
Progressive Ranking and Composition of Web
Services with Interaction Relationship

Jianjun Yuan

The Key Laboratory of Embedded System and Service Computing Ministry of Education
 Tongji University, Shanghai, P.R.China

Email: 1jjyuan@tongji.edu.cn

Changjun Jiang
The Key Laboratory of Embedded System and Service Computing Ministry of Education

 Tongji University, Shanghai, P.R.China
Email: cjjiang@online.sh.cn

 Zuowen Jiang

The Key Laboratory of Embedded System and Service Computing Ministry of Education
 Tongji University, Shanghai, P.R.China

Email: jiangzuowen@gmail.com

Abstract—Service-oriented computing is a new software
development paradigm that allows application developers to
select available services from the Internet and to form new
web services. A main problem is how to efficiently
determine the most appropriate web services that will be
combined into an application based on their functionalities,
licensing costs, and reliability. Bryce et al. make use of the
group testing results, and then progressively select the best
component WS to construct the composite service by using
interaction testing. However, they consider only pair-wise
(2-way) interaction among any two component WS. In really
composite service, there are not always interactions among
any component WS, and some component WS may need N-
way (N >2) testing since there is a closer relationship among
them. We extend the model of interaction testing for WS
with interaction relationship and propose a greedy
algorithm for constructing variable covering arrays with
bias. Experimental results show that our approach can
cover more important interactions among web services
earlier.

Index Terms—service oriented architecture, web services,
covering arrays, group testing, reliability

I. INTRODUCTION

Web Services (WS) is an emerging technology that
offers a promising solution for developing distributed
applications which can be accessible via the Internet.
When individual web services are not able to meet
complex requirements, they can be combined to create
new value added composite services for those
requirements [1]. The new web service can be composed
dynamically at runtime, completely or partially, using

existing WS available over the Internet. To assure the
dependability of the new composite service, the
constituent services found over the Internet must be
tested in the composite service. However, the dynamic
features of WS impose numerous new challenges to
traditional testing techniques. For one thing the
traditional ‘test before delivery’ pattern is no longer
sufficient for the new paradigm since services are
published, invoked and integrated at runtime. WS must
be tested not only before, but also after, being published
and composed into another web service at runtime. For
another service providers may not be willing to provide
the source code, and provide the user interface and
functionality only. Therefore, testing can only be
performed according to the specification and the interface
definition of the WS in many situations [2].

A number of approaches have been proposed to ensure
trustworthiness of WS and their composition. Firstly,
various standards have been defined to assure
interoperability, such as, Web Ontology Language for
Services (OWL-S), WS Description Language (WSDL),
Unified Modeling Language (UML), Business Process
Execution Language for Web Services (BPEL4WS),
Simple Object Access Protocol (SOAP), Universal
Description, Discovery and Integration (UDDI) [3, 4, 5, 6,
7, 8].

Secondly, many studies of WS testing have been made.
Bloomberg divides WS testing technologies into three
phases. In phase one, WS are mainly tested like the
ordinary software. In phase two, the following features
are involved in testing: publishing, finding, and binding
capabilities of WS, the asynchronous capabilities of WS,
the SOAP intermediary capability, and the quality of
services. In phase three, dynamic runtime capabilities,
WS orchestration testing and WS versioning will be
tested [9]. Davidson also lists several testing techniques

Manuscript received
Corresponding author: Jianjun Yuan, Email: 1jjyuan@tongji.edu.cn

842 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.8.842-850

including: proof-of-concept testing, functional testing,
regression testing, load/stress testing, and monitoring [10].

Thirdly, Tsai et al. propose a Web Services Group
Testing (WSGT) technique to test a large number of WS
[11]. They apply the same inputs to the WS that meet the
same specification, execute the WS simultaneously, and
vote the results. The WS whose outputs agree with the
majority output are considered to produce a correct
output. Each WS is rated according to the rate of the
correct outputs. Bryce et al. make use of the group testing
results, and then progressively select the best component
WS to construct the composite service by using
interaction testing [2].

Interaction testing is an effective method to look for
defects in software systems. This method is based on the
observation that a large number of faults are caused by
factor (parameter) interactions in many systems. In this
approach, all t-tuples of interactions in a system are
incorporated into a test suite, which is called a t-way
interaction test suite. The test suite’s size can be reduced
if we select test cases appropriately, which can also lead
to reduced cost of testing.

