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Abstract—The Non-negative matrix factorization (NMF) 
can be formulated as a minimization problem with bound 
constraints. NMF is capable to produce a region- or part- 
based representations of the wood images. We present an 
extension to the NMF and discuss the development as well 
as the use of damped Newton optimization approach for 
update matrices W and H called iterative DNNMF with 
good convergence property for wood defects detection by 
adding a diagonal correction to the stiffness matrix and 
employing a Newton direction in the line search until any 
constraints become active. We also provide algorithms for 
computing these new factorizations and the supporting 
theoretical analysis. DNNMF is tested with color wood 
images based on the statistical features extracted by local 
binary pattern (LBP) from the feature spaces. Finally, we 
present experimental results that explore the properties of 
the proposed method. After many comparative experiments, 
the test results show DNNMF is effectual and practical with 
good research values and potential applications. 
 
Index Terms— nonnegative matrix factorization, feature 
spaces, damped Newton, wood image representation, defects 
detection, local binary pattern 
 

I.  INTRODUCTION 

The Non-negative matrix factorization (NMF) is an un- 
supervised method whose aim is to find an approximate 
factorizationV WH= to obtain a reduced representation of 
image data. NMF differs from other methods by its use of 
non-negativity constraints. However, in fact, non trivial, 
sometimes the nonnegative factorizations do not always 
exist as we expected. In the convergence, matrices W and 
H are initialized with random non-negative values before 
the iteration starts. In view of the property, various efforts 
have focused on alternate approaches for initializing or 
seeding the improved algorithm in order to speed up the 
convergence of NMF algorithm of Lee and Seung or 
otherwise influence convergence property to a desired 
solution [1]. Lin [2] proposed a projected gradient bound- 
constrained optimization method that is computationally 
competitive and appears to have better convergence than 
regular NMF. Zdunek and Cichocki [3] proposed a quasi- 
Newton approach for the updating rules W and H at the 

expense of a significant increase in runtime per iteration. 
The authors of [4] and [5] introduced the concept of 
approximate and get approximate factorization for NMF 
by employing the I-divergence between the non-negative 
matrices and some other approaches. The NMF and some 
improved NMF approaches have been widely used in 
data mining fields for which the constraints are relevant, 
such as image classification [6][7], text mining [8], face 
recognition [9] and object characterization [10], etc. 

The grading of the woods is mainly determined by the 
defects on wood surfaces and determines the potential 
uses and values for the Sawmills. Currently, automatic 
defects detection and the grading of products are one of 
the key interests and hot issues in the mechanical wood 
industry. Matti Niskanen [11] and P. Meinlschmidt [12] 
have adopted the different methods to study wood based 
defects detection problems. 

This paper proposes a new variation to NMF and we 
take NMF as a framework for wood defects detection, 
getting help from the damped Newton to reformulate the 
problem of the NMF and can assure the convergence of 
nonnegative factorizations by constructing a symmetrical 
matrix ( )kQ to take place of the gradient 2 ( )kf h∇ . The 
remaining parts of this paper can be organized as follows: 
In section III, the updating rules for W and H and the 
detailed convergence analysis will be given. We perform 
DNNMF on analyzing the wood data and take it for wood 
defects detection in the section IV by adding the original 
spatial structure texture features extracted via LBP [13]. 
Finally, we conclude this paper in Section V. 

II.  NONNEGATIVE MATRIX FACTORIZATION 

For fixed positive image n mV × ，NMF’s aim is to find a 
non-negative base [ ]ij n kW w ×= and matrix [ ]ij k mH h ×= . Lee 
and Seung [4][15] choose Euclidean distance as the cost 
function and the NMF factorization is a solution to the 
following optimization problem: 

 ( ) ( )2

,

1
min , [ ]

2

0, 0, , ,

ij ijW H
ij

ia aj

f V WH V WH

subject to W H i j a

= −

≥ ≥ ∀

∑        (1) 

