITY METRICS 

A. Fan-in and Fan-out Variants 

   Menkhaus and Andrich [25] have proposed a metric suite for 

embedded software systems. The basic model they 

use is a directed graph containing “blocks” at vertices, and 

edges as dependencies.  We adapt one of their metrics IOB, 

instability of block. Blocks that are stable are both

independent and highly responsible. Blocks are independent 

if they do not depend upon the results of the other blocks. 

Blocks are responsible, if changes of this block have a strong 

and wide-ranged impact upon other blocks. We have simply 

substituted e in place of block. A similar metric, but on an 

absolute scale has been suggested in [27]. In both [26] and 

[27], a higher value signifies “instable” or “most easily 

affected.”  Actually, these are either variants or direct 

adaptation of the classic fan-out complexity metric. And all 

outgoing coupling metrics of Perepletchikov et al [10] (also 

Section II) are also direct adaptation of fan-out. And so is the 

ADS of Rud et al. (Section III).  The IOB differs in that it 

takes into account fan-in in the denominator.  This is 

factored-in with   | IR (e) +1 | in the metric below.  

   The instability of element, IOE (e), is defined as 

IOE (e) = [ |OR(e)| + |SOR(e)| ] /  [ |IR (e)| +1+ |OR (e)|+ 

|SOR(e)| ]       e  si       (PM 7)

Where OR(e) is a set  formed by including  the pairs in OR 

(s), which have occurrence of e; SOR(e) is a set  formed by 

including  the pairs in SOR (s), which have occurrence of e;

and IR (e) is a set formed by including  the pairs in IR (s), 

which have occurrence of e. The term 1 in Dr. accounts for 

incoming coupling, whether direct or indirect, from si of s to 

which it belongs. OR (s), SOR (s) and IR (s) are defined as in 

Perepletchikov formal model discussed in Section II. The 

scale is [0, 1].  0 means very less instable, and hence stable, 

and 1 means highly instable. For the special case of the 

element si,

IOE (si) = |IIR(s)| / [ | IIR(s)| +|SIR(s)| ]       e = si        ( PM8

)

IIR(s) and SIR (s) are as defined in the Perepletchikov formal 

model of Section II. 

   Zhao et al. [17] have suggested a metric, change cost, for 

what they call service component as an element of service 

module.  It is actually total number of direct and indirect 

dependencies upon a service component, normalized to total 

number of service components in service module. The 

authors suggest that the change metric can be calculated with 

respect to complete SOS. We adapt this later version, and in 

that sense, it is complement of the above metric, because it 

signifies the influence or the effect on the rest of the system, 

or in other words, the “stability” or “strength” it signifies. 

Actually, this is akin to fan-in or incoming coupling metrics 
[9]. It is also similar to AIS [Section III]. However, we include 

fan-out in Dr to factor-in the dependence. The change cost of 

element e

CC (e) = [ |IR(e)| +1] / [  |IR(e)| +1+ |OR(e)| + |SOR(e)| ]       

e si    (PM 9)

Clearly, IOE (e) +CC (e) =1. 

Similarly, for the special case of si

CC (si) = |SIR(s) | / [ |IIR(s) | + |SIR(s) | ]      e = si  (PM10)

Again, IOE (si) +CC (si) =1 

B. Extending McCabe’s Cyclomatic Complexity (MCC) 

   We consider applying McCabe’s cyclomatic complexity 

metric. Perepletchikov et al. [8-10] also caution in their work, 

and rightly so, that traditional procedural and OO metrics are 

not immediately applicable to SOS. However, for example, 

basing on CBO (from CK-metrics-suite), and with some 

adjustments, they derive some metrics at level of e’s, which 

can be aggregated to higher level of service. However,  we do 

not see any problem in adapting McCabe’s cyclomatic 

complexity (MCC)  to SOA, and in fact, we take the cue from 

Vasconcelos et al. [18] who have adapted this to derive a 

complexity metric for what they call ISA (Information 

System Architecture). MCC has had wide applicapabilty, 

having been applied to parallel program [27], concurrent 

network models [28] and embedded software [25].