In interaction testing, on the other hand, not all
interactions are of equal importance. Some interactions
may be more important since they appear more frequently.
Moreover, in many applications the entire test suite is not
executed because of time or budget constraints. Testers
want to include certain interactions in the earliest test
cases of a test suite if higher priorities are assigned to
these interactions.

Bryce et al. adapt a one-test-at-a-time greedy approach
to take importance of pair-wise interactions into account
and use this approach to generate a set of test cases in
order for WS testing [2]. However, they consider only
pair-wise (2-way) interaction among any two component
WS. Moreover, there are not always interactions among
any component WS in really composite service. Some
component WS may need N-way (N >2) testing since
there is a closer relationship among them.

This paper extends the model of interaction testing for
WS with interaction relationship and proposes a greedy
algorithm for test suite construction that employs
rankings of the constituent WS.

The remainder of this paper is organized as follows.
Section II describes background and basic models.
Section III develops a greedy strategy for test suite
construction that employs rankings of the constituent WS,
and gives a small example of building a row for a test
suite. Section IV provides experimental results. Section V
concludes with a discussion of the potential use of this
method.

II. BACKGROUND AND DEFINITIONS

WS group testing must determine a set of composite
services to construct that reveals not only errors in the
individual WS, but also those that result from interactions
among the WS. Therefore, once candidate WS are
identified for further test, the test suite constructed
provides coverage of the potential interactions.

When both the number of services and the number of
candidates for each service are small, exhaustive testing
is possible. But when either is large, wise selections are
required to minimize the size of the test suite. Covering
arrays are employed to deal with the combinatorial
explosion. They have been proposed for software
interaction testing [12, 13], and effective methods exist
for their construction [14, 15, 16]. For WSGT, a variant
of covering arrays is required to treat the different
confidence levels of trust for the individual services,
which means that different coverage is needed according
to these confidence levels.

A. Background
Suppose that the Composite Service Under Test

(CSUT) consists of n constituent WS: S1, S2,…, Sn. These
constituent WS are called factors of CSUT. Let S={S1,
S2,…, Sn} denote the set of factors, and without loss of
generality. For each factor Si, there are |vi|
implementations, where |vi| is the cardinality of vi, and vi
(1≤i≤n) denotes the set of implementations of Si. These
implementations are called values of factor Si, and may
have different licensing costs and confidence levels.

Definition 1 A covering array, CA(N; t, k, |v|), is an N
× k array such that every N × t subarray contains all
tuples of size t (t-tuples) at least once.

The strength of a covering array is t, which defines, for
example, 2-way or 3-way interaction test suite. In our
application, the k columns of this array are factors, where
each factor has |v| values. A t-way interaction test suite is
a covering array. For instance, a CSUT has three factors
(Order WS, Pay WS, and Deliver WS). For each of the
factors, there are two available implementations. These
implementations may have different licensing costs and
confidence levels. The implementations of Order WS are
denoted as values 0 and 1. Values 2 and 3 denote the
implementations of Pay WS. And the implementations of
Deliver WS are denoted as values 4 and 5. Four test cases
(rows) in Table I cover all pair-wise interactions. Table I
is an example of a pair-wise test suite.

TABLE I.
 THE PAIRWISE COVERAGE IS ACHIEVED WITHIN THE FOUR

TEST CASES
Test no. Order WS Pay WS Deliver WS

1 0 2 4
2 0 3 5
3 1 2 5
4 1 3 4

In general, most software systems do not have the

same number of values for each factor. A more general
structure can be defined that allows variability of |v|.

Definition 2 A mixed level covering array, MCA (N; t,
k, (|v1|,|v2|,…, |vk|)), is an N × k array on |v| values, where

∑ =
=

k

i i |v|v
1

|| , with the following properties: (1) Each

column i (1 ≤ i ≤ k) contains only elements from a set Ci
of size |vi|. (2) The rows of each N × t subarray cover all
t-tuples of values from the t columns at least once.

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 843

© 2010 ACADEMY PUBLISHER

A shorthand notation is used to describe mixed level
covering arrays by combining entries with equally sized
value ranges. For instance, a CSUT has 9 factors. Four of
these factors each take on 3 values, while the other 5 are
binary. The pair-wise test suite of this model can be
written as MCA (N; 2, 3425). The symbol of k can be
dropped since it can be obtained by adding the
superscripts.

