
A Mediator-Based Approach for Process
Mediation of Web Services

Liyi Zhang

Center for Studies of Information Resources, Wuhan University, Wuhan, China
Email: lyzhang@whu.edu.cn

Si Zhou1 and Zhefeng Sun2

1. School of Information Management, Wuhan University, Wuhan, China
2. Department of Computer Science, Huazhong Normal University Wuhan, China

Email: si_chow@msn.com, Sunzhefengsandy@sina.com

Abstract—Although several efforts were made to support
the standardization of Web Services (such as WSDL, UDDI,
SOAP, BPEL, etc.), they are not always perfectly compatible
to each other due to the distributed nature. Both data and
process heterogeneity required and offered by services’
requesters and providers hamper the usability of Web
services, thus service mediation becomes one key working
area in SOA. While the former has received considerable
attention, process mediation is still open and current
approaches provide only partial solutions. In this paper, a
mediator-based approach for process mediation of web
services is proposed to adjust the partially compatible
messages interchange behaviors to suit the
requested/expected interface of each party. Based on the
identification of message exchanging sequences in service
interactions, several basic process mismatch patterns are
presented to develop basic mediator patterns, which can be
used to modularly construct advanced mediators that can
resolve all possible process mismatches.

Index Terms—web service, mediator, mediation, process,
compatibility

I. INTRODUCTION

In recent years, web services have become an active
research area in both academia and industry. Web
services which decouple application interfaces from
implementations and use XML-based languages (usually
WSDL) to describe the interfaces, were born as a solution
to (or at least as a simplification of) the integration
problem [1]. The main benefit they bring is that of
standardization, in terms of data format (XML), interface
definition language (WSDL), transport mechanism
(SOAP) and many other interoperability aspects.
Standardization reduces heterogeneity and makes it
therefore easier to develop business logic that integrates
different (Web service-based) applications. Web services
also represent the most promising technologies for the
realization of service-oriented architectures (SOAs), not
only within but also outside companies’ boundaries, as
they are designed to enable loosely-coupled, distributed
interaction [2].

However, web services are not always perfectly
compatible due to its principle of decentralization and

autonomy. In fact, although the lower levels of the
interaction stacks are standardized, different Web
services may still be represented using different
languages and different terminologies of the same domain,
similarly their functionalities are described in different
ways and expect the clients to align with various
interaction patterns in order to consume them.

An effective solution to this challenge is service
mediation which is recognized as the act of reconciling
existing services by intercepting, storing, transforming,
and (re-) routing messages going into and out of these
services [3]. Generally, service mediation can be
classified into data mediation and process mediation.
Data mediation, where the focus is on message types, has
received considerable attention [4]. In comparison,
process mediation, where the focus is on resolving
mismatches occurring at the communication behaviors
between services, is still open.

In the remainder of this paper, we present in section 2
the motivation of our work. In section 3, we describe the
general solution approach. A services compatibility
checking mechanism is offered in section 4. Six basic
mediator patterns are proposed in section 5. Then, we
explain their configurability and compositionability in
section 6. Finally, Section 7 summarizes our conclusions
and future work.

II. MOTIVATION

A. Related Work
Process mediation is still a poorly explored research

field, in the context of web services. The most existing
work represents only visions of mediator systems able to
resolve in a (semi-) automatic manner the processes
heterogeneity problems, without presenting sufficient
details about their architectural elements. Still, these
visions represent the starting points and valuable
references for the future concrete implementations.

Benatallah et al. [5] identify a set of “mismatch
patterns” between behavioural interfaces and provide
templates of BPEL code that developers may reuse to
build adaptors that resolve these mismatches. However,
the compositionality of these BPEL templates is not

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 915

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.8.915-922

considered and thus the approach is not systematic.
Similar mismatch patterns are identified in [6] where
high-level architectures for addressing such mismatches
are proposed. Altenhofen et al. [7] propose a formal
model for process mediation based on Abstract State
Machine (ASM) specifications. They show how these
ASMs can be refined to deal with mismatch patterns such
as those identified in [6]. In [8], the authors present the
purpose of a process mediator within WSMX, which is a
message broker among the partners. Process mediator
needs to decide which data belongs to which partner(s)
based on choreography and ontology of the partner(s).
This work extends process mediation to multi-lateral
interactions, and focuses on message forwarding among
the partners. However, this data distribution among the
partners is actually, only a part of task that should be
addressed by process mediation. Fuchs [9] proposes
another approach to interface adaptation. However, this
contribution focuses on reconciling operational
differences such as security policies, service level
agreement, etc.

