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Abstract—In this paper we present an auto-detection corner 
based on eigenvalues product of covariance matrices (A-
DEPCM) of boundary points over multi-region of support. 
The algorithm starts with extracting the contour of an 
object, and then computes the eigenvalues product of 
covariance matrices of this contour at various regions of 
support. Finally determine automatically peaks of the graph 
of eigenvalues product function. We consider that points 
corresponding to peaks of eigenvalues product graph are 
reported as corners, which avoids human judgment and 
curvature threshold settings. Experimental results show that 
the proposed method has more robustness for noise and 
various geometrical transform. 
 
Index Terms—Corner detection, Covariance matrix, 
Eigenvalues product, Region of support, Average 
repeatability, Localization error  
 

I.  INTRODUCTION 

Corner detection is an important task in various 
computer vision and image processing research. It is 
usually a front-end processing in a feature based image 
understanding system. Thus, the performance of corner 
detection has a great effect on the following processing 
and the whole system. Generally speaking, corner points 
should satisfy the following performances: 

 Detection. All the true corners should be detected 
and no false corners should be detected. 

 Robust. Corner detector should be robust with 
respect to noise. 

 Localization. The corners should be well localized. 
 Stability. The detected position of corner should not 
move when multiple images are acquired of the 
same scene. 

 Complexity. Corner detector should be efficient. 
This paper proposes a new scale-space corner detection 

method [1] [2] based on eigenvalues of covariance matrix. 
The curvature scale-space technique is suitable for 
extraction of curvature features from an input contour at a 
continuum of scales. This corner-detection method 
requires image edge contours. In the implementation of 
the new scale-space detector, a Canny edge detector [3] 
was used. 

Much work has been carried out on corner detection, 
and Section 2 gives a review of corner detection methods. 
Section 3 briefly describes covariance matrix of data 
points on a digital boundary over a region of support and 
the relation with the curvature of contours. Section 4 
presents an overview of multi-regions of support (multi-
ROS) Eigenvalues product and the idea of auto-detection 
corners based multi-ROS eigenvalues product and then a 
simple analysis of proposed algorithm is presented. The 
performance of proposed method for corner detection is 
evaluated in terms of the average repeatability and 
localization error, the results of comparative experiments 
and a discussion of the results are given in section 5. The 
conclusions are presented in Section 6. 

II.  A REVIEW OF CORNER DETECTION METHODS 

Considerable research has been carried out on corner 
detection in recent years. This section briefly reviews a 
number of proposed algorithms. Exiting corner detection 
techniques can be classified into two categories: intensity 
based corner detection (ICD) and contour based corner 
detection (CCD). We classify the intensity based corner 
detection technique into two types, namely template 
based methods and intensity gradient based methods. For 
the template based corner detection methods such as [4]-
[6], mathematical models for corner structures are set up 
first, then correlations between the models and the image 
are used to detect the corners. As the models cannot cover 
all the types of corners that have different orientations 
and subtended angles, the performance is not satisfactory 
in practical applications. For the intensity gradient based 
corner detection methods such as [7] - [9], it is difficult to 
determine thresholds, and more sensitive to noise. 
Contour based methods have existed for a long time; 
some of more recent ones are presented. In this paper, we 
will focus on the contour-based approach. 

The contour-based approaches are mainly used for 
shape description; curvatures of curves are the key to 
detect the salient points and to compute the shape 
descriptors. Points with high curvature on the boundaries 
are identified as corners. Now there are various methods 
such as [10]-[12] to detect corner. In recent years, the 
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curvature scale space (CSS) technique has been applied 
successfully on planar-curve corner detection [13] [14], 
especially for those object shapes inherited with fractal-
like features and noisy boundaries. For the CSS corner 
detection [14]-[20], the curve is represented as a 
parametric function of the arc-length. They then smooth 
the parameterized curve at different smoothing-scales 
[13]-[15] and calculate the absolute curvature on each 
point of the smoothed curve. Thereafter, they look for 
curvature maxima points as candidate corner set, from 
which the weak and false corners are eliminated using 
thresholds; the corners are detected at some specific 
scales, they are tracked down to the finest scale in order 
to improve localization [14,15]. The existing CSS corner 
detectors suffer from two key problems. The first 
problem is directly related to the curvature definition. By 
definition [13], the curvature means the instantaneous 
rate of change of tangential angle so that it is highly 
sensitive to the local variation and noise on the curve. In 
addition, the curvature estimation involves higher order 
derivatives of curve point-locations up to second order 
which cause errors and instability in results. The second 
problem is related to the curve smoothing using the 
Gaussian function. The aim of the smoothing is to reduce 
the effect of local variation and noise so as to remove 
weak and false corners. But determination of the proper 
Gaussian smoothing-scale is a very difficult problem. 
Consequently, smoothing with inappropriate Gaussian 
scales by the existing CSS detectors results in poor corner 
detection performance. 