B. Variable Strength Covering Array
As a factor of CSUT may interact with each other, a

group of factors that have interaction with each other can
be formed as a subset u of S. That means there is a |u|-
way interaction among the factors in this subset. So for
any u, the interaction test suite is needed to cover all valid
value combinations of factors in it. If we abstract each
one of all t interactions in CSUT as a subset of S, there is
a collection of these subsets U={u1, u2,…, ut}. A
interaction test suite for this CSUT should cover all t
interactions that associate with subsets in U. For instance,
for a CSUT with n factors, a pair-wise interaction test
suite should cover |U|=n×(n-1)/2 different pair-wise
interactions and U={{Si, Sj}| Si, Sj∈S and i≠j}.

Definition 3 The subset um∈U (m=1, 2,…, t) is
named as an interaction coverage requirement, and the
collection U is the interaction relationship of CSUT.

For simplicity, we assume following rules. (i) There
are nm (nm>1) factors in each coverage requirement. (ii)
For any two different coverage requirements um1

, um2
∈U

(m
1
≠m

2
), um1

is not subset of um2
and vice versa. (iii) Two

different factors Si, Sj∈S (i≠j) interact with each other if
and only if there exists a coverage requirement u∈U
such that Si, Sj∈u.

For example, consider an CSUT with 3 factors S={A, B,
C} and each factor has 2 values, which is shown in Fig. 1.
The interaction relationship of CSUT can be described as
U={u1, u2, u3}, where u1={A, B, C}, u2={A, C} and u3={B,
C}. That means that factors A, B, and C determine the
Client jointly, and that factor C associates with factor A
and B respectively.

Figure 1. CUST with interaction relationship.

Definition 4 A covering array covers a coverage
requirement um, if it contains all |um|-way interactions of
factors in um. For an N × p array, if it covers all coverage
requirements in U, then it is a variable strength covering
array for U and could be denoted as VCA(N; S, U).

Therefore, the variable strength covering array for U
should cover all combinations in set: CombSet ={comb|
comb∈CombSm}. And in which, the set CombSm (m=1,
2,…, t) is: CombSm={(am,1, am,2,…, am,nm

)|am,1∈vm,1, am,2

∈vm,2,…, am,nm
∈vm,nm }.

C. Variable Strength Covering Arrays with Bias
In practice, some interactions are more important than

others since some WS have higher confidence levels. The
covering array and the variable strength covering arrays
do not distinguish this, as they assume that all rows will
be run as test cases and have equal priorities. When only
some rows are to be used as test cases because of limited
project budgets, certain test cases are more desirable than
others. Both a covering array and a variable strength
covering array are not sufficient models when a tester
prefers to test certain interactions earlier than others.

For each value ai in CSUT, we assume that a
numerical value wi is available as an output from the
group testing described previously. wi, j is between 0 (the
lowest ranking of trust) and 1 (the highest ranking of
trust).

For a combination comb={a1, a2,…, ap} in CombSet,
the profit of comb is:

wwwwwwwww pj
ppji
ikj

pkji
ij

pji
icomb

......
...111
∑∑∑

≤<<≤≤<<≤≤<≤

+++= (1)

Every comb covered by the test case contributes to the
total profit, according to the reported value of trust
associated with each comb that has not been included in a
previous test case. Consider a test suite consisting of
many test cases. Rather than adding the profits of each
test case in the suite, we must account a profit only when
a comb has not been covered in another test case. Each
comb covered in a test case of the test suite may be
covered for the first time by this test case, or can have
been covered by an earlier test case as well. Its
incremental profit is wcomb in the first case, and zero in the
second. Then the incremental profit of the test case is the
sum of the incremental profits of the combs that it
contains. The total profit of a test suite is the sum, over
all test cases in the suite, of the incremental profit of the
test cases.

Definition 5 A l-Variable Covering Array with Bias
(l-VCAB) is a variable covering array VCA(N; S, U) in
which the first l rows form test cases whose total profit is
as large as possible.

Note that this definition should be seen as a goal rather
than a requirement. Finding an l-VCAB is NP-hard, even
if all profits for combs are equal [17]. Moreover, we
rarely know the value of l in advance. Therefore, we use
the term l-VCAB to mean a variable covering array in
which the test cases are ordered, and for every l, the first l
test cases yield a large total profit.

