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Abstract—Service-oriented computing is a new software 
development paradigm that allows application developers to 
select available services from the Internet and to form new 
web services. A main problem is how to efficiently 
determine the most appropriate web services that will be 
combined into an application based on their functionalities, 
licensing costs, and reliability. Bryce et al. make use of the 
group testing results, and then progressively select the best 
component WS to construct the composite service by using 
interaction testing. However, they consider only pair-wise 
(2-way) interaction among any two component WS. In really 
composite service, there are not always interactions among 
any component WS, and some component WS may need N-
way (N >2) testing since there is a closer relationship among 
them. We extend the model of interaction testing for WS 
with interaction relationship and propose a greedy 
algorithm for constructing variable covering arrays with 
bias. Experimental results show that our approach can 
cover more important interactions among web services 
earlier.  
 
Index Terms—service oriented architecture, web services, 
covering arrays, group testing, reliability 
 

I.  INTRODUCTION 

Web Services (WS) is an emerging technology that 
offers a promising solution for developing distributed 
applications which can be accessible via the Internet. 
When individual web services are not able to meet 
complex requirements, they can be combined to create 
new value added composite services for those 
requirements [1]. The new web service can be composed 
dynamically at runtime, completely or partially, using 

existing WS available over the Internet. To assure the 
dependability of the new composite service, the 
constituent services found over the Internet must be 
tested in the composite service. However, the dynamic 
features of WS impose numerous new challenges to 
traditional testing techniques. For one thing the 
traditional ‘test before delivery’ pattern is no longer 
sufficient for the new paradigm since services are 
published, invoked and integrated at runtime. WS must 
be tested not only before, but also after, being published 
and composed into another web service at runtime. For 
another service providers may not be willing to provide 
the source code, and provide the user interface and 
functionality only. Therefore, testing can only be 
performed according to the specification and the interface 
definition of the WS in many situations [2]. 

A number of approaches have been proposed to ensure 
trustworthiness of WS and their composition. Firstly, 
various standards have been defined to assure 
interoperability, such as, Web Ontology Language for 
Services (OWL-S), WS Description Language (WSDL), 
Unified Modeling Language (UML), Business Process 
Execution Language for Web Services (BPEL4WS), 
Simple Object Access Protocol (SOAP), Universal 
Description, Discovery and Integration (UDDI) [3, 4, 5, 6, 
7, 8]. 

Secondly, many studies of WS testing have been made. 
Bloomberg divides WS testing technologies into three 
phases. In phase one, WS are mainly tested like the 
ordinary software. In phase two, the following features 
are involved in testing:  publishing, finding, and binding 
capabilities of WS, the asynchronous capabilities of WS, 
the SOAP intermediary capability, and the quality of 
services. In phase three, dynamic runtime capabilities, 
WS orchestration testing and WS versioning will be 
tested [9]. Davidson also lists several testing techniques 
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including: proof-of-concept testing, functional testing, 
regression testing, load/stress testing, and monitoring [10]. 

Thirdly, Tsai et al. propose a Web Services Group 
Testing (WSGT) technique to test a large number of WS 
[11]. They apply the same inputs to the WS that meet the 
same specification, execute the WS simultaneously, and 
vote the results. The WS whose outputs agree with the 
majority output are considered to produce a correct 
output. Each WS is rated according to the rate of the 
correct outputs. Bryce et al. make use of the group testing 
results, and then progressively select the best component 
WS to construct the composite service by using 
interaction testing [2].  

Interaction testing is an effective method to look for 
defects in software systems. This method is based on the 
observation that a large number of faults are caused by 
factor (parameter) interactions in many systems. In this 
approach, all t-tuples of interactions in a system are 
incorporated into a test suite, which is called a t-way 
interaction test suite. The test suite’s size can be reduced 
if we select test cases appropriately, which can also lead 
to reduced cost of testing. 

In interaction testing, on the other hand, not all 
interactions are of equal importance. Some interactions 
may be more important since they appear more frequently. 
Moreover, in many applications the entire test suite is not 
executed because of time or budget constraints. Testers 
want to include certain interactions in the earliest test 
cases of a test suite if higher priorities are assigned to 
these interactions.  