The first problem discussed above was an inherent 
problem with all the existing CSS corner detectors, so the 
improved or proposed methods aim at the second 
problem. Mokhtarian and Suomela[14] update the 
locations of the corners by the coarse-to-fine tracking. As 
the noise is smooth away and the sharp corners remain at 
high scale whereas the strong corners which might 
require low smoothing scales to be detected will trend to 
disappear, this detector still suffers from the second 
problem. Many improved methods (e.g., [15]), which 
select the smoothing-scales based on the curve-length, 
also fail to overcome this problem. Because even curves 
of the same length may require different smoothing-
scales depending on the level of local variation and noise. 
The difference of Gaussian (DoG) detector [18] and the 
multi-scale curvature product (MSCP) detector [19] try to 
overcome the second problem to a great extent. They 
compensate the risk associated with possible 
inappropriate smoothing-scale selection by adopting 
different strategies. The DoG detector uses these scale 
evolution differences of planar curves to determine 
corners. The MSCP detector computes the curvature 
product of different smoothing-scales at each point, the 
curvature products of strong corners are bigger and the 
ones of weak corners are smaller. As a result, in terms of 
curvature product, the strong corners became more 
distinguishable from the weak corners. Consequently, 
both of them offered better corner detection performance 
than many of the aforementioned detectors.  

In this section, we reviewed most of the main methods 
for corner detection, especially the CSS methods. 
Although a lot of methods are proposed or improved, the 
problems still exist. In this paper, we intend to propose a 
new algorithm that overcomes the aforementioned 
problems associated with the existing CSS corner 
detectors. We present a robust corner detection technique 
based on the eigenvalues of covariance matrix of data 
points on a curve segment for the discrete curvature 
estimation [1, 2]. The eigenvalues of covariance matrix 
discrete curvature estimation technique is less sensitive to 
the local variation and noise on the curve. It does not use 
any derivative of the curve-point locations at all. 
Moreover, it does not have the undesirable effect of the 
Gaussian smoothing. As a result, the proposed auto-
detection corner based on eigenvalues product of 
covariance matrices corner detector in the paper greatly 
overcomes the problems associated with the existing CSS 
corner detectors and offers better performance. 

III. COVARIANCE MATRICES 

In this section, we present the eigenvalues of 
covariance matrix of data points on a digital boundary 
over a region of support and the relation with the 
prominence of a corner, which is the basis of the 
proposed A-DEPCM corner detector. Let n sequential 
digital points describe a boundary L of a P object, 

{ }( , ), 1, 2,...,i i iL p x y i n= = =                    

Where ( , )i ix y  is the coordinate of the point pi in the 

boundary and pi+1 is adjacent pi on L. Let ( )k iS p  
denotes a small curve segment of L, which is defined by 
region of support (ROS) between points pi-k and pi+k for 
some integer k, and point pi is the center of ( )k iS p . That 
is 

{ }( ) | , 1,..., 1,k i jS p p j i k i k i k i k= = − − + + − +  

Therefore, the covariance matrix C for point pi of a 
curve segment ( )k iS p  is given as follows [1] [2]: 
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cx and cy are the geometrical center of  ( )k iS p , then 
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The covariance matrix C is symmetric and positive 
semidefinite. The eigenvalues λL and λS of the matrix C 
are as follows 

   2 2
11 22 11 22 12

1 ( ) 4
2L c c c c c⎡ ⎤λ = + + − +⎣ ⎦             (2) 

2 2
11 22 11 22 12

1 ( ) 4
2s c c c c c⎡ ⎤λ = + − − +⎣ ⎦             (3) 