844 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

D. Constructing Covering Arrays
The main techniques for constructing covering arrays

can be classified three categories: mathematical methods,
greedy algorithms, and meta-heuristic strategies.
Mathematical methods for generating covering arrays
usually require that each factor has the same number of
values, which restrict the universality of this kind of
methods. The use of orthogonal arrays belongs to this
category [18, 19]. Greedy algorithms start with an empty
set T and add one test at a time according to some
policies like covering the most uncovered pairs [20].
Final T is a solution. The representatives of greedy
algorithms include the Automatic Efficient Test Case
Generator (AETG) [20], the In Parameter Order (IPO)
algorithm [21, 22, 23], the Test Case Generator (TCG)
[24] and the Deterministic Density Algorithm (DDA)
[17]. Meta-heuristic approaches begin with individual or
population covering array(s) and transform this or these
covering array(s) according to various search strategies.
The final answer will be found when stopping conditions
are met. This kind of approaches mainly includes hill
climbing [13], great deluge algorithm [13], simulated
annealing [13, 25, 26], tabu search [27] and genetic
algorithms [25, 28].

Of these various types of construction approaches,
greedy algorithms from [17] are the most natural fit with
the problem of generating VCAB since test cases are
incrementally built one-row-at-a-time. Nevertheless, not
all test cases in a VCAB are executed in practice as a
result of time or budget constraints. Testers may only run
a subset of a test suite and want to execute the test cases
with the largest profit first. Greedy algorithms meet this
requirement. A greedy algorithm selects values in order
to provide as much coverage as possible in every iteration.
Earlier rows have the largest amount of coverage. In
section III, we adapt the deterministic density algorithm
to generate VCAB.

III. ALGORITHMS TO CONSTRUCT VCAB

VCAB is a variation of covering arrays. In this section,
we start with a review of how to generate covering arrays
with a greedy approach and then explain how the greedy
method is modified to generate VCAB.

A. The Framework of One-test-at-a-time Strategy
The construction of covering arrays and mixed-level

covering arrays can fall into a greedy framework of one-
test-at-a-time strategy and can be described at a high level.
The overall goal in generating a covering array is to
create a two-dimensional array in which all t-tuples
associated with a specified input are covered. In such
strategy, this collection is built one row at a time by
fixing each factor with a value. A factor that has been
assigned a value is referred to as fixed; one that has not,
as free. A row may be selected from multiple candidates.
When more than one candidate can be selected, several
rows are constructed and one is chosen to add to the
covering array. Once all t-tuples have been covered, the
covering array is complete. The framework of such
strategy is described as Algorithm 1.

The process of test suite (covering array) generation
begins with an empty test suite. And then, test cases will
be generated and added into the test suite one by one,
until all combinations in set CombSet are covered by the
test suite.

In the process of generating single test cases, it has
been proven to be NP-hard in pair-wise testing that select
a “best” single test case each time to cover the greatest
number of uncovered combinations in CombSet [17].
Since pair-wise testing could be regarded as a special
case of VCAB, selecting such a “best” test case in VCAB
is also NP-hard. Therefore, a feasible method is to
generate approximate “best” single test case by some
efficient algorithm. We propose an algorithm, which is
based on “density”, to construct a single test case.

Algorithm 1. The framework of one-test-at-a-time

strategy

1 Start with an empty test suite T

2 Initialize the set CombSet according to CSUT

3 While (CombSet ≠Φ)

4 Select a single test case, and add it into T

5 Modify CombSet, delete all combinations that

covered by selected test case

6 End While

B. Definition of Density for VCAB
The concept of “density” is firstly defined by Colbourn

et al. [17]. In that paper density is calculated in one of
three ways. (i) For each new tuple that is covered in
relation to fixed factors, density increases by 1.0. (ii)
When no new tuples are covered, density does not change.
(iii) For each new partial tuple that may be covered with
free factors, a density formula calculates the likelihood of
covering future tuples. For the case of pair-wise coverage,
the maximum number of values for any factor is denoted
as |vmax|. For factors Si and Sj, the local density is Li,j = ri,j /
|vmax|, where ri,j is the number of uncovered pairs
involving a value of factor Si and a value of factor Sj.

The definition of density in [17] is only available in
pair-wise testing. Therefore we propose a new definition
of “density” for generating VCAB. For each coverage
requirement um (1≤m≤t), we define the local density for
VCAB as:

upu mmmwwL mtmmm

/)(

1))(/(max
−

≤≤
= (2)

The wm denotes the sum of profit of available
uncovered combinations, in which the values of such
factors are equal to the fixed values in current test case, in
set um. The pm is the number of factors whose values have
been fixed. When um = pm, there will be at most one
available combination. In this case, if there is an available
combination, the density is the profit of this combination;
else it is 0.