Here, Eq.1 is a standard optimization problem. The 
most popular approach to solve Eq.1 is multiplicative  
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update algorithm [14]. It is simple to implement and can 
often yield the good results. For each iteration, the 
elements of W and H are multiplied by certain factors. As 
the zero elements are not updated, all the components of 
W and H are strictly positive per iteration. 
For1 , 1i n j m≤ ≤ ≤ ≤  and 1 a k≤ ≤ , the cost function 
of NMF of Lee and Seung is non-increasing under the 
following update rules:  

   *
* *

*

( )
( )

T
i a

i a i a T
i a

VHW W
WHH eps

⎛ ⎞
← ⎜ ⎟+⎝ ⎠

         (2) 

*
* *

*

( )
( )

T
a j

a j a j T
a j

W V
H H

W WH eps
⎛ ⎞

← ⎜ ⎟⎜ ⎟+⎝ ⎠

          (3)  

Where, eps is a small positive value to avoid zero in 
the denominators of the approximations for W and H. The 
Euclidean distance is invariant under these updates if and 
only if W and H are at a stationary point of the distance. 
One can normalize the columns of the basis matrix W to 
the unity norm. Then, the column vectors of W can be 
mapped to surface of a hyper-sphere. The detailed proofs 
of these theorems can be found in [14] and will be 
extended for damped Newton based case in next sections. 
Noticing the non-negativity constraints on the matrices W 
and H are automatically satisfied by these updating rules 
if the starting matrices 0W and 0H are all non-negative.  

III.  DAMPED NEWTON APPROACH FOR NONNEGATIVE 
MATRIX FACTORIZATION 

A. Iterative update rules 
DNNMF performs on the same cost function as regular 

NMF, but with the different optimization solutions. For 
1 , 1i n j m≤ ≤ ≤ ≤ and 1 a k≤ ≤ , the cost function is 
non-increasing under the following updating rules:  

( ) * ( ) * *
* *

* * *

( ) (1 )( )
((( ) ) )

T T
k a j k a j a j

a j a j T
a a a a a j

W V W WH H
H H

W W I H eps
α α β

β
⎛ ⎞+ − +

← ⎜ ⎟⎜ ⎟+ +⎝ ⎠

(4) 

 
( ) * ( ) * *

* *
* * *

( ) (1 )( )
((( ) ))

T T
k i a k i a i a

i a i a T
i a a a a a

VH WHH W
W W

W HH I eps
α α β

β
⎛ ⎞+ − +

← ⎜ ⎟⎜ ⎟+ +⎝ ⎠

(5) 

 
Where, eps is similarly a small positive value defined to 
avoid zero(s) in the denominators of the approximations 
for W and H. The Euclidean distance is invariant under 
these updates if and only if W and H are at a stationary 
point of the distance. 
B. Proofs of convergence 

In this paper, we also formally consider algorithms for 
solving the same optimization problem as [3]: Given a 
non-negative matrix *n mV , aim to find two non-negative 
matrices *n rW and *r mH such that: * * *n m n r r mV W H≈ and 
minimize the cost function of Eq.1.The inequalities such 
that variables are upper- and lower-bounded are referred 
to as the bound constraints. So, the problem is a standard 
bound-constrained optimization problem. We note that 

( )2 2

1 1
( )

n m

ij ij
i j

v Wh v Wh
= =

− = −∑∑          (6) 

Where, . is L2-norm and the normalization procedure 
can be explained by the defined as that the cost function 

( ; ) ( )f V WH f h= splits in n independent sub-problems 

related to each column of the error matrix. Therefore, we 
consider the partial cost function for a single column of V, 
W and H, which are denoted by v, w and h respectively: 

21 1( ) ( ) ( )
2 2

Tf h v Wh v Wh v Wh= − = − −        (7) 

Let kh be the current approximation of the minimizer 
of ( )f h , then we can rewrite ( )f h as 

 
( ) ( ) ( ) ( )

1 ( ) ( )
2

k k T k

k T T k

f h f h h h f h

h h W W h h

≈ + − ∇

+ − −
  (8) 