B. Problem Definition
Usually the service requester and the potential service

providers have their own communication patterns which
determined by each behavior interfaces to express how
them want to communicate with each other.
Unfortunately, those interfaces are defined separately, so
the two parties will not be able to directly communicate,
even if they can understand the same data formats. The
existing researches have identified this kind of
mismatches [6] [10]. However, few paper claims its
identification is complete in any sense. To achieve a
complete identification, we have proposed four basic
mismatch patterns. Particularly, we have pointed out that
all possible process mismatches can be composed by
these basic patterns.

• Mismatches of unexpected messages. One of the
interfaces has some extra messages the corresponding
interface does not expect to send/receive. Or one of the
interfaces does not have some messages the other
interface expects to send/receive.

• Mismatches of message granularity. One of the
interfaces has some messages the corresponding interface
expects to split to send/receive. Or one of the interfaces
has some messages the corresponding interface expects to
merge to send/receive.

• Mismatches of message order. One of the interfaces
sends the messages in a different order than the
corresponding interface expects to receive them.

• Mismatches of unexpected conditions. One of the
interfaces has some extra conditions imposed on control
flow while the corresponding interface expects no
conditions.

In order to communicate they must be able either to
redefine their communication patterns (at least one of
them has to) or to use an external mediation system as
part of the process. The first solution is generally a very
expensive one implying changes in the entities’ business
logic, and it is not suitable in a dynamic environment

since every participant would have to readjust its pattern
(through re-programming) each time it gets involved in a
new partnership. As a consequence, the role of the
mediator system will be to compensate the
communication patterns in order to obtain equivalent
processes.

A set of assumptions are made regarding the two
parties to mediate between:

• Each of the parties has to make public the
expected/requested way of interoperating with its partner.

• As many exiting solutions of data mediation, which
is the prerequisite of process mediation, aim to the
semantic coordination in manner of ontologies, the
messages exchanged between the two parties have to
contain data represented in terms of the used ontologies,
that is, ontology instances.

• The heterogeneity problems at data level are
resolved by a Data Mediator. This implies that a failure of
the Data Mediator in solving the data heterogeneity
problems has as a direct effect the failure of the Process
Mediator.

The scope of the process mediator is to make this
conversation possible by the use of different techniques
as message blocking, message splitting or aggregation,
acknowledgements generation and so on.

C. Motivating Example
As shown in Figure 1, a motivating example comes

from a composition scenario of a company M and a
company N. It is presumed that the two services from the
companies, CM and CN respectively, provide
complementary functionality. However, they do not fit
each other exactly, due to process mismatches identified

CM CN

 Receive msg A

IF

IF not

Figure 1. A motivating example of service composition with
process mismatches

 Send msg C

 Send msg D

 Send msg A1

 Send msg A2

 Receive msg B

 Receive msg C

916 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

as follows:
• CM expects a whole message A which includes A1

and A2, while CN sends them separately.
• CN expects a message B which CM don’t send.
• CM sends message C only when condition x is

satisfied, or sends message D. But CN always wants to
receive message C.

To make the two services compatibly interact with
each other, process mismatches between them needs to be
identified so that appropriate mediator patterns are
selected to reconcile the mismatches.

III. SOLUTION APPROACH

In this section, we present a solution approach to
address process mediation, as shown in Figure 2. There
are three steps, described as mismatches identification,
mediator generation, and mediator implementation.

A. Mismatches identification
The interface of a web service is currently described by

WSDL. The WSDL interface defines the messages
exchanged between the described web service and an
invoking application. However, the WSDL interface does
not define sequences of message exchanges within
complex interactions. The emerging specifications WS-
BPEL [11] and WS-CDL [12] have made a step forward
to cope with this requirement: they both can define a
complex message exchange sequence on top of WSDL
message definitions. For the purpose of mismatch
identification, communication behaviors of service are

abstracted and described using formal models (which
illustrated in section 4). Then, in terms of basic mismatch
patterns, developers analyze the actions between two
interacting services and identify all possible process
mismatches.

B. Mediator generation
Firstly, with basic process mismatches, developers

select corresponding mediator patterns which are
proposed in section 5. Then, the structures and control
logics of the mediator patterns need to be configured as
parameters by developers, according to the identified
mismatches. Finally, the configured mediator patterns are
composed to construct a composite mediator that can
resolve all identified process mismatches.