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 845

© 2010 ACADEMY PUBLISHER

According to the definition of local density, the global
density of CSUT could be defined as:

∑ =
=

t

m mLG
1

 (3)

When generating a single test case, we try to find a test
that offers the largest incremental profit of density.

C. Algorithm to Construct Single Test Case
When constructing each single test case, an empty test

case, in which values of all factors have not been fixed,
will be generated firstly. At each stage, one coverage
requirement, in which there is at least one factor whose
value has not been fixed, will be selected for its greatest
local density (assuming um is selected). And then, for
each one of all possible uncovered combinations in um, if
it is available in current test case, calculate the global
density by assuming fixing values for factors in um as
such available combination. The available combination
that takes the greatest global density will be selected and
inserted into current test case.

Iterate this process until all factors have been fixed in
current test case. The pseudo-code of generating a single
test case is described as Algorithm 2. We select the first
one that satisfies given property to deal with tie-break.
Experimental results show that there are not significant
differences among various tie-break methods.

D. Algorithm Walk-Through
In this section, we illustrate the algorithm with a small

example of building a row for a test suite. Consider the
input in Table II. There are 5 factors in the CSUT. The
values of these factors are assigned from 0 to 11. And the
profit of each value is in the parentheses.

The interaction relationship of the CSUT is defined as
U ={u1, u2, u3, u4}, where u1={S1, S2}, u2={S2, S3, S4},
u3={S4, S5}, and u4={S1, S5}.

After initializing the set CombSet according to CSUT,
we compute local density for each um∈U, where m=1, 2,
3, 4. The results are shown in Table III.

We select coverage requirement u2 since its local
density is greatest. Then for each combination
comb∈CombS2, global density is calculated by assuming
the values of factors in um are fixed as comb. The
computational results are shown in Table IV.

According to Table IV, we fix factors in u2 as {4, 6, 8}
because global density is greatest when comb={4, 6, 8}.
Mark u2 handled, and continue next iteration since there
are also two free factors. The values of local density for
u1, u3, u4 are shown in Table V.

Since u3 has the greatest local density and there is one
factor, S4, in u3 has been fixed to value 8, for
combinations {8, 9}, {8, 10}, {8, 11}, global density is
calculated by assuming the values of factors in um are
fixed as these three combinations. The computational
results are shown in Table VI.

Algorithm 2. Generate a single test case

1 Begin with an empty test case test

2 Mark all um ∈U not handled

3 While (CombSet ≠Φ and at least one factor whose

value has not been fixed)

4 For m=1 to t

5 If (um is not handled)

6 If (in um, at least one factor whose

value has not been fixed)

7 Calculate local density for um∈U

8 End If

9 End If

10 End For

11 Select a new coverage requirement um with the

greatest local density

12 Mark um handled

13 For each comb∈CombSm

14 If (comb is available in test)

15 Calculate global density by assuming

the values of factors in um are fixed

as comb

16 End If

17 End For

18 Select a combination comb that takes the

greatest global density

19 Fix factors in um as the selected combination

20 End While

TABLE II.

FACTORS, VALUES, AND PROFIT OF EACH VALUE
S1 S2 S3 S4 S5

0(0.2) 3(0.2) 5(0.4) 7(0.1) 9(0.7)
1(0.1) 4(0.3) 6(0.5) 8(0.9) 10(0.4)
2(0.1) 11(0.8)

TABLE III.

LOCAL DENSITY FOR EACH um
u1 u2 u3 u4

0.0482 1 0.4578 0.1831

The results in Table VI show that global density is
greatest when comb={8, 11}. So we fix factor S5 to value
11. Mark u2 and u3 handled, and continue next loop since
there is also one free factor. The values of local density
for u1, u4 are shown in Table VII.

846 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

Select coverage requirement u4 since its local density
is greatest. Then for each available combination
comb∈CombS4, global density is calculated by assuming
the values of factors in u3 are fixed as comb. The
computational results are shown in Table VIII. According
to Table VIII, we arrange value 0 to factor S1. Then the
first test is generated.

TABLE IV.

 GLOBAL DENSITY FOR EACH comb∈CombS2
{3, 5, 7} {3, 5, 8} {3, 6, 7} {3, 6, 8}
0.4637 1.7538 0.4957 1.8818

{4, 5, 7} {4, 5, 8} {4, 6, 7} {4, 6, 8}
0.5373 1.9394 0.5803 2.0864

TABLE V.