Where ( ) ( )k T kW Wf h v h∇ = − − and TW W is the 
corresponding Hessian matrix. So as to receive the steady 
points, we order 2( ) ( ) ( )( ) 0k k kf h f h f h h h∇ = ∇ +∇ − = . 
If 2 ( )kf h∇ is reversible, we can get the following update 
rules of Newton approach: 

 ( ) 1( ) ( 1) 2 ( ) ( )k k k k kd h h f h f h
−+= − = −∇ ∇      (9) 

Where, ( )kd stands for the Newton directions. When the 
initial point is far away from the minimum point, the 
orientation may not be descending or in bad directions, 
all of which makes Newton algorithm can not convergent 
sometimes, but Damped Newton Methods (DNM) can 
overcome the singularity by adding a diagonal correction 
to the stiffness matrix. Hence, in this paper, we add one 
-dimensional search along the directions of Newton [16], 
whose iterative formula is ( 1) ( )

( )

k k k

kh h dα+ = + . Then we 
can adopt the damped Newton to obtain the update rules 
for nonnegative factorization. Here, we need meet the 
following formulations for the fix start points as well as 
the thresholdε (Here, we always setε = 610− )and stop 
repeating if and only if || ( ) ||kf h ε∇ < : 

( ) ( )
( )( ) min ( )k k k k
kf h d f h d

α
α α+ = +       (10) 

Where ( 1)α α ≤ is the corresponding step size after one 
-dimensional search Here, in order to receive the best 
step size ( )kα for the iterative rules, here we also order 

1 / 2 0,1, ...,,n n Nα = = and do ( 1) ( )k k kh h dα+ = + until 
α satisfy ( 1) ( )( ) ( ) [ ( )]k k k T kf h f h f h dεα+ < − ∇ .If so, we 
will regard the corresponding damping factor kα as the 
proper step size for iteration. The iterative procedure of 
DNNMF is illustrated in Algorithm 1.  

Algorithm 1. A damped Newton approach for bound- 
constrained optimization. 
0   Compute the step sizeα using line search; 
1   Initialize 610ε −= , ( )kα = 1, 0k = , ( )kh ; 
2   2.1  If 2|| ( ) ||kf h ε∇ < , stop;  

2.2  Else, repeat 
            ( 1) ( )

( )
kk k

kh h dα+ ↔ + ; 
2.3  If ( )

kn
k χα = and nk is the first non-negative

     integer n for which 
     ( ) ( )( 1) ( )( ) ( )

T kk k kf hf h f h dα+ ∇< − ; 
    2.4  Else, set ( )( ) ( )1 / 2k kα α← ; 
 
In addition, how to select the good ( )kd for the search 

direction is very important. We know a good direction 
( ) 1( ) 2 ( ) ( )k k kd f h f h

−

= ∇ ∇ needs to satisfy the following 
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two formulations: 

( ) ( ) 2
min( ) || ( ) ||

Tk k kf h d f hλ∇ ≤ − ∇        (11) 

( )
max|| || || ( ) ||k kd f hλ≤ ∇            (12) 

Here letλ be the eigenvectors of 2 ( )kf h∇ andλ  meets 
m in 1 2 m ax0 ... nλ λ λ λ λ< ≤ ≤ ≤ ≤ ≤ . Eqs.11 and 12 

can easily be proved. If now, we just need to make sure 
2 ( )kf h∇ is positive definite, then it is reversible and then 

we can solve it by ( )2 1
( ) ( )k kf h f h

−

∇ ∇ . While, for 
0x∀ ≠ , 2

2|| || 0T TW W Wx x x= ≥ , which means 2 ( )kf h∇ is 
symmetrical and positive semi-definite. Here, in order to 
make sure 2 ( )kf h∇ positive definite, we adopt the similar 
and effective method as that of [17] to construct a 
symmetrical matrix ( )k TW WQ Iβ= + ,where β is a positive 
number and I is the unity matrix [16].When number β is 
set properly from zero to tens, we can find an excellent 
value for it and can guarantee ( )kQ symmetric reversible, 
which can make sure ( ) 1( ) ( ) ( )k T kd W W I f hβ

−

= − + ∇ is 
descending and the factorization is global convergent. 