C. Mediator implementation
The mediator generated in the above procedure is only

conceptual and should be placed between the two
interacting services. The composition model of the two
services and the mediator need to be formally verified. If
any deadlock exists, we consider that the mediation has
failed. Otherwise, the mediation is successful. After the
Mediator verification, the conceptual mediator will be
transformed to deployable/ executable service mediators,
like BPEL-based mediators, which are pattern-specific
codes and need developers’ refinement.

IV. COMPATIBILITY CHECKING

Compatibility checking is the operation of both
assessing the compatibility and identifying basic
incompatibility factors of service interfaces, which is
necessary for the mediator generation.

We defined a process as a set of communication
actions which can be described in terms of
communication action schemas. A communication action
schema is a statement that a service may send or receive a
message of a given type. We represent a communication
action (ACT) as a tuple <AN, MT, MI, CON, MI-, MI+>
where AN is the name of the action, MT indicates
whether the action is inbound (receive) or outbound (send)
with respect to the service being described, MI is the set
of instances been received or send, CON indicates the
conditional branch which cause this action, MI-/MI+

indicates the possible instances of preceding/next
communication action in the same interface.
MI/CON/MI-/MI+ can be NULL if there is no
instance/conditional branch/preceding instance/next
instance.

With the above notation, all the communication actions
in the motivating example are listed in table 1.

BPEL Files
WSDL Files …..

Basic Mismatches
Patterns

Communication
Behaviors

Abstraction

Mismatches
Recognition

Basic Mediator
Patterns

Selection of Mediator
Patterns

Mediator
Configuration

Mediator
Verification

Mediator
Deployment

Mismatches Identification

Mediator Generation

Mediator Implementation

Figure 2. Solution approach to process mediation

TABLE I.
COMMUNICATION ACTIONS IN MOTIVATING EXAMPLE

<CM.ReceivemsgA, inbound, (A1, A2), NULL, NULL, [C, D]>
<CM.SendmsgC, outbound, C, condition(x), (A1, A2), NULL>
<CM.SendmsgD, outbound, D, condition(x), (A1, A2), NULL>
<CN.SendmsgA1, outbound, A1, NULL, NULL, A2>
<CN.SendmsgA2, outbound, A2, NULL, A1, B>
<CN.ReceivemsgB, inbound, B, NULL, A2, C >
<CN.ReceivemsgC, inbound, C, NULL, B, NULL>

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 917

© 2010 ACADEMY PUBLISHER

In the CM.SendmsgC, “condition(x)” indicates that the
msgC is sent under the condition x. In the CM.SendmsgD,
“condition(x)” indicates that the msgD is sent when the
condition x doesn’t hold. In the CM.ReceivemsgA, “[C,
D]” indicates that one of C and D will be sent.

Considering a provided interface and a corresponding
required interface, there is a set of instances MIin= <I1,
I2, …, In> which indicates all the instances with attribute
of “inbound” from both interfaces, and a set of instances
MIout= <I1, I2, …, In> which indicates all the instances
with attribute of “outbound”. Likewise, there are CONin
and CONout, MI-

in and MI-
out, MI+

in and MI+
out.

Then we introduce some rules for identifying process
mismatches between the two interfaces.

Rule 1: For ACTa, if MIa ≠ MIin ∩ MIout, then there is a
mismatch of unexpected messages.

Rule 2: For ACTa and ACTb, if (MIa ∩ MIb ≠ 0) ∧
(MTa ≠ MTb) ∧ {[MIa - (MIa ∩ MIb)] ∩ (MIin ∩ MIout) ≠
0}, then there is a mismatch of message granularity.

Rule 3: For ACTa and ACTb, if (MIa ∩ MIb≠0) ∧
(MTa ≠ MTb) ∧ ([MI-

a, MI+
a] ≠ [MI-

b, MI+
b]), then there

is a mismatch of message order.
Rule 4: For ACTa and ACTb, if (MIa ∩ MIb≠0) ∧

(MTa ≠ MTb) ∧ (CONa ≠ CONb), then there is a
mismatch of unexpected conditions.

Rule 5: If (MIin = MIout) ∧ (CONin = CONout) ∧ (MI-
in

= MI-
out) ∧ (MI+

in = MI+
out), then there is no mismatch.

V. BASIC MEDIATOR PATTERNS

Six basic mediator patterns are proposed in this section.
It should be pointed out that the six basic mediators can
be treated as basic patterns to modularly construct service
mediators which can be used to resolve all possible
process mismatches. In addition, the basic mediators
presented in this paper are conceptual patterns which can
provide pseudo-code to develop executable codes for
mediation, like BPEL code. The intended benefit of this
work is to help developers produce service mediators
through an engineering methodology and semi-
automatically generate mediation codes by using these
patterns.