 LOCAL DENSITY FOR u1, u3, u4
u1 u3 u4

0.0589 0.8394 0.1831

TABLE VI.
GLOBAL DENSITY FOR AVAILABLE comb∈CombS3
{8, 9} {8, 10} {8, 11}
0.8264 0.4974 0.9360

TABLE VII.

LOCAL DENSITY FOR u1, u4
u1 u4

0.0589 0.1571

TABLE VIII.
GLOBAL DENSITY FOR AVAILABLE comb∈CombS4
{0, 11} {1, 11} {2, 11}

0.22 0.11 0.11

IV. EXPERIMENT

We have implemented both the algorithms in this
paper (Profit algorithms) and the algorithms without
considering profit (Non-profit algorithms) for comparison.
Both algorithms are based on density. The input uses the
data in Table II.

Table IX and Table X show the output of Profit
algorithms and Non-profit algorithms, and the symbol ‘-’
denotes that this place can be any value of the factor since
all the combinations in CombSet have been covered. Both
Table IX and Table X are VCA generated by using the
data in Table II. We perform some experiments using
other input and discover that the size of the VCA
generated may vary according to the distribution of profit
of values.

The amount of profit covered in each test using these
two algorithms is shown in Table 11. From this table,
Profit algorithms cover more profit early. Fig. 2 shows
the difference in cumulative profit covered after each test.

TABLE IX.
 OUTPUT OF NON-PROFIT ALGORITHMS

Test no. S1 S2 S3 S4 S5
1 0 3 5 7 9
2 1 3 5 8 10
3 2 4 5 7 11
4 0 4 6 7 10
5 1 4 5 8 9
6 0 3 6 8 11
7 2 3 6 7 9
8 1 4 6 8 11
9 2 - - - 10

TABLE X.

OUTPUT OF PROFIT ALGORITHMS
Test no. S1 S2 S3 S4 S5

1 0 4 6 8 11
2 0 4 5 8 9
3 0 3 6 8 10
4 1 3 5 8 11
5 1 4 6 7 9
6 2 4 5 7 11
7 2 3 6 7 10
8 2 3 5 7 9
9 1 - - - 10

TABLE XI.

PROFIT COVERED IN EACH TEST
Test no. Non-profit Algorithms (%) Profit Algorithms (%)

1 5.68 27.75
2 15.86 23.22
3 5.59 18.54
4 6.06 11.30
5 22.65 5.92
6 24.25 5.59
7 3.85 3.99
8 15.48 3.11
9 0.57 0.57

Figure 2. Cumulative profit covered using Profit algorithms and Non-

profit algorithms.

The profit distribution may affect the cumulative profit

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 847

© 2010 ACADEMY PUBLISHER

coverage. To explore this further, we perform
experiments according to different profit distributions.
Consider the input 16394280 (This is a shorthand notation
for a CSUT, which has 87 factors. Three of these factors
each take on 16 values. Four of these factors each take on
9 values. And the other 80 are binary). The interaction
relationship in this CSUT is pair-wise interaction. Three
different profit distributions are as follows.

• Distribution 1 (Equal profit): All values have the
same profit.

• Distribution 2 (50/50 split): Half of the profits for
each factor are set to 0.8 and the other half to 0.2.

• Distribution 3 (Random): Profits are randomly
distributed.

Fig. 3 shows the percentage of cumulative profit
covered in the first 10 test cases for each of the three
distributions. When all values have the same profit, the
result is a (non-biased) variable strength covering array
and the cumulative profit covered is the least in the
earliest test cases. Nevertheless, when there is more
different in the distribution of profits, a biased variable
strength covering array can often cover more profit in the
earliest test cases. For example, the distribution of 50/50
split shows the most profit coverage in the earliest test
cases. This may be expected because half of the values
with a profit of 0.8 comprise the majority of the profit
and are rapidly covered in the early test cases. The
randomly distribution is intermediate between the two
extremes considered.

Figure 3. Cumulative profit covered under different profit
distributions.

The size of the test suites produced also varies. For the

three distributions, the test suites generated has 315, 327,
329 test cases, respectively. The distribution of 50/50
split generates a larger test suite than the distribution of
equal profit. We perform experiments using several more
examples to examine this further. Table XII shows the
results in six scenarios: three have all factors with the

same number of values and three are mixed level. From
table XII equal profit often generate the smallest test suite.