Bryce et al. adapt a one-test-at-a-time greedy approach 
to take importance of pair-wise interactions into account 
and use this approach to generate a set of test cases in 
order for WS testing [2]. However, they consider only 
pair-wise (2-way) interaction among any two component 
WS. Moreover, there are not always interactions among 
any component WS in really composite service. Some 
component WS may need N-way (N >2) testing since 
there is a closer relationship among them. 

This paper extends the model of interaction testing for 
WS with interaction relationship and proposes a greedy 
algorithm for test suite construction that employs 
rankings of the constituent WS.  

The remainder of this paper is organized as follows. 
Section II describes background and basic models. 
Section III develops a greedy strategy for test suite 
construction that employs rankings of the constituent WS, 
and gives a small example of building a row for a test 
suite. Section IV provides experimental results. Section V 
concludes with a discussion of the potential use of this 
method. 

II.  BACKGROUND AND DEFINITIONS  

WS group testing must determine a set of composite 
services to construct that reveals not only errors in the 
individual WS, but also those that result from interactions 
among the WS. Therefore, once candidate WS are 
identified for further test, the test suite constructed 
provides coverage of the potential interactions. 

When both the number of services and the number of 
candidates for each service are small, exhaustive testing 
is possible. But when either is large, wise selections are 
required to minimize the size of the test suite. Covering 
arrays are employed to deal with the combinatorial 
explosion. They have been proposed for software 
interaction testing [12, 13], and effective methods exist 
for their construction [14, 15, 16]. For WSGT, a variant 
of covering arrays is required to treat the different 
confidence levels of trust for the individual services, 
which means that different coverage is needed according 
to these confidence levels. 

A.  Background  
Suppose that the Composite Service Under Test 

(CSUT) consists of n constituent WS: S1, S2,…, Sn. These 
constituent WS are called factors of CSUT. Let S={S1, 
S2,…, Sn} denote the set of factors, and without loss of 
generality. For each factor Si, there are |vi| 
implementations, where |vi| is the cardinality of vi, and vi 
(1≤i≤n) denotes the set of implementations of Si. These 
implementations are called values of factor Si, and may 
have different licensing costs and confidence levels.  

Definition 1  A covering array, CA(N; t, k, |v|), is an N 
× k array such that every N × t subarray contains all 
tuples of size t (t-tuples) at least once. 

The strength of a covering array is t, which defines, for 
example, 2-way or 3-way interaction test suite. In our 
application, the k columns of this array are factors, where 
each factor has |v| values. A t-way interaction test suite is 
a covering array. For instance, a CSUT has three factors 
(Order WS, Pay WS, and Deliver WS). For each of the 
factors, there are two available implementations. These 
implementations may have different licensing costs and 
confidence levels. The implementations of Order WS are 
denoted as values 0 and 1. Values 2 and 3 denote the 
implementations of Pay WS. And the implementations of 
Deliver WS are denoted as values 4 and 5. Four test cases 
(rows) in Table I cover all pair-wise interactions. Table I 
is an example of a pair-wise test suite. 
 

TABLE I. 
 THE PAIRWISE COVERAGE IS ACHIEVED WITHIN THE FOUR 

TEST CASES 
Test no. Order WS Pay WS Deliver WS 

1 0 2 4 
2 0 3 5 
3 1 2 5 
4 1 3 4 

 
In general, most software systems do not have the 

same number of values for each factor. A more general 
structure can be defined that allows variability of |v|. 

Definition 2  A mixed level covering array, MCA (N; t, 
k, (|v1|,|v2|,…, |vk|)), is an N × k array on |v| values, where 

∑ =
=

k

i i |v|v
1

|| , with the following properties: (1) Each 

column i (1 ≤ i ≤ k) contains only elements from a set Ci 
of size |vi|. (2) The rows of each N × t subarray cover all 
t-tuples of values from the t columns at least once. 
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A shorthand notation is used to describe mixed level 
covering arrays by combining entries with equally sized 
value ranges. For instance, a CSUT has 9 factors. Four of 
these factors each take on 3 values, while the other 5 are 
binary. The pair-wise test suite of this model can be 
written as MCA (N; 2, 3425). The symbol of k can be 
dropped since it can be obtained by adding the 
superscripts. 