Next, the update rules are based on a technique which 
minimizes ( )kf h by an approximate simpler auxiliary 
function ( , )kQ h h and satisfy the following formulations 

( ) ( , )f h Q h h= and ( , ) ( )TQ h h f h≥ . 
( , ) ( ) ( ) ( )

1 ( ) ( )( )
2

k k k T k

k T k k

Q h h f h h h f h

h h D h h h

≈ + − ∇

+ − −
 (13)                    

Where, ( ) ( )D x diag x= is a diagonal matrix with the 
vectors x as its diagonal input elements. And here, the 
formulation ( , ) ( )Q h h f h= is easily verified, so we will 
just prove ( , ) ( )TQ h h f h≥ in detail. ( )kD h is a diagonal 
matrix used to make ( ) ( )( )k TD h W W Iβ− + semi-definite, 
which implies ( , ) ( ) 0,TQ h h f h h− ≥ ∀ .Here, the choice for 
matrix ( )kD h is similar to that of [14]. 

( )
( )

T k
k

k

W W I h
D h diag

h
β⎛ ⎞+

⎜ ⎟=
⎜ ⎟
⎝ ⎠

          (14) 

Here, we can make sure ( )k TD h W W− positive semi- 
definite. If that case, we have: 

( 1) ( 1)( ) ( , ) min ( , ) ( , ) ( )k k k k k k k

h
f h Q h h Q h h Q h h f h+ += ≥ = ≥  (15) 

Which can make sure that ( )kf h is non-increasing for h 
that can be updated by 1 arg min ( , )k k

h

h G h h+ = . And H can 
be updated by minimizing 2|| ||V WH− with W fixed. To 
minimize ( )kf h , we update h by 1 arg min ( , )k k

h

h G h h+ = . 
And h∆ can be resolved by computing ( , )k

hQ h h∇ : 

( )( ) ( )

( ) ( )( )

( )
( )

1( 1)

( )

( )

k k k k

k
T k

T k

T T k
k

T k

h h h D h f h

hdiag W v Wh
W W I h

W v W Wh
h

W W I h

β

β

−
+∆ = − = − ∇

⎛ ⎞
⎜ ⎟= −
⎜ ⎟+⎝ ⎠

−
=

+

  (16) 

Besides, we know that ( 1) ( )

( )

k k k

kh h dα+ = + , so we can 
rewrite the components of this equation explicitly as 

( )
( )

( )
( )

( )

( 1)
( )

( )

( ) ( )

( )

( )

( ) (1 )( )
( )

T T k
k k k

k T k

T T k
kk k

T k

T T k k
k kk

T k

W v W Wh
h h h

W W I h

W v W Wh
h h

W W I h

W v W Wh h
h

W W I h

α
β

α

β

α α β
β

+
⎛ ⎞−
⎜ ⎟= +
⎜ ⎟+⎝ ⎠

⎛ ⎞−
⎜ ⎟= +
⎜ ⎟+⎝ ⎠

⎛ ⎞+ − +
⎜ ⎟=
⎜ ⎟+⎝ ⎠

  (17) 

Putting together the update rules for all the columns 
of H yields the desired result for the whole matrix H . By 
reversing the roles of W and H , in the same way, we can 
get the corresponding update rules forW and ( )kf h can 
similarly be shown to be non-increasing under the update 
rules forW and here can be represented as follows: 

( )
( ) ( )( 1) ( ) (1 )( )

( )

T k T k
k kk k

k T

vH w HH w
w w

w HH I
α α β

β
+

⎛ ⎞+ − +
⎜ ⎟=
⎜ ⎟+⎝ ⎠

 (18)           

We present our algorithms in the Algorithm 2. 
DNNMF can be proved convergent per iteration. Firstly, 
it uses the inverse of the Hessian matrix 2 ( )kf h∇ to 
receive the Newton direction by constructing a 
symmetrical positive definite matrix ( )kQ . Whenever the 
rank r of the factor matricesW and H is small, using the 
inverse Hessian matrix can be advantageous for problems. 
Secondly, the smallest errorε , sizeα and the positive 
number β are made the input parameters, and DNNMF 
can guarantee monotonic descent of objective function for 
a sufficiently smallε and a proper step sizeα .  