A. Simple Storer pattern
The Simple Storer is a service with the capability of

simply copying, storing, and transmitting messages of
certain specific type.

The Simple Storer pattern can be used to resolve
mismatches of extra sending messages, missing receiving
messages, and message order. The three scenarios of
using Simple Storer pattern are respectively illustrated in
Figure 3(a), Figure 3(b),and Figure 3(c). And the
structures of Simple Storer pattern are distinguished with
dashed squares. In the figures of this paper, the null
depict those actions without sending/receiving any
message, the “msg” depict those messages defined by
interface, the “msg’” depict those messages generated by
basic mediator, and the symbols “copy” and “transmit”
stand for certain action type.

B. Simple Generator pattern

null msg’

Provided
Interface

Required
Interface

Simple
Storer

copy

Provided
Interface

Required
Interface

Simple
Storer

msg A msg’ A
copy

msg B msg’ B
copy

msg’ A msg A

msg’ B msg B

transmit

transmit

msg

msg msg’

Provided
Interface

Required
Interface

Simple
Storer

null
copy

(a) Extra sending message scenario

(b) Missing receiving message scenario

(c) Message order scenario

Figure 3. Scenarios of using Simple Storer

918 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

The Simple Generator is a service with the capability
of simply generating and transmitting messages of certain
specific type. It should be pointed out that how to
construct a message of certain type from a collection of
incoming messages is a non-trivial task and some
evidences can be used to address the issue [13].

The Simple Generator pattern can be used to resolve
mismatches of extra receiving messages and missing
sending messages. The two scenarios of using Simple
Constructor pattern are respectively illustrated in Figure

4(a) and Figure 4(b). And the structures of Simple
generator pattern are distinguished with dashed squares.

C. Splitter pattern
The Splitter is a service with the capability of copying

a single message of certain type and splitting it to two or
more partial messages. The specific structure of Splitter
pattern is variable according to the sequence of partial
messages which may be sequential, parallel or mixed
structure. If splitting to two partial messages, the
structure of Splitter pattern can be two types, as shown in
Figure 5(a) and Figure 5(b).

The Splitter pattern can be used to resolve mismatches
of splitting sending messages and combiner receiving
messages. We only show the former scenario in Figure 6
because they are quite similar. And the structures of

msg null msg’

Provided
Interface

Required
Interface

Simple
Generator

transmit

null null msg’

Provided
Interface

Required
Interface

Simple
Generator

transmit

(a) Extra receiving message scenario

(a) Missing sending message scenario

Figure 4. Scenarios of using Simple Generator

msg’ A

msg’ A2

msg’ A1

msg’ A

msg’ A1 msg’ A2

(a) (b)
Figure 5. Two types of structures of Splitter

pattern with two partial messages

msg’ A

msg’ A2

msg’ A1

msg A

msg A1

msg A2

Provided
Interface

Required
Interface Splitter

copy

transmit

transmit

Figure 6. Scenario of using Splitter pattern

Figure 7. Two types of structures of Combiner
pattern with two merged messages

msg’ A

msg’ A2msg’ A1

msg’ A1

msg’ A

msg’ A2

(b) (a)

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 919

© 2010 ACADEMY PUBLISHER

Splitter pattern are distinguished with dashed squares.

D. Combiner pattern
The Combiner is a service with the capability of

copying two or more partial messages and combining
them to a single one. Similar to Splitter pattern, the
specific structure of Merger pattern is variable according
to the sequence of merged messages which may be
sequential, parallel or mixed structure. If combining two
messages, the structure of Merger pattern can be two
types, as shown in Figure 7(a) and Figure 7(b).

The Combiner pattern can be used to resolve
mismatches of splitting receiving messages and combiner
sending messages. We only show the former scenario in
Figure 8 because they are quite similar. And the
structures of Merger pattern are distinguished with
dashed squares.

E. Storing Controller pattern
The Storing Controller is a service with the capability

of storing and conditionally sending some messages of
certain type in terms of specific logic.

The Storing Controller pattern can be used to resolve
mismatches of extra condition of receiving messages and
missing condition of sending messages. We only show
the former scenario in Figure 9 because they are quite
similar. And the structures of Storing Controller pattern
are distinguished with dashed squares.

F. Generating Controller pattern
The Generating Controller is a service with the

capability of conditionally generating and sending some
messages of certain type in terms of specific logic.