B.  Variable Strength Covering Array  
As a factor of CSUT may interact with each other, a 

group of factors that have interaction with each other can 
be formed as a subset u of S. That means there is a |u|-
way interaction among the factors in this subset. So for 
any u, the interaction test suite is needed to cover all valid 
value combinations of factors in it. If we abstract each 
one of all t interactions in CSUT as a subset of S, there is 
a collection of these subsets U={u1, u2,…, ut}. A 
interaction test suite for this CSUT should cover all t 
interactions that associate with subsets in U. For instance, 
for a CSUT with n factors, a pair-wise interaction test 
suite should cover |U|=n×(n-1)/2 different pair-wise 
interactions and U={{Si, Sj}| Si, Sj∈S and i≠j}. 

Definition 3  The subset um∈U (m=1, 2,…, t) is 
named as an interaction coverage requirement, and the 
collection U is the interaction relationship of CSUT.  

For simplicity, we assume following rules. (i) There 
are nm (nm>1) factors in each coverage requirement. (ii) 
For any two different coverage requirements um1

, um2
∈U 

(m
1
≠m

2
), um1 

is not subset of um2 
and vice versa. (iii) Two 

different factors Si, Sj∈S (i≠j) interact with each other if 
and only if there exists a coverage requirement u∈U 
such that Si, Sj∈u.  

For example, consider an CSUT with 3 factors S={A, B, 
C} and each factor has 2 values, which is shown in Fig. 1. 
The interaction relationship of CSUT can be described as 
U={u1, u2, u3}, where u1={A, B, C}, u2={A, C} and u3={B, 
C}. That means that factors A, B, and C determine the 
Client jointly, and that factor C associates with factor A 
and B respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. CUST with interaction relationship. 
 

Definition 4  A covering array covers a coverage 
requirement um, if it contains all |um|-way interactions of 
factors in um. For an N × p array, if it covers all coverage 
requirements in U, then it is a variable strength covering 
array for U and could be denoted as VCA(N; S, U). 

Therefore, the variable strength covering array for U 
should cover all combinations in set: CombSet ={comb| 
comb∈CombSm}. And in which, the set CombSm (m=1, 
2,…, t) is: CombSm={(am,1, am,2,…, am,nm

)|am,1∈vm,1,  am,2

∈vm,2,…, am,nm
∈vm,nm }. 

C.  Variable Strength Covering Arrays with Bias  
In practice, some interactions are more important than 

others since some WS have higher confidence levels. The 
covering array and the variable strength covering arrays 
do not distinguish this, as they assume that all rows will 
be run as test cases and have equal priorities. When only 
some rows are to be used as test cases because of limited 
project budgets, certain test cases are more desirable than 
others. Both a covering array and a variable strength 
covering array are not sufficient models when a tester 
prefers to test certain interactions earlier than others. 

For each value ai in CSUT, we assume that a 
numerical value wi is available as an output from the 
group testing described previously. wi, j is between 0 (the 
lowest ranking of trust) and 1 (the highest ranking of 
trust).  

For a combination comb={a1, a2,…, ap} in CombSet, 
the profit of comb is: 

wwwwwwwww pj
ppji
ikj

pkji
ij

pji
icomb

......
...111
∑∑∑

≤<<≤≤<<≤≤<≤

+++=      (1) 

Every comb covered by the test case contributes to the 
total profit, according to the reported value of trust 
associated with each comb that has not been included in a 
previous test case. Consider a test suite consisting of 
many test cases. Rather than adding the profits of each 
test case in the suite, we must account a profit only when 
a comb has not been covered in another test case. Each 
comb covered in a test case of the test suite may be 
covered for the first time by this test case, or can have 
been covered by an earlier test case as well. Its 
incremental profit is wcomb in the first case, and zero in the 
second. Then the incremental profit of the test case is the 
sum of the incremental profits of the combs that it 
contains. The total profit of a test suite is the sum, over 
all test cases in the suite, of the incremental profit of the 
test cases. 

Definition 5  A l-Variable Covering Array with Bias 
(l-VCAB) is a variable covering array VCA(N; S, U) in 
which the first l rows form test cases whose total profit is 
as large as possible.  

