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Abstract— Performance related problems play a key role
in the Software Development Process (SDP). In order to
evaluate the performance of a software architecture we
defined and implemented a technique mapping the initial
UML model into a performance model afterwards analyzed,
implemented into the ArgoPerformance tool. To be inter-
preted by a computing system it is necessary to make such
technique unambiguous. Therefore, it becomes mandatory to
define the software architecture representation by carefully
specifying its syntax and semantics.

The goal of this paper is to specify the representation
guidelines for specifying ArgoPerformance compliant mod-
els. With this aim, we firstly specify the design process into
the software performance engineering development process
(SPEDP), posing particular interest on the software architec-
ture representation. Then, by characterizing the SPEDP into
the UML domain, we identify and define rules and guidelines
for specifying a UML-ArgoPerformance compliant model.
To demonstrate the effectiveness of the overall technique
an example taken from literature is evaluated through
ArgoPerformance.

I. INTRODUCTION

Performance is an important but often overlooked as-
pect of the software design. Indeed, the consideration on
performance issues is in many cases left until late in
the software development process (SDP), when problems
have already manifested themselves at system test or
within the deployed system. The identification of possible
bugs or unsatisfactory performance in the design phase
allows to contain the costs, also permitting to compare
different alternatives. This kind of approach implements
the so called software performance engineering (SPE) [1],
which is a systematic, quantitative technique to construct
software systems that meet performance objectives.

In our previous work [2], [3], we elaborated a technique
to carry out the evaluation of the required performance pa-
rameters of a software architecture, using the UML [4] for
modeling and the OMG UML Profile for Schedulability,
Performance and Time Specification (SPT) [5] to specify
performance requirements into a UML model therefore
mapped into a performance model. More specifically,
starting from the UML model, all the software archi-
tecture specifications are translated into an intermediate
model, the Performance Context Model (PCM), that is
subsequently mapped into the corresponding performance
model. The results obtained from the analysis can be
fed back into the original model for further refinements
(re-engineering). Such technique has been implemented

into the ArgoPerformance tool [6], a performance plug-in
integrated in the ArgoUML CASE tool [7].

The automation process puts in evidence the necessity
to formalize the description of a software architecture into
the UML domain. A modeler that wants to evaluate the
design or the implementation of a software architecture,
has to represent it through a model compliant to the
software performance engineering tool used, mapping the
original model into a performance model thus analyzed.
To implement and automate such mapping is therefore
necessary to specify representation elements, semantics
and rules to univocally and unambiguously represent the
software architecture.

In this perspective, the main contribution of this paper
is the implementation of a software development process
which takes into account performance specifications and
requirements: the software performance engineering de-
velopment process (SPEDP). SPEDP includes and synthe-
sizes both the aim of modeling and developing a generic
software architecture, and the aim of investigating the
performance of the overall (hardware/software) elabora-
tion system. It can be applied both in early phases, as a
software performance engineering technique, and in test
phases, as a common software performance evaluation
technique. SPEDP fixes steps, rules and guidelines to fol-
low in order to achieve the desired results in the software
development, satisfying the performance requirements.

The main advantage of specifying a software devel-
opment process including performance evaluation is to
provide an algorithm, a process for implementing high-
quality/performance-guaranteed software. Such a process
can be automated into specific tools that, having in input
the software design and the performance requirements,
can automatically provide as output the final software
architecture satisfying the requirements.

The reminder of the paper is organized as follows: in
section II an overview of background concepts is pro-
vided; then, section III specifies both the syntax and the
semantics of SPEDP. In section IV, the SPEDP technique
is applied to the modeling of a web video application, and
then, in section V, the characterization of SPEDP to the
UML/PCM-SPT domain is specified. Finally, in section
VI, we present the results of the analysis performed by
ArgoPerformance, and, in section VII, we provide some
conclusive remarks.
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II. BACKGROUND AND PRELIMINARIES

Performance estimation is a crucial aspect of software
development. Traditionally software performance are
evaluated by specific benchmarks applying the “fix-it-
later” principle. In the classical approach, system and
software specification, implementation, behavioral and
performance validation are disjoint activities, resulting in
one model/formalism for each purpose. This may lead to
inconsistencies and furthermore is a waste of manpower
and resources. Therefore it is desirable to develop a
technique that integrates specification, implementation,
behavioral and performance validation altogether.

This approach has been identified in the software
performance engineering (SPE) [1]. The software perfor-
mance engineering process begins early in the software
life cycle and uses quantitative methods to identify satis-
factory designs and to eliminate those that are likely to
have unacceptable performance before developers invest
significant time in implementation. Software performance
evaluation continues through the detailed design, coding
and testing phases to predict and manage the performance
of the evolving software as well as monitor and report
actual performance versus specifications and predictions.

The specific literature offers a lot of works propos-
ing and implementing software performance engineering
techniques. Petriu and Woodside, in [8], define a perfor-
mance meta-model, named Core Scenario Model (CSM),
used as an intermediate model. The software architecture
behavior and the related performance specifications are
detailed through UML behavioral diagrams (Activity Di-
agrams and/or Sequence Diagrams), annotated with SPT
tags and stereotypes. The CSM is based on the SPT profile
and can be mapped into several kinds of performance
models (simulative models, Petri nets, queueing network,
etc).