    (PM11): For each operation in a service, there is control 

flow graph (CFG) across some e’s in a service. This graph is, 

of course, cs1U cs2Ucs3U…Ucsl, where cs’s are l number of 

collaboration sequences in an operation, and U denotes graph 

union. cs is defined in the Perepletichikov model (Section II) 

as set of elements e that are invoked in response to specific 

inputs on an operation. From CFG of each operation, 

cyclomatic complexity is calculated as usual as 

(edges-nodes+2). Then, cyclomatic complexities are 

calculated for all operations in a service. All these values are

added, giving cyclomatic complexity for that service.
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C. Inter-connection Complexity 

   Maertz and Lindner [30] have proposed a complexity metric, 

what they call complexity of interconnection, for digital 

instrumentation and control software. However, it is based on 

generic graph. The metric is basically an average value 

reflecting the multiplicity of usage of the individual 

functional blocks for the computation of various output 

signals of a logic diagram of I&C software. We adapt it as 

follows. We juxtapose functional block with the service 

implementation elements (e), and output signal to an 

operation in a service; the entire service being juxtaposed to a 

logic diagram. Complexity of interconnection V(s), where s

is a service, 

V (s) =  |VE (oi) | /  |{e’s implementing  service s}|       

(PM12)

The summation is over all operations oi.

VE (oi) denotes the set of e’s implementing oi. Obviously, 

each VE(oi) may have some common elements with another 

VE (oj). The metric V(s) actually gives an average of 

multiplicity of usage of every element for implementing each 

operation of the service. 

The metric V(s) will have a limited range of values, which 

is in the interval between 1 and the number of operations of a 

service i.e. 1 V(s)  number of operations of service. As 

such, V(s) can be normalized to the interval [0, 1] thus giving 

a relative metric for the complexity of interconnection. 

VIII. MODIFIED RESPONSE FOR OPERATION 

   The paper [9] does provide a definition for a metric 

Response for Operation, RFO. RFO for a given operation o

of a service interface si is the cardinality of the sets  of 

implementation elements and other service interfaces that 

can be executed in response to invocations of o with all 

possible parameters. So, RFO = | CS (o)| , as defined in [10], 

where CS is set of collaboration sequences, cs, of operation o.

The original CK-metrics-suite [29] definition is: The response 

set of a class is a set of methods that can potentially be 

executed in response to a message received by an object of 

that class. This definition has been strictly followed in its 

essence in [18] to derive a metric, Average Response for 

Service, ARFS, but for Information System Architecture 

(ISA). We also follow the CK-metrics-definition strictly in 

its full essence, and derive a metric, Modified Response for 

Operation, RFOm.

   (PM 13): Construct composite graph (which is in fact 

control flow graph, CFG, in this case) as: cs1Ucs2U

cs3…Ucsl  (graph union over all elements of CS (o)). The 

cardinality of this graph set gives RFOm (m for modified, to 

distinguish it from RFO as above). 

IX. CONCLUSION AND FUTURE WORK

   We have demonstrated in this paper that the existing work 

on metrics in SOA and related domains of software 

engineering offer ample scope of expanding and deepening 

existing models. Thereby, we illustrate that multiple formal 

models of SOA will benefit the metrics work in SOA.     

   This paper is intended to be an initial warm-up to our future 

plan of conducting research along the following tentative 

plan. We have also proposed MCC for business process 

workflow, derived the Liu-Traore metric for atomic service, 

and derived a service granularity metric. We intend to expand 

our initial work. An important avenue is to investigate all 

modeling work done so far, especially those that have lead to 

formulation of important metrics, including both generic 

models like UML and specific ones, e.g. that of 

Perepletchikov et al. and conduct a comparison and critical 

analysis vis-à-vis commonly understood and implemented 

SOA concepts, and those of software architecture, and in light 

of current SOA practice. It is likely some consolidated work 

will reveal more insights and depths, and possibly 

development of some more quality metrics. Another 

interesting area could be to explore if and how various metrics 

are related to other metrics within a suite, and to metrics 

external to suite. Specifically, metrics from different suites but 

measuring the same attributes should not reflect any conflict 

whatsoever. 

   Recommending thresholds for various SOA metrics is very 

important from practical-implementation viewpoint. 

Thresholds [31] are heuristic values used to set ranges of 

desirable and undesirable metric values for measured 

software. These thresholds are used to identify anomalies, 

which may or may not be an actual problem.

   As has been pointed out earlier in this paper, the research in 

quality, metrics and evaluation for SOA is in early stages. 

Many of the metrics suites need empirical validation. A 

metric that is demonstrated to empirically co-relate with the 

attribute it is supposed to measure finds wide acceptability. 

This option offers ample avenues for future research. 
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