Note that this definition should be seen as a goal rather 
than a requirement. Finding an l-VCAB is NP-hard, even 
if all profits for combs are equal [17]. Moreover, we 
rarely know the value of l in advance. Therefore, we use 
the term l-VCAB to mean a variable covering array in 
which the test cases are ordered, and for every l, the first l 
test cases yield a large total profit. 
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D.  Constructing Covering Arrays  
The main techniques for constructing covering arrays 

can be classified three categories: mathematical methods, 
greedy algorithms, and meta-heuristic strategies. 
Mathematical methods for generating covering arrays 
usually require that each factor has the same number of 
values, which restrict the universality of this kind of 
methods. The use of orthogonal arrays belongs to this 
category [18, 19]. Greedy algorithms start with an empty 
set T and add one test at a time according to some 
policies like covering the most uncovered pairs [20]. 
Final T is a solution. The representatives of greedy 
algorithms include the Automatic Efficient Test Case 
Generator (AETG) [20], the In Parameter Order (IPO) 
algorithm [21, 22, 23], the Test Case Generator (TCG) 
[24] and the Deterministic Density Algorithm (DDA) 
[17]. Meta-heuristic approaches begin with individual or 
population covering array(s) and transform this or these 
covering array(s) according to various search strategies. 
The final answer will be found when stopping conditions 
are met. This kind of approaches mainly includes hill 
climbing [13], great deluge algorithm [13], simulated 
annealing [13, 25, 26], tabu search [27] and genetic 
algorithms [25, 28].  

Of these various types of construction approaches, 
greedy algorithms from [17] are the most natural fit with 
the problem of generating VCAB since test cases are 
incrementally built one-row-at-a-time. Nevertheless, not 
all test cases in a VCAB are executed in practice as a 
result of time or budget constraints. Testers may only run 
a subset of a test suite and want to execute the test cases 
with the largest profit first. Greedy algorithms meet this 
requirement. A greedy algorithm selects values in order 
to provide as much coverage as possible in every iteration. 
Earlier rows have the largest amount of coverage. In 
section III, we adapt the deterministic density algorithm 
to generate VCAB. 

III.  ALGORITHMS TO CONSTRUCT VCAB  

VCAB is a variation of covering arrays. In this section, 
we start with a review of how to generate covering arrays 
with a greedy approach and then explain how the greedy 
method is modified to generate VCAB. 

A.  The Framework of One-test-at-a-time Strategy  
The construction of covering arrays and mixed-level 

covering arrays can fall into a greedy framework of one-
test-at-a-time strategy and can be described at a high level. 
The overall goal in generating a covering array is to 
create a two-dimensional array in which all t-tuples 
associated with a specified input are covered. In such 
strategy, this collection is built one row at a time by 
fixing each factor with a value. A factor that has been 
assigned a value is referred to as fixed; one that has not, 
as free. A row may be selected from multiple candidates. 
When more than one candidate can be selected, several 
rows are constructed and one is chosen to add to the 
covering array. Once all t-tuples have been covered, the 
covering array is complete. The framework of such 
strategy is described as Algorithm 1. 

The process of test suite (covering array) generation 
begins with an empty test suite. And then, test cases will 
be generated and added into the test suite one by one, 
until all combinations in set CombSet are covered by the 
test suite.  

In the process of generating single test cases, it has 
been proven to be NP-hard in pair-wise testing that select 
a “best” single test case each time to cover the greatest 
number of uncovered combinations in CombSet [17]. 
Since pair-wise testing could be regarded as a special 
case of VCAB, selecting such a “best” test case in VCAB 
is also NP-hard. Therefore, a feasible method is to 
generate approximate “best” single test case by some 
efficient algorithm. We propose an algorithm, which is 
based on “density”, to construct a single test case. 
 