From the formula of eigenvalues we can see L sλ ≥ λ . 
Tsai and Hou etc [2] present the eigenvalues of the 

matrix C can be used to extract the shape information 
about a curve and the smaller eigenvalues λS can be 
utilized to measure the prominence of a corner for each 
boundary point pi over the curve segment ( )k iS p . That 
is to say, the sharp corners have the large λS and the weak 
corners have the small λS. So the smaller eigenvalues λS 
can be approximate curvature of curves, corners can be 
determined according to λS value exceeding a 
predetermined threshold. They determine the threshold 

sλ
Τ  according to number of desired corners specified by 
a human viewer, and use a single ROS in detection 
procedure. Although this algorithm has a better detection 
performance, the corners of eigenvalues 

ss λλ > Τ may 
not be correct because of the effect of noise, human and 
digital process. Since the local variation and noise on the 
curve are unknown, the different regions ROS of the 
same curve may result in different corners. Therefore, 
choosing an appropriate ROS for a given curve is a 
difficult task. In this paper, we present the automatic 
detection corners method by multi-ROS which 
compensates the shortage of a human viewer and single 
ROS. 

IV. ANALYSIS OF MULTI-ROS EIGENVALUE 
PRODUCT 

Curves of the same length may contain different types 
of corners, so choosing a ROS for a given curve is 
difficult. For example, when a single ROS is used, the 
corner detector will be sensitive to noise if the ROS is set 
too small, but locations of corners will be not accurate if 
the ROS is set too high. Therefore, we can compute 

curvature values at each point using multi-ROS curvature 
product, which can not only compensate the risk 
associated with a single region of support, but also make 
the strong corners more distinguishable than the weak 
and false corners. For example, Fig. 1 (b)-(d) shows the 
curvature estimation using formula (3) at ROS 12, 16, 20, 
and Fig. 1 (e) shows the product of curvatures. From Fig. 
1 (b)-(e), we can see that the small features and the noise 
are suppressed and the responses of the corners become 
more salient according to product of curvatures. The 
corners (curvature extrema points) are easily identifiable. 

We define the concept of multi-ROS curvature product. 
Let ( )k iS p  denotes the region of support of point pi. 
According to (1)-(3), we can calculate the curvature λS  at 
the jth ROS, and we define the concept of multi-ROS 
curvature product as follows: 

                
1

( ) ( , )
n

n i s i j
j

P p p s
=

= ∏λ                                 (4) 

More generally the multi-ROS curvature product on an 
arbitrary set of different scales denoted by 

              ( ) ( , )i s i
s

P p p s
∈Ω

= ∏ λ                                     (5) 

Where Ω is the set of different scales. In this paper, we 
calculate three curvature values at each point suing three 
ROS of different lengths. An example of the cross-scales 
product is given in Fig. 1. 
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(c)Shark

 

(a) Flower

 

(b) Airplane

(d) Leaf

 
Figure 1.  Eigenvalues of ROS: (a) original shape; (b)-(d) estimated 
curvature using different regions of support; (e) production of estimated 
curvatures using different regions of support. 

 
 
 
 
 
 

Figure 2.  the proposed corner detector results for flower, airplane, 
shark and leaf respectively 

Fig. 1 (e) shows an example of cross-scales product. 
The use of above curvature product has an additional 
advantage. The curvature product not only smoothes the 
noise and curve details, make the real corners salient, but 
also corners are well located. According to the above 
analysis, in this paper, we think peaks of curvature 
product graph corresponding points as corner set. That is 
to say, curvature product local maxima points are corners. 
Therefore, the method avoids not only the impact of 
human but also threshold settings. We show examples 
(see Fig. 2) by curvature product of three ROS of 
different lengths. 

From the Fig. 2, the proposed detector can obtain 
satisfactory results. Expressly Fig. 2 (b) and (c), all true 
corners of airplane and shark can be detected and no false 
corner occurs, and that the location accuracy and 
reliability is apparent. Fig. 2 (d) shows that all the corner 
of leaf can be also detected, but there is one superfluous 
corner; Fig. 2 (a) shows that the few corners of flower are 
missed. Comparing Fig. 2 (b), (c) and (d) with (a), the 
proposed detector is more suitable for polygonal curve.  
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V. PERFORMANCE EVALUATION AND 
EXPERIMENTATIONS 

In this section, we compare the performance of the 
proposed A-DEPCM corner detector with the existing 
MSCP detectors [19] and eigenvalues of covariance 
matrices [2] by using two criteria-average repeatability 
and localization error [12]. In the comparative study, the 
values of all their parameters are set to the values giving 
the lowest possible total error for all detectors. 