 
Where, sizeα is computed by step 3 and it can be 

shown that steps 3-4 can decrease the objective function 
monotonically by the descending directions ( )kd .And β is 
computed by step 4, which can assure 2 ( )kf h∇ positive 

Algorithm 2. Damped Newton Approaches for NMF. 
1  Inputs: r s.t.1  r  min{n,m}≤ ≤ ,

, 1 2
[ ] [ , ,..., ]

i j n m m
V x X X X

×
= = , 

where, *{ / [0, )}n m

i
X R R

+ +
∈ = +∞ ; 

2  Initializeε , ( )kα =1, 0k = , ( )kβ =0, ( 0)h , *n rW and *r mH ; 
3  Compute the step size α  using line search; 
   3.1  If 

2
|| ( ) ||kf h ε∇ < , stop; Else, repeat 

   3.2  Do ( 1) ( )

( )

k k k

kh h dα+ ↔ + ; 
    3.3  If ( 1) ( )( ) ( ) [ ( )]Tk k k kf h f h f h dα+ < − ∇  

set ( )kα α← ; 
   3.4  Else, set ( )( ) ( )1 / 2k kα α← ; 

4   4.1  If ( ) 12 ( )kf h
−

∇ exists, set ( )kβ β← and  
   4.2  do *rnew nW W← ; *mnew rH H← ; 

4.3  Else, repeat 
4.3.1  Do 

( ) ( )
* , 10 * ,

k k
i i s s Rβ β

+
← = ∈ ; 

                 ( )

( )

k T

k
Q W W Iβ← + ; 

     4.3.2  Till 2 ( )kf h∇ is positive definite, set 
( )kβ β← , label; 

  4.4  If label is true, loop step 4.2; Else turn to step 
4.3.1. 

5   1;k k← +  
6   Repeat the steps 4-5 to obtain the updating rules; 
7   Outputs: * * *, ,n r r m n mW R H R F R

+ + +
∈ ∈ ∈ ; 
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definite and the objective convergent. In DNNMF, for the 
purpose of making sure the gradient descending and 
proving convergence each time, we need do some indis- 
pensable judgments for faster convergence. At the same 
time, the computational complexity is improved and the 
processes cost a little more time than that of NMF when 
facing one image data whose dimension is much larger. 
However, for the lower dimension images with pixels 
30*30, they are almost equally matched. Here, the 
training set, feature extraction, and detection process are 
all built on pixels 30*30, under which the runtime gap 
between DNNMF and NMF methods is very close. 

IV.  EXPERIMETNS AND ANALYSIS 

Wood is an important natural resource and is much in 
demand. Here, we also present a solution for wood knot 
defects detection and describe the performances by giving 
quantitative experiments. The block diagram of SVM [18] 
based detection system is given in Figure 1. In this paper, 
the image pretreatments, feature extraction and the defects 
detection are all built on the matrices, all of which make 
enough spaces for nonnegative matrix factorization. 

    
Figure 1.The block diagram of SVM based detection system. 

A.  Wood image representation 
Here, we first take some typical wood samples denoted 

by DEFECT_T from the wood image database [19] 
provided by VTT Building Technology to examine our 
algorithm for visualization by comparing with the regular 
NMF. For NMF, the amount of the base image, k, is also 
an important factor for the test effects (advantages) 
between them when facing different values for k. After 
many cross verifications, we always set k=80 with good 
generalization ability in the experiments and Figure 2 gives 
the feature images in the NMF and DNNMF feature 
subspaces respectively. 

Figure 2.The obtained feature images by NMF(Left panel) and DNNMF 
(Right panel) for k = 80 on the DEFECT_T test set with different sample 
sizes from pixels 34*32 to 231*223. 
 