 

Algorithm 1. The framework of one-test-at-a-time 

strategy 

1  Start with an empty test suite T 

2  Initialize the set CombSet according to CSUT 

3  While (CombSet ≠Φ) 

4      Select a single test case, and add it into T 

5      Modify CombSet, delete all combinations that 

covered by selected test case 

6  End While 

B.  Definition of Density for VCAB  
The concept of “density” is firstly defined by Colbourn 

et al. [17]. In that paper density is calculated in one of 
three ways. (i) For each new tuple that is covered in 
relation to fixed factors, density increases by 1.0. (ii) 
When no new tuples are covered, density does not change. 
(iii) For each new partial tuple that may be covered with 
free factors, a density formula calculates the likelihood of 
covering future tuples. For the case of pair-wise coverage, 
the maximum number of values for any factor is denoted 
as |vmax|. For factors Si and Sj, the local density is Li,j = ri,j / 
|vmax|, where ri,j is the number of uncovered pairs 
involving a value of factor Si and a value of factor Sj.  

The definition of density in [17] is only available in 
pair-wise testing. Therefore we propose a new definition 
of “density” for generating VCAB. For each coverage 
requirement um (1≤m≤t), we define the local density for 
VCAB as: 

upu mmmwwL mtmmm

/)(

1 ))(/(max
−

≤≤
=        (2) 

The wm denotes the sum of profit of available 
uncovered combinations, in which the values of such 
factors are equal to the fixed values in current test case, in 
set um. The pm is the number of factors whose values have 
been fixed. When um = pm, there will be at most one 
available combination. In this case, if there is an available 
combination, the density is the profit of this combination; 
else it is 0.  
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According to the definition of local density, the global 
density of CSUT could be defined as: 

∑ =
=

t

m mLG
1

                           (3) 

When generating a single test case, we try to find a test 
that offers the largest incremental profit of density. 

C.  Algorithm to Construct Single Test Case  
When constructing each single test case, an empty test 

case, in which values of all factors have not been fixed, 
will be generated firstly. At each stage, one coverage 
requirement, in which there is at least one factor whose 
value has not been fixed, will be selected for its greatest 
local density (assuming um is selected). And then, for 
each one of all possible uncovered combinations in um, if 
it is available in current test case, calculate the global 
density by assuming fixing values for factors in um as 
such available combination. The available combination 
that takes the greatest global density will be selected and 
inserted into current test case. 

Iterate this process until all factors have been fixed in 
current test case. The pseudo-code of generating a single 
test case is described as Algorithm 2. We select the first 
one that satisfies given property to deal with tie-break. 
Experimental results show that there are not significant 
differences among various tie-break methods. 

D.  Algorithm Walk-Through  
In this section, we illustrate the algorithm with a small 

example of building a row for a test suite. Consider the 
input in Table II. There are 5 factors in the CSUT. The 
values of these factors are assigned from 0 to 11. And the 
profit of each value is in the parentheses. 

The interaction relationship of the CSUT is defined as 
U ={u1, u2, u3, u4}, where u1={S1, S2}, u2={S2, S3, S4}, 
u3={S4, S5}, and u4={S1, S5}. 

After initializing the set CombSet according to CSUT, 
we compute local density for each um∈U, where m=1, 2, 
3, 4. The results are shown in Table III. 

We select coverage requirement u2 since its local 
density is greatest. Then for each combination 
comb∈CombS2, global density is calculated by assuming 
the values of factors in um are fixed as comb. The 
computational results are shown in Table IV. 

According to Table IV, we fix factors in u2 as {4, 6, 8} 
because global density is greatest when comb={4, 6, 8}. 
Mark u2 handled, and continue next iteration since there 
are also two free factors. The values of local density for 
u1, u3, u4 are shown in Table V.  

Since u3 has the greatest local density and there is one 
factor, S4, in u3 has been fixed to value 8, for 
combinations {8, 9}, {8, 10}, {8, 11}, global density is 
calculated by assuming the values of factors in um are 
fixed as these three combinations. The computational 
results are shown in Table VI.  
 

 

Algorithm 2. Generate a single test case 

1  Begin with an empty test case test 

2  Mark all um ∈U not handled 

3  While (CombSet ≠Φ and at least one factor whose 

value has not been fixed) 

4        For m=1 to t 

5              If (um is not handled)  

6                     If (in um, at least one factor whose 

value has not been fixed)  

7                         Calculate local density for um∈U 

8                     End If 

9              End If 

10      End For 

11      Select a new coverage requirement um with the 

greatest local density 

12      Mark um handled 

13      For each comb∈CombSm 

14            If (comb is available in test)  

15                   Calculate global density by assuming 

the values of factors in um are fixed 

as comb 

16            End If 

17      End For 

18      Select a combination comb that takes the 

greatest global density 

19      Fix factors in um as the selected combination 

20 End While 

 
TABLE II.  