A.  Evaluation criteria 
The traditional technique of robustness evaluation 

involves human visual inspection which is hard to 
implement for proper robustness tests due to following 
reasons [21].To measure automatically the performance 
of a corner detector in terms of the robustness of the 
detected corners and involve no human involvement. We 
introduce average repeatability and localization error [12] 
criteria for measuring the localization accuracy and 
stability of corner detectors, respectively. 

The criterion of average repeatability makes use of the 
number of corners in original image, the number of 
corners in each of the transformed images as well as the 
number of matched corners between original and 
transformed images. It is defined as: 

1 1 100
1002 ( )a

o t

N
avg N NR = + ×  

Where oN and tN  are numbers of corners detected in 

the original and transformed images respectively and aN  
is the number of matched corners between them. 

The localization error is defined as the amount of pixel 
deviation of a matched corner. It is measured as the root-
mean-square-error (RMSE) of the matched corner 
locations in the original and transformed images: 

2 21

1
( ) ( )

a

a

N

e oi ti oi tiN
i

L x x y y
=

= − + −∑  

Where ( , )oi oix y and ( , )ti tix y  are the positions of i-th 
matched corner in the original and transformed images 
respectively. An RMSE value of maximum 3 pixels is 
allowed to find a matched corner. 

Remark 1. We use Ravg to describe the stability of 
corner detectors under the rotation, scaling, affine 
transforms and noise disturbing. The value of Ravg for 
stable corner detectors should be close to 100%. 

Remark 2. In the tests, RMSE is used to describe the 
error rate of corner detectors. The value of RMSE for 
stable and accuracy corner detectors should be close to 
zero. 

B.Experimental Results 
According to average repeatability and localization 

error criteria the comparative experiments are carried out 
for MSCP detector, the proposed auto-detection corner 
based on eigenvalues product of covariance matrices (A-
DEPCM) corner detector, and eigenvalues of covariance 

matrices under rotation, scaling, affine transforms and 
noise disturbing. We use the twenty different original 
images including some artificial images like polygon and 
real world images like Airplane, Flower, Leaf, Fish, 
Shark, etc. Many of the above original images are 
collected from [22, 23] and other webs. In the 
comparative experiment, the number and the position of 
corners are extracted firstly from the original image. And 
then we have transformed images as test images, which 
are obtained by applying the five different types of 
experiments on each original image as follows: 

Experiment 1. Rotation: The original image is rotated 
with rotation angle chosen by uniform steps of the 
interval [ 90 , 90 ]− ° + ° , excluding 0° . Distance between 
consecutive steps was10° . The number and the positions 
of corners in each rotated image are extracted. 

Experiment 2. Uniform scale: The original image is 
zoomed with scale factor chosen by uniform scaling of 
the interval[0.5,1.5]  , excluding 1.0. Distance between 
consecutive samples was 0.1. 

Experiment 3. Non-uniform scale: In this experiment, 
the original image is zoomed with scale factor by non-
form scaling of the interval [0.5,1.5] . Namely, Scale 

factors x ys s≠ excluding the cases x ys s= . 
Experiment 4. Affine transform (rot.-scale): Affine 

transform is applied to the original image. Here we 
applied rotation angles 10° uniform steps 
in[ 30 , 30 ]− ° + °  , excluding 0° , followed by uniform or 

non-uniform scale factors xs and ys   in [0.5,1.5]  at 0.1. 
Experiment 5. Noise: In this experiment Gaussian 

white noise was added to the original image with zero-
mean and variances chosen by uniform sampling of the 
intervals [0.005,0.05] . Distance between consecutive 
samples was 0.005. 
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Figure 3.  Average repeatability and localization error under rotation: 
(a) Average repeatability, (b) Localization error 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Average repeatability and localization error under 
Gaussian noise (a) Average repeatability, (b) Localization error 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Average repeatability and localization error under uniform 
scale (a) Average repeatability, (b) Localization error 
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Figure 6.   The overall performance under various geometric 
transformations and the noise disturbing: (a) Average repeatability, (b) 
Localization error (a) Average repeatability (b) Localization error 