From Figure 2, after the NMF and DNNMF processes, 
the defect regions stand out and wood surfaces are smooth 
with less disturbed information in the right panel than the 
left one, and the shapes (including the points and surfaces, 
etc.) and texture distributions of defects in the right panel 
are more obvious, all of which makes it possible to detect 

the defects effectively in the experiments. 
In order to intuitively evaluate the high performance of 

DNNMF for wood image representation, the similarity 
between the original image and the corresponding feature 
images is discussed. In this section, Euclidean distances 
and the Mutual information are used as the measures to 
evaluate the similarity based on LBP feature histograms. 
Here, five typical wood samples selected from the data 
base are used for examples in Figure 3.  

As a scaling measure of the link extent of between two 
signals or images, mutual information can describe the 
statistical link extent for two random variables. Formally, 
the mutual information ( , )MI x y of two discrete random 
variables X and Y can be defined as: 

( , )
( , ) ( , ) log

( ) ( )x X y Y

p x y
MI x y p x y

p x p y∈ ∈

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∑      (19) 

with

,

( , ) ( ) ( )
( , ) ( ) , ( )

( , ) ( ) ( )
,

T T T T

T T T T

x y x y

c x y c x c y
p x y p x p y

c x y c x c y
= = =
∑ ∑ ∑

  

Where, ( , )p x y is the joint probability distribution of x  
and y , and p(x) and p(y) are the marginal probability 
distributions of x and y respectively. ( , ) 0MI x y >> shows 
strong degree of correlation between x and y . ( , ) 0MI x y ≈   
represents the link between them is weak. ( , ) 0MI x y <<  
represents that there is no association relationship existed 
between x and y . 

From Figure 3, we can get the analogous circumstances 
as Figure 2 that the defect regions stand out and the wood 
surfaces are smoother with less disturbed information. 
Besides, the texture distribution and contrast of the feature 
images structured by DNNMF are more obvious and 
opportune for distinguishing the defect regions from the 
backgrounds. Table 1 gives the results of the similarity 
measures based on the LBP feature histograms.  
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          Figure 4.The distribution curves according to Table 1. 

 
From Table 1, we can find the similarities between the 

original images and the corresponding feature images by 
DNNMF are closer. Figure 4 also displays the distribution 
of the curve diagrams according to Table 1 as auxiliary 
explanation. Considering the Euclidean distances are big 
and difficult to be drawn in the same figure, we choose 
the log-form for convenience. 

Figure 4 illustrates DNNMF algorithm can describe the 
characteristics of the wood images better than NMF and 
can follow the vision point of view of people. Next, LBP 
feature extraction process is given. LBP is proposed by 
Ojala [13]. LBP code determined by n sample points is 
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used to represent wood texture features. For fixed pixel 
centre coordinates ( , )d dx y , LBP is defined as a binary 
contrast between the center pixel and n surrounding pixels 
intensity. Texture W is defined as the united distribution of 
the gray levels of n pixels: 1( , , ..., )c nW w i i i= ,where ci is 

corresponding to the gray value of the center pixel of a 
local neighborhood. ni (n=1,2,…,P)corresponds to the gray 
value of n equally spaced pixels on a circle of radius R 
(R>0) forming a circularly symmetric set. 

 

          Figure 3.Original wood images and the corresponding feature images obtained in the factorizations. 
 

 TABLE I.THE SIMILARITY MEASURES BETWEEN THE ORIGINAL IMAGES AND THE FEATURE IMAGES ON THE LBP FEATURE HISTOGRAMS. 