FACTORS, VALUES, AND PROFIT OF EACH VALUE 
S1 S2 S3 S4 S5 

0(0.2) 3(0.2) 5(0.4) 7(0.1)   9(0.7) 
1(0.1) 4(0.3) 6(0.5) 8(0.9) 10(0.4) 
2(0.1)    11(0.8) 

 
TABLE III.  

LOCAL DENSITY FOR EACH um 
u1 u2 u3 u4 

0.0482 1 0.4578 0.1831 
 

The results in Table VI show that global density is 
greatest when comb={8, 11}. So we fix factor S5 to value 
11. Mark u2 and u3 handled, and continue next loop since 
there is also one free factor. The values of local density 
for u1,  u4 are shown in Table VII. 
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Select coverage requirement u4 since its local density 
is greatest. Then for each available combination 
comb∈CombS4, global density is calculated by assuming 
the values of factors in u3 are fixed as comb. The 
computational results are shown in Table VIII. According 
to Table VIII, we arrange value 0 to factor S1. Then the 
first test is generated. 

 
TABLE IV. 

 GLOBAL DENSITY FOR EACH comb∈CombS2 
{3, 5, 7} {3, 5, 8} {3, 6, 7} {3, 6, 8} 
0.4637 1.7538 0.4957 1.8818 

{4, 5, 7} {4, 5, 8} {4, 6, 7} {4, 6, 8} 
0.5373 1.9394 0.5803 2.0864 

 
TABLE V. 

 LOCAL DENSITY FOR u1, u3, u4 
u1 u3 u4 

0.0589 0.8394 0.1831 
 

TABLE VI. 
GLOBAL DENSITY FOR AVAILABLE comb∈CombS3 
{8, 9} {8, 10} {8, 11} 
0.8264 0.4974 0.9360 

 
TABLE VII.  

LOCAL DENSITY FOR u1, u4 
u1 u4 

0.0589 0.1571 
 

TABLE VIII. 
GLOBAL DENSITY FOR AVAILABLE comb∈CombS4 
{0, 11} {1, 11} {2, 11} 

0.22 0.11 0.11 

IV.  EXPERIMENT  

We have implemented both the algorithms in this 
paper (Profit algorithms) and the algorithms without 
considering profit (Non-profit algorithms) for comparison. 
Both algorithms are based on density. The input uses the 
data in Table II.  

Table IX and Table X show the output of Profit 
algorithms and Non-profit algorithms, and the symbol ‘-’ 
denotes that this place can be any value of the factor since 
all the combinations in CombSet have been covered. Both 
Table IX and Table X are VCA generated by using the 
data in Table II. We perform some experiments using 
other input and discover that the size of the VCA 
generated may vary according to the distribution of profit 
of values. 

The amount of profit covered in each test using these 
two algorithms is shown in Table 11. From this table, 
Profit algorithms cover more profit early. Fig. 2 shows 
the difference in cumulative profit covered after each test. 

 
 
 
 
 
 

TABLE IX. 
 OUTPUT OF NON-PROFIT ALGORITHMS 

Test no. S1 S2 S3 S4 S5 
1 0 3 5 7 9 
2 1 3 5 8 10 
3 2 4 5 7 11 
4 0 4 6 7 10 
5 1 4 5 8 9 
6 0 3 6 8 11 
7 2 3 6 7 9 
8 1 4 6 8 11 
9 2 - - - 10 

 
TABLE X.  

OUTPUT OF PROFIT ALGORITHMS 
Test no. S1  S2 S3 S4 S5 

1 0 4 6 8 11 
2 0 4 5 8 9 
3 0 3 6 8 10 
4 1 3 5 8 11 
5 1 4 6 7 9 
6 2 4 5 7 11 
7 2 3 6 7 10 
8 2 3 5 7 9 
9 1 - - - 10 

 
TABLE XI.  