TABLE XII.
 SIZES OF TEST SUITES WITH DIFFERENT PROFIT

DISTRIBUTIONS
 Equal profit 50/50 split Random

34 9 9 13
313 19 20 20
4100 46 51 53

415317229 38 45 48
41339235 27 36 39
513822 20 24 27

There are mainly three kinds of threats to our findings:

external, internal and construct validity.
Threats to external validity [29] are conditions that

limit the ability to generalize the results of our
experiments. The major external threat in this paper is our
choice of input data. We cannot guarantee that these
models accurately represent real CSUT.

Threats to internal validity are conditions that can
affect the dependent variables of the experiment without
the researcher’s knowledge. There is one main threat to
internal validity. Although we have verified the results of
every run, we cannot be completely sure that the
implementations are correct translations from pseudo-
code, nor that there are not bugs in these programs.

Threats to construct validity are that we have
considered both the profit covered and the size of the
resulting test suite, but we have ignored other metrics that
are important in some cases.

V. CONCLUSIONS

Constructing test suites for testing WS in a service-
oriented architecture is a challenging task. A main
challenge is how to efficiently select the most appropriate
WS that will be combined into an application based on
their functionalities, licensing costs, and reliability when
many alternative WS for a given functional specification
are provided.

Interaction testing based on density is a promising
approach to test composite WS. Previous work only
studies 2-way interactions between WS. Nevertheless
some WS may need N-way (N>2) testing since there are
closer relationship among them.

This paper extends the model of interaction testing for
WS with interaction relationship and proposes a greedy
algorithm for test suite construction that employs
rankings of the constituent WS. The greedy method is
based on density and determines a sequence of test cases
to be performed. Each test case attempts to make the best
incremental improvement of profit. Experimental results
show that the new approach can provide the test suite in a
prioritized order. In the future we will look for more
methods to ensure the trustworthiness of WS.

ACKNOWLEDGMENT

This research was partially supported by Program for
Changjiang Scholars and Innovative Research Team in

848 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

University, the National Natural Science Foundation of
China (60534060, 90718012, and 90818023), and the
National High-Tech Research and Development Plan
(863) of China (2007AA01Z136, 2007AA01Z149,
2009AA01Z401, and 2009AA01Z141).

REFERENCES

[1] T. V. Xuan, H. Tsuji, and R. Masuda, “A new QoS
ontology and its QoS-based ranking algorithm for web
services,” Simulation Modelling Practice and Theory, vol.
17, pp. 1378-1398, September 2009.

[2] R. Bryce, C. J. Colbourn, and Y. Chen, “Biased covering
arrays for progressive ranking and composition of web
services,” International Journal Simulation and Process
Modeling, vol. 3, pp. 80-87, October 2007.

[3] Ankolekar et al., “DAML-S: web service description for
the semantic web,” in Proc. International Semantic Web
Conference, 2002, pp. 348–363.

[4] F. Curbera et al., “Unraveling the web services web: an
introduction to SOAP, WSDL and UDDI,” IEEE Internet
Computing, vol. 6, pp. 86–93, March 2002.

[5] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S.
Weerawarana, “The next step in web services,”
Communications of the ACM, vol. 46, pp. 29–34, October
2003.

[6] N. Milanovic, and M. Malek, “Current solutions for web
service composition,” IEEE Internet Computing, vol. 8, pp.
51–59, November 2004.

[7] W. T. Tsai et al., “Verification of web services using an
enhanced UDDI server,” in Proc. IEEE WORDS, 2003, pp.
131–138.

[8] W.T. Tsai, R. Paul, Y. Wang, C. Fan, and D. Wang,
“Extending WSDL to facilitate web services testing,” in
Proc. IEEE HASE, 2002, pp. 171–172.

[9] J. Bloomberg, “Web services testing: beyond SOAP,”
Internet: http://www.zapthink.com, September 1, 2002
[March 5, 2009].

[10] N. Davidson, “Testing web services,” Internet:
http://www.webservices.org, October 7, 2002 [March 12,
2009].

[11] W. T. Tsai, Y. Chen, R. Paul, N. Liao, and H. Huang,
“Cooperative and group testing in verification of dynamic
composite web services,” in Proc. Workshop on Quality
Assurance and Testing of Web-Based Applications, in
Conjunction with COMPSAC, 2004, pp. 170–173.

[12] M. B. Cohen, C. J. Colbourn, J. S. Collofello, P. B.
Gibbons, and W. B. Mugridge, “Variable strength
interaction testing of components,” in Proc. 27th Annual
International Computer Software and Applications
Conference, 2003, pp. 413–418.

[13] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B.
Mugridge, “Constructing test suites for interaction testing,”
in Proc. International Conf. Software Engineering, 2003,
pp. 38–48.