The Generating Controller pattern can be used to
resolve mismatches of extra condition of sending
messages and missing condition of receiving messages.
We only show the former scenario in Figure 10 because
they are quite similar. And the structures of Generating
Controller pattern are distinguished with dashed squares.

VI. MEDIATOR CONFIGURATION AND COMPOSITION

As mentioned above, some basic mediator patterns are
not pre-established, like Splitter, Combiner, Storing
Controller and Generating Controller patterns. Thus,
specific interfaces should be provided for the basic
mediator patterns to configure their structures and control
logics.

Before using the Splitter and Combiner patterns,
developers should specify the quantities of partial
messages which involved as well as the sequence of these
messages, that is, sequential, parallel or mixed structure.
After configuration, the specific structures of the Splitter
and Combiner patterns can be identified and concretized.

When resolving unexpected condition mismatches,
developers should specify the condition constraints of the
Storing Controller and Generating Controller patterns,
according to the condition of the provided or required
interfaces of services to be composed. The condition
constraints are eventually transformed to such BPEL
elements as <switch>, <pick>, <while>, <flow> or
<repeatUntil> [14].

msg’ A1

msg’ A

msg’ A2

msg A1

msg A2

msg A

Provided
Interface

Required
Interface Combiner

copy

copy

transmit

Figure 8. Scenario of using Combiner pattern

Required
Interface

Storing
Controller

null

msg

null

msg’ msg
copy transmit

IF not

IF

Figure 9. Scenario of using Storing Controller pattern

Provided
Interface

IF

IF not

null

IF not

Provided
Interface

Required
Interface

Generating
Controller

msg msg’

msg’
msg

copy

transmit

IF IF

IF not

transmit

Figure 10. Scenario of using Generating Controller pattern

920 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

The four basic process mismatches mentioned in
section 2 can be resolved by the basic mediator patterns.
However, process mismatches are more complicated in
practical environments, and should be addressed by
advanced mediators with control logics which are
composed by these basic mediators. Then a composite
mediator can be considered as an integrated one with
sophisticated structure, and be used in the future. Each
mediator presented in this paper has an initial place and
an end place (illustrated by circles in each figure).
Informally, the composition of two mediators is
performed by merging the end place of one mediator with
the initial place of the other as well as the common parts
of the two mediators. To illustrate the composition of
mediators, herein take a mediator composed by two basic

mediator patterns (which are Splitter pattern and Storing
Controller pattern respectively) as shown in Figure 11.
It’s easy to see that message A is divided into message
A1 and message A2, and A2 will be sent if condition x
occurs.

For the motivating example, there are three process
mismatches can be found out, and four mediator patterns
can be respectively used to address these mismatches as
follows:

• A Combiner can be used to receive the messages A1
and A2 from CN, and then it sends message A to CM.

• A Simple generator can be used to construct the
message B and send to CN.

• A Storing Controller can be used to send message C
until the condition x is satisfied.

msg’ A

msg’ A1

copy

transmit

msg’ A2

msg’ A2

IF (x) not

copy

msg’ A

msg’ A1

null IF (x)

IF (x) not

copy

transmit

msg’ A2

+

Transform

Figure 11. Compositionability of basic mediator patterns

msg’ A2
transmit

null

transmit
IF (x)

transmit

CM CN

msg A

msg D

msg A1

msg A2

msg B

msg C

IF not (x)

IF (x)

msg C

msg’ A1

msg’ A2

msg’ A

msg’ B

msg’ D msg’ C

msg’ C

IF (x)

IF not (x)

msg’ D

copy

copy

transmit

transmit

copy

copy

transmit

Mediator

Figure 12. A composite mediator for protocol mediation of
CM and CN

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 921

© 2010 ACADEMY PUBLISHER

• A Simple Storer can be used to handle the message
D which CN don’t want to receive.

As shown in Figure 12, a composite mediator
composed by the above four mediator patterns sits
between the two interacting services, CM and CN, and
compensates their process mismatches. The four mediator
patterns are distinguished with dashed squares.

VIII. CONCLUSIONS AND FUTURE WORK

The main contributions that we have achieved in the
paper are:

• We have proposed a mediator-based solution
approach to resolve most of possible process mismatches
and glue partially compatible services together. Since we
abstract the specific definitions of the service interface,
the approach is not limited to BPEL-based services and
can be used with other definition languages.

• We have presented several basic mediator patterns
which are derived from the process mismatch patterns.
The well-defined basic mediator patterns can be
configured and composed by developers, according to the
specific process mismatches.