Feature set Methods 
            Similarity 

Test samples 
Mutual 

information 
Euclidean 
distances 

LBP feature 

histograms 

NMF/ LBP Sample one 
0.3631 2181 

DNNMF/LBP 1.0517 832 

NMF/ LBP 
Sample two 

0.3356 4629 

DNNMF/LBP 0.8792 1336 

NMF/ LBP  Sample three 
0.3960 6515 

DNNMF/LBP 0.8210 1973 

NMF/ LBP Sample four 
0.4906 5359 

DNNMF/LBP 0.8125 1518 

NMF/ LBP Sample five 
0.3238 8296 

DNNMF/LBP 0.9563 1518 

In this paper, we adopt the uniform 2

8,1

uLBP of values (P, 
R) equal to (8, 1), i.e. around a circle of radius R are eight 
adjacent pixels and the mapping type is uniform. A simple 
algorithm for measuring the uniformity of a LBP code is 
to summarize the absolute value of the difference between 
the code and the code circularly shifts one bit. 

For feature extraction, we first transform color images 
to gray and divide the images into many small blocks, and 
then use LBP to extract the texture features described by 
feature histograms from each block. Finally, we totally 
obtain 59-dimensional features. The process of the LBP 

feature extraction is briefly shown in Figure 5. 
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Figure 5. LBP texture feature extraction. 
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B. Performance standards 
Definition 1. For the experiments, the number of 

detection produced in the system is defined as N_sum. 
The number of incision on the real defects is defined as 
N_labeled. The number of incision to the detected and 
labeled defects in the identification is defined as 
N_dlabeled and the number of misjudging defects as 
normal and misjudging sound woods as defects is defined 
as DN_sum and SD_sum respectively.  

Definition 2. The Missed rates indicate the proportion 
of the missed defects to real labeled defects and can be 
determined by: 

_ _1 100%
_

N labeled N dlabeledM
N labeled

−
= ×    (20) 

Definition 3. The Misjudgment rates indicate the 
proportion of the misjudged defects to the total number of 
detections. 

_ _2 100%
_

DN sum SD sumM
N sum

+
= ×     (21) 

Definition 4. Accuracy stands for the detection rate and 
can be expressed as follows: 

1 1 2Accuracy M M= − −             (22)  

Figure 6 illustrates some but common cases, where, the 
blue rectangles denote the detections produced in the 
system. Here, we mainly evaluate the performance of the 
detection system by M1 and M2.  

 
Figure 6.Some examples of detection in the experiments. 

C. Wood defects detection 
In the experiments, we totally select 1495 samples 

from the wood image database, in which includes 929 
positive samples (labeled by 1) and 566 negative samples 
(labeled by -1). Figure 7 displays the common seven 
kinds of knot defects in the actual production. The 
experiments are based on the direct comparison of NMF 
with DNNMF for wood defects detection.  

 
Figure 7.The common seven kinds of knot defects. 

 

Detection system design. The detection system mainly 
include the following procedures: Building the wood 
image database for the experiments → Selecting the 
training set and test sets → Image pretreatments (image 
format transformation, image segmentation, etc.) → 
Decompose the wood images by DNNMF → Train the 
optimal SVM model→ LBP texture feature extraction→ 
Wood defects detection. Figure 8 has described the main 
frames of the detection system for convenience. 
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Figure 8.The main frames of the detection system. 
 

Simulation and experiment one. Many wood surfaces 
are relatively clean and the texture distribution is 
disciplinarian or some knot defects and the sound woods 
differ prominently in color depth and texture distribution. 
However, in the actual production, woods have significant 
variation both within and between the species. There are 
no woods that have the same properties in color and 
texture and surfaces show many varieties of texture 
characteristics, such as rough, etc. Even for the same 
species, the defects might greatly vary in shape, size and 
colors [20]. With large varieties of knot defects and the 
involvement of human factors cause the current detection 
methods are unstable and vulnerable to the interferences.  
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Figure 9.The experimental results of the wood defects detection. 
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In addition, choosing an appropriate feature set is also 
very important. After many cross verification, all the 
feature sets are selected with pixels 30*30 with better 
generalization. Figure 9 displays the partial test results of 
DNNMF/ LBP/SVM, in which the boxes are all drawn by 
computers automatically.Experimental environment: Intel 
(R) Pentium(R) D CPU 2.80 GHz 2.79 GHz 512. 