[14] M. A. Chateauneuf, C. J. Colbourn, and D. L. Kreher,
“Covering arrays of strength three.” Designs, Codes and
Cryptography, vol. 16, pp. 235–242, May 1999.

[15] C. Cheng, A. Dumitrescu, and P. Schroeder, “Generating
small combinatorial test suites to cover input-output
relationships,” in Proc. the Third International Conference
on Quality Software, 2003, pp. 76–82.

[16] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling,
“Augmenting simulated annealing to build interaction test
suites,” in Proc. IEEE International Symposium Software
Reliability Engineering, 2003, pp. 394–405.

[17] C. J. Colbourn, M. B. Cohen, and R. C. Turban, “A
deterministic density algorithm for pairwise interaction
coverage,” in Proc. International Conference on Software
Engineering, 2004, pp. 245–252.

[18] R. Brownlie, J. Prowse, and M. S. Padke, “Robust testing
of AT&T PMX/StarMAIL using OATS,” AT&T Technical
Journal, vol. 71, pp. 41-47, May 1992.

[19] R. Mandl, “Orthogonal latin squares: an application of
experiment design to compiler testing,” Communications
of the ACM, vol. 28, pp. 1054-1058, Oct. 1985.

[20] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton.
“The AETG System: An Approach to Testing Based on
Combinatorial Design.” IEEE Transactions on Software
Engineering, vol. 23, pp. 437-444, July 1997.

[21] K. C. Tai and Y. Lei, “A test generation strategy for
pairwise testing,” IEEE Transactions on Software
Engineering, vol. 28, pp. 109-111, January 2002.

[22] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,
“IPOG: a general strategy for t-way software testing,” in
Proc. IEEE International Conference on the Engineering
of Computer-Based Systems, 2007, pp. 549-556.

[23] L. Yu and K. C. Tai, “In-parameter-order: a test
generation strategy for pairwise testing,” in Proc. 3rd IEEE
International High-Assurance Systems Engineering
Symposium, 1998, pp. 254-261.

[24] T. W. Tung and W. S. Aldiwan, “Automating test case
generation for the new generation mission software
system,” in Proc. IEEE Aerospace Conference, 2000, pp.
431-437.

[25] J. Stardom, “Metaheuristics and the search for covering
and packing arrays,” M.A. thesis, Simon Fraser University,
Canada, 2001.

[26] B. Stevens, “Transversal covers and packings,” Ph.D.
thesis, University of Toronto, Canada, 1998.

[27] K. Nurmela, “Upper bounds for covering arrays by tabu
search,” Discrete Applied Mathematics, vol. 138, pp. 143-
152, March 2004.

[28] S. A. Ghazi and M. A. Ahmed, “Pair-wise test coverage
using genetic algorithms,” in Proc. Congress on
Evolutionary Computation, 2003, pp. 1420-1424.

[29] C. Wohlin et al., Experimentation in Software
Engineering: An Introduction. Norwell, MA: Kluwer
Academic Publishers, 2000.

Jianjun Yuan received the B.S. degree in 1998 from Hubei
University, China, and the M.S. degree in 2005 from Huazhong
University of Science & Technology, China, both in computer
science and engineering. He is currently pursuing the Ph.D.
degree in the Department of Computer Science and Technology
at Tongji University, China. His research interests include web
services and software testing.

Changjun Jiang received the Ph.D. degree from the Institute of
Automation, Chinese Academy of Sciences, Beijing, China, in
1995 and conducted post-doctoral research at the Institute of
Computing Technology, Chinese Academy of Sciences, in 1997.
He is a Professor with the Department of Computer Science and
Technology, Tongji University, Shanghai, China. He has taken
in over 20 projects supported by National Natural Science
Foundation, National Key Technologies R&D Program,
National Key Basic Research Developing Program, and other

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 849

© 2010 ACADEMY PUBLISHER

key projects at provincial or ministerial levels. He has published
more than 100 papers in domestic and international academic
journals and conference proceedings, including IEEE
Transactions on System, Man and Cybernetics, Information
Sciences and so on. Furthermore, he has published four books
(supported by Science Publishing Foundation of the Chinese
Academy of Science). His current areas of research are web
services, concurrent theory, Petri net, and formal verification of
software.

Zuowen Jiang is currently pursuing the Ph.D. degree in the
Department of Computer Science and Technology at Tongji
University, China. His research interests include web services,
formal methods, and model checking.

850 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