• Identification and formalization of a set of atomic
problems that can be automatically solved by a mediator.

• We have defined a process mismatch identification
mechanism.

In the future, we plan to focus on the formal approach
to verification of the correctness of service mediation.
And a systematic solution is expected to be investigated.
In addition, further effort will be made to implement the
prototype system.

ACKNOWLEDGMENT

The authors were supported in part by the MOE
Project of Key Research Institute of Humanities and
Social Science in Chinese Universities (NO:
07JJD870220). The authors would like to express our
sincere gratitude to the contributing author and to the
referees for reviewing papers for this special issue.

REFERENCES

[1] G. Alonso, F. Casati, H. Kuno, V. Machiraju, Web
Services: Concepts, Archtectures, and Applications.
Springer Verlag, 2004.

[2] B. Benatallah, F. Casati, F. Toumani, “Web services
conversation modeling: A Cornerstone for E-Business
Automation,” IEEE Internet Computing, vol. 8, no.1,
pp.46-53, January/February 2004.

[3] M. Dumas, M. Spork, and K. Wang, “Adapt or Perish,
Algebra and Visual Notation for Service Interface
Adaptation”, the 4th Intl. Conf. on Business Process
Management, pp. 65-80, 2006.

[4] M. Mrissa, C. Ghedira, D. Benslimane, and Z. Maamar,
“Context Model for Semantic Mediation in Web Services
Composition”, Lecture Notes in Computer Science, Vol
4215, pp.12-25, October 2006.

[5] B. Benatallah, F. Casati, D. Grigori, H. R. Motahari
Nezhad, and F. Toumani, “Developing Adapters for Web

Services Integration”, The 17th International Conference
on Advanced Information System Engineering, CAiSE
2005, pp.415–429, 2005.

[6] E. Cimpian and A. Mocan, “WSMX Process Mediation
Based on Choreographies” BPM 2005 Workshops, LNCS
3812, pp.130–143, 2005.

[7] M. Altenhofen, E. B¨orger, and J. Lemcke, “An abstract
model for process mediation”, The 7th International
Conference on Formal Engineering Methods (ICFEM),
pp.81–95, 2005.

[8] T. Haselwanter, P. Kotinurmi, M. Moran, T. Vitvar, and M.
Zaremba, “WSMX: A Semantic Service Oriented
Middleware for B2B Integration”, The 4th International
Conference on Service-Oriented Computing (ICSOC 2006),
pp.477-483, 2006.

[9] M. Fuchs, “Adapting web services in a heterogeneous
environment”, the Second IEEE International Conference
on Web Services, ICWS 2004, pp.656–664, 2004.

[10] X. Li, Y. Fan, and F.Jiang, “A Classification of Service
Composition Mismatches to Support Service Mediation”,
The Sixth International Conference on Grid and
Cooperative Computing, pp.315-321, August 2007.

[11] http://www.oasis-open.org/committees/wsbpel/
[12] http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/
[13] H.R. Motahari Nezhad, A. Martens, and F. Curbera, et al.,

“Semi-Automated Adaptation of Service Interactions”,
Proc. of the 16th Intl. World Wide Web Conference, pp.
993-1002, 2007.

[14] X. Li, Y. Fan, J. Wang, L. Wang, and F. Jiang, “A Pattern-
Based Approach to Development of Service Mediators for
Protocol Mediation”, the Seventh Working IEEE/IFIP
Conference on Software Architecture, pp.137-146, 2008.

Liyi Zhang received the B.S. and Ph.D. degrees from
Wuhan University, Wuhan, China, in 1988 and 1999,
respectively.

He is currently a professor and DEAN OF DEPARTMENT
of Information & E-commerce in School of Information
Management, Wuhan University, Wuhan, China. He has
published five books, over 40 Journal papers. In addition, he has
organized several conferences in the emerging areas of
Electronic Commerce. His research interests include
information system, e-commerce and information retrieval.

Mr. Zhang is a member of E-commerce Major Guiding
Committee of China, the Secretary-general of Association of
Hubei Electronic Commerce, and a member of AIS
(Association of Information System).

Si Zhou received the B.S. and Master degrees from

Huazhong Normal University, Wuhan, China, in 2004 and
2007, respectively.

He is currently a Ph.D. candidate of electronic commerce,
Wuhan University, Wuhan, China. His research interests
include SOA, e-commerce and web services.

Zhefeng Sun is currently an undergraduate student of

computer science and technology, Huazhong Normal University,
Wuhan, China.

922 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