Figs. 3-5 illustrate the values of average repeatability 
and localization error under rotation, uniform scaling and 
noise disturbing respectively. Note that these values are 
averaged across the all different images. Fig. 6 shows the 
average repeatability and localization error under 
different geometric transformations and Gaussian noise. 
These results indicate that all detectors have the better 
performance. From Fig. 3-6, we know that all the 
detectors offered the high average repeatability, but the 
large localization error. The proposed A-DEPCM corner 
detector offered higher average repeatability and better 
localization error than Tsai and MCSP detectors. The 
MSCP detector offered the higher average repeatability, 
however, it suffered from localization error; the Tsai 
detector offered better localization error than MCSP 
detector. This is mainly because the curvature estimation 
of the A-DEPCM and Tsai detectors does not directly 
implement the “curvature definition” and, therefore, they 
don’t use any derivative of curve-point locations at all. 
The difference in curvature estimation makes the A-
DEPCM and Tsai detectors to be less sensitive to the 
local variation as well as the noise on the curve than 
MCSP detector. As the proposed detector makes use of 
the product of multi-ROS curvature to suppress the weak 
and spurious corners as well as to strengthen the true 
corners, it has the best stability and accuracy with respect 
to geometrical transform and noise disturbing and detects 
more true corners and less false ones. 

C .  The analysis of time complexity 
In experiments, there are two main steps for the MCSP, 

A-DEPCM and Tsai corner detectors, namely, extracting 
edges from original images and detecting corners on 
edges. The MCSP, A-DEPCM and Tsai corner detectors 
utilize the Canny edge detector to extracting edges from 
original images, so their time complexity difference is 
determined by corner detector. Comparing A-DEPCM 
with Tsai corner detector, computing curvature time of 
Tsai corner detector is about ( * )O n k ， where n is the 
number of points on a curve and k is the length of a 
region of support. The A-DEPCM corner detector 

needs ( * * )O m n k  (m different regions of support) for 
computing curvature of a curve, m equals to 3 in the 
paper. Corners are detected according the curvature of 
curves. Tsai corner detector utilize bubble sort to 
determining the maximum curvature of c (c is the number 
of corners by human judgment), which takes time 
about ( * )O c n . Therefore, the total computational 
complexity of the Tsai corner detector is (( )* )O c k n+ . 
With respect to the proposed A-DEPCM method 
determining corners according to the curvature product 
graph, it needs about n times. So the computational 
complexity of the proposed method is 
about (( 1)* )O m k n+ + . The time complexity of the 
MSCP method is mainly determined by the convolution, 
which is about (( 1)* )O w i n+ + , where w is the size of 
sliding window, i is the number of different σ, and 1 is 
the times of comparing curvature of the curve with 
curvature threshold. According to the above analysis, the 
time complexities of the MCSP, A-DEPCM and Tsai 
corner detectors to detect the corners are all the 
polynomial, so they have basically the same as the time 
complexity. 

VI. CONCLUSIONS 

In this paper, we present a robust corner detection 
based on the smaller eigenvalues of the covariance matrix 
of boundary points over a small region of support. As the 
smaller eigenvalues of covariance matrix associates with 
the curvature of a point on the curve. Strong points have 
larger eigenvalues than weak corners. So we use the 
product of smaller eigenvalues of covariance matrix of 
three different regions of support to make sure corners, 
which makes strong corners more distinguishable from 
the weak corners. We consider that points corresponding 
to peaks of the eigenvalues product graph are constructed 
as corner set. Therefore, the proposed method avoids 
human judgment and curvature threshold settings. The 
detection and localization performance analysis are 
performed by two theoretical criteria: average 
repeatability and localization error. The experiments 
illustrate that the proposed A-DEPCM detector has 
generated good detection and localization under various 
geometrical transform and noise disturbing. 

Corner is the representative feature and can depict 
shape of objects. So a robust as well as stable corner 
detector preprocesses images successfully and effectively 
for pattern classification, shape recognition, and 
computer vision. Our future work does point matching to 
determine the location of three-dimensional space. 
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