PROFIT COVERED IN EACH TEST 
Test no. Non-profit Algorithms (%) Profit Algorithms (%) 

1 5.68 27.75
2 15.86 23.22
3 5.59 18.54
4 6.06 11.30
5 22.65         5.92
6 24.25 5.59
7 3.85 3.99
8 15.48 3.11
9 0.57 0.57

 

 
Figure 2. Cumulative profit covered using Profit algorithms and Non-

profit algorithms. 
 
The profit distribution may affect the cumulative profit 
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coverage. To explore this further, we perform 
experiments according to different profit distributions. 
Consider the input 16394280 (This is a shorthand notation 
for a CSUT, which has 87 factors. Three of these factors 
each take on 16 values. Four of these factors each take on 
9 values. And the other 80 are binary). The interaction 
relationship in this CSUT is pair-wise interaction. Three 
different profit distributions are as follows. 

• Distribution 1 (Equal profit): All values have the 
same profit. 

• Distribution 2 (50/50 split): Half of the profits for 
each factor are set to 0.8 and the other half to 0.2. 

• Distribution 3 (Random): Profits are randomly 
distributed. 

Fig. 3 shows the percentage of cumulative profit 
covered in the first 10 test cases for each of the three 
distributions. When all values have the same profit, the 
result is a (non-biased) variable strength covering array 
and the cumulative profit covered is the least in the 
earliest test cases. Nevertheless, when there is more 
different in the distribution of profits, a biased variable 
strength covering array can often cover more profit in the 
earliest test cases. For example, the distribution of 50/50 
split shows the most profit coverage in the earliest test 
cases. This may be expected because half of the values 
with a profit of 0.8 comprise the majority of the profit 
and are rapidly covered in the early test cases. The 
randomly distribution is intermediate between the two 
extremes considered. 
 

 
 
 

Figure 3. Cumulative profit covered under different profit 
distributions. 

 
The size of the test suites produced also varies. For the 

three distributions, the test suites generated has 315, 327, 
329 test cases, respectively. The distribution of 50/50 
split generates a larger test suite than the distribution of 
equal profit. We perform experiments using several more 
examples to examine this further. Table XII shows the 
results in six scenarios: three have all factors with the 

same number of values and three are mixed level. From 
table XII equal profit often generate the smallest test suite.  
 

TABLE XII. 
 SIZES OF TEST SUITES WITH DIFFERENT PROFIT 

DISTRIBUTIONS 
 Equal profit 50/50 split Random 

34 9 9 13 
313 19 20 20 
4100 46 51 53 

415317229 38 45 48 
41339235 27 36 39 
513822 20 24 27 

 
There are mainly three kinds of threats to our findings: 

external, internal and construct validity. 
Threats to external validity [29] are conditions that 

limit the ability to generalize the results of our 
experiments. The major external threat in this paper is our 
choice of input data. We cannot guarantee that these 
models accurately represent real CSUT. 

Threats to internal validity are conditions that can 
affect the dependent variables of the experiment without 
the researcher’s knowledge. There is one main threat to 
internal validity. Although we have verified the results of 
every run, we cannot be completely sure that the 
implementations are correct translations from pseudo-
code, nor that there are not bugs in these programs. 

Threats to construct validity are that we have 
considered both the profit covered and the size of the 
resulting test suite, but we have ignored other metrics that 
are important in some cases. 

V.  CONCLUSIONS  

Constructing test suites for testing WS in a service-
oriented architecture is a challenging task. A main 
challenge is how to efficiently select the most appropriate 
WS that will be combined into an application based on 
their functionalities, licensing costs, and reliability when 
many alternative WS for a given functional specification 
are provided.  

Interaction testing based on density is a promising 
approach to test composite WS. Previous work only 
studies 2-way interactions between WS. Nevertheless 
some WS may need N-way (N>2) testing since there are 
closer relationship among them. 

This paper extends the model of interaction testing for 
WS with interaction relationship and proposes a greedy 
algorithm for test suite construction that employs 
rankings of the constituent WS. The greedy method is 
based on density and determines a sequence of test cases 
to be performed. Each test case attempts to make the best 
incremental improvement of profit. Experimental results 
show that the new approach can provide the test suite in a 
prioritized order. In the future we will look for more 
methods to ensure the trustworthiness of WS. 
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