Simulation and experiment two. In this section, we 
obey the performance standards defined in section B and 
evaluate the proposed algorithms based on the selected 30 

images by comparing with NMF. Table 2 describes the 
class distribution of defects and the test results observed 
in the experiments respectively.  

From Table 2, we can find the number of leaf knots is 
smaller than the others. The test results here are evaluated 
by the Accuracy represented by (1-M1- M2), considering 
one can not effectively judge the types of the knot defects 
detected, so we will classify it to the type(s) of the current 
one(s) subjectively 

 

 TABLE II.CLASS DISTRIBUTIONS AND THE TEST RESULTS OF THE WOOD DEFECTS DETECTION BASED ON THE DIFFERENT KNOTS. 

    Results 

Knots 
Dry Encased Decayed Leaf Edge Sound Horn 

Test results (%) 

DNNMF/ 

LBP/SVM 

NMF/ 

LBP/SVM 

Dry 45 0 0 0 0 0 0 92.1 90.0 
Encased 0 18 0 0 0 0 0 88.5 88.6 
Decayed 0 0 20 0 0 0 0 85.6 91.3 
Leaf 0 0 0 9 0 0 0 94.8 82.2 
Edge 0 0 0 0 21 0 0 86.5 85.9 

Sound 0 0 0 0 0 38 0 85.0 88.1 
Horn 0 0 0 0 0 0 16 93.5 77.8 

Average 23.85 24≈  (per category) 89.4 86.3 
 
Besides, we find the averaged accuracy of DNNMF/ 

LBP/SVM exceeds NMF/LBP /SVM, which suggests that 
the detection system can follow the manual classification 
even though there exist some unavoidable experimental 
errors in the processes of wood defects detection.  

Figure 10 depicts the schematic diagrams of the test 
results, from which we can find the gaps of the curves are 
closer and the curves of DNNMF/LBP/SVM lay below 
that of NMF/LBP/SVM except for the sound and decayed 
knots, however, especially predominant on the leaf knots, 
horn knots and dry knots, all of which demonstrate 
DNNMF has better convergence and has better detection 
ability to most kinds of knot defects with LBP and SVM.  
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 Figure 10.The schematic diagram of the test results. 

 
Table 2 has given prominent to the proposed method 

and the accuracy can be thought good. Next, we compare 
the runtime performances of DNNMF/ LBP/SVM with 
NMF/LBP/SVM based on the selected boards in Table 3.  

From Table 3, we can find the total runtime of the 
proposed method is close to that of NMF/LBP/SVM and 
the runtime performance can also be thought better. 
Generally, the runtime performances of the proposed 
method can be preserved effectively and are able to meet 

the demands of the practical production better to a certain 
extent after the wood defects detection algorithm has been 
improved further.  

 TABLE III.RUNTIME PERFORMANCE OF THE TWO METHODS. 
 

Methods Total runtime (s) 
NMF/LBP/SVM 48.96 

DNNMF/LBP/SVM 52.07 

V.  CONCLUSIONS AND DISCUSSIONS 

The main purpose of this paper is to present a new 
approach for the regular NMF. The one solving damped 
Newton sub-problems in Algorithm 2 leads to undoubted 
convergence than some popular multiplicative update 
method. Its success is due to our following findings: 
Sub-problems in Algorithm 2 for DNNMF generally have 
well-conditioned Hessian matrices (i.e., revised via ( )kQ ) 
due to the property ( , )r m n<< . Hence, damped Newton 
method can make sure converge of the objective function. 
Roughly speaking, damped Newton's method is expensive 
per iteration to choose a proper step sizeα and Newton 
direction d , but has very fast final convergence. With 
faster convergence or stronger optimization properties, it 
will be an attractive approach for NMF. Experimental 
results show the damped Newton's methods are expensive 
per iteration but have faster final convergence indeed. 
With the faster convergence and the stronger optimization 
properties, it is also an attractive approach for NMF. 

This paper also applies the DNNMF to wood defects 
detection and recognition and mainly aims to present a 
new wood defects detection method, not detection and 
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recognition results. However, the result of the proposed 
method presented here is good or considerably better.  
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