Marzolla and Balsamo in [9] propose a software perfor-
mance engineering technique which uses a representation
notation composed by a set of annotated diagrams (Use
Case, Activity and Deployment). The software architec-
ture behavioral description is implemented by higher level
Use Case Diagrams, detailed by Activity Diagrams. The
nodes of the Deployment Diagram correspond to software
architecture elaboration system devices. They propose
a “UML Performance Simulator” which transforms the
UML software architecture model into a discrete-event
simulation model. Recently, they extended their technique
to the analytic performance domain by defining a specific
mapping into LQN [10].

In [11] the authors establish a correspondence between
UML models and labeled generalized stochastic Petri nets
(LGSPN) in two steps: first each UML State Machine
Diagram, composing the software architecture behavioral
UML description, is independently converted into the
corresponding LGSPN [11]; then, the PNs thus obtained
are joined according to the information reported in the
UML Sequence and Use Case Diagrams that also contain
the performance specifications. An extension of such
technique is proposed in [12], where UML State Machines

and Activity Diagrams are used.
Another software performance engineering technique

using reward models is proposed in [13], in which
the authors develop an intermediate modeling language
for component-based systems’ performability evaluation
called KLAPER. According to such technique, software
components are represented by Component Diagrams.
The behaviors of the components’ services are detailed
by Activity Diagrams and/or State Machine Diagrams
enriched by UML-SPT [5] and UML-QOS [14] profiles
annotations. Finally, a Deployment Diagram describes
the deployment of the components on the elaboration
infrastructure. This UML model is translated into the
KLAPER intermediate model, then into a semi-Markov
reward model and therefore analyzed.

Smith et al. in [15] and Gu and Petriu in [16] use
or specify XML schema meta-models or Document Type
Definitions for representing performance specifications
into UML models, the Performance Model Interchange
Format (PMIF) and the eXtensible Stylesheet Language
for Transformations (XSLT), respectively. Smith et al. in
[17] make use of queuing networks for solving their UML
annotated (Sequence Diagrams) software model previ-
ously translated into a PMIF–XML intermediate model.
A similar approach is specified in [18] where Gu and
Petriu use an XML algebra-based algorithm to transform
UML annotated models in XSLT format, and then to the
corresponding layered queuing network.

Some other interesting works related to the software
performance engineering topic, updated to 2003, are sum-
marized in [19].

In [2], [3], [6] we provided a SPE technique for
evaluating the performance of a software architecture
modeled by UML diagrams, based on the PCM inter-
mediate model, thus splitting the mapping from UML to
performance model into two phases. Such technique has
been automated into the ArgoPerformance tool [6], [20],
a performance plug-in integrated in the ArgoUML CASE
tool [7] implementing a solution based on non-Markovian
stochastic Petri nets (NMSPN). As introduced above, in
order to automate such mappings, the transformation rules
allowing to translate the original UML model into the
destination (intermediate and/or performance) model have
to clearly and unambiguously specified and formalized.
Thus, it is necessary to formalize the syntax and the
semantics of the representation notation, so that the source
models (UML and PCM for ArgoPerformance) result
unambiguous to the tool that automatically maps them
into the target model (PCM and NMSPN respectively
in the ArgoPerformance case). In all the above referred
works remain ambiguous or unspecified how a model
has to be built, which diagrams are used and what to
model/specify by them. A modeler knows how to specify
the performance annotations but he/she does not know
how to represent the software architecture to be evaluated
in order to build a consistent, (automatically) analyzable
XSLT, PMIF, CSM, ...-compliant model.

IN this work, instead of only providing the rep-

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 873

© 2010 ACADEMY PUBLISHER



resentation guidelines to be used for implementing
ArgoPerformance-compliant models, we choose to spec-
ify a whole software development process taking into
account performance requirements and specifications, the
software performance engineering development process.
Particular attention is focused on the modeling phase,
formalizing rules and guidelines to make unambiguous
performance annotated software models. In this way it
will be possible to evaluate the software architecture
performance by exploiting our SPE technique and its
automated implementation. Through SPEDP we specify
generic representation rules and guidelines, that are then
characterized into the UML-SPT domain.

The idea of specifying a software development process
integrating performance issues is an enhancement, a step
forward, the completion of our original UML-SPT-PCM
SPE technique. The main advantage of specifying a
performance driven software development process lies in
the possibility of providing a whole process that, having in
input the software architecture model and the performance
requirements, brings to the implementation of a software
architecture that meets the requirements. In other words,
the SPE approach only considers the problem of obtaining
performance indexes from a software model/design, while
a performance driven software development process and
in the specific SPEDP, tries to also specify rules and
guidelines to follow thoroughly the SDP in order to satisfy
specific performance requirements.

III. THE SOFTWARE PERFORMANCE ENGINEERING

DEVELOPMENT PROCESS

This section details the SPEDP, providing an high
level description, in subsection III-A, and then specifying
(subsection III-B) its syntax and semantics by exploiting
the MDE meta-modeling technique.

A. High Level Point of View

Before entering into the details of the semantics spec-
ification, it is useful to describe the approach from an
higher level point of view.

A SPEDP software architecture model is composed of
two parts: the static part, in which the static organization
of the software, its data structures and the relationships
among such data are represented in an object-oriented
way; and the dynamic part, which describes the software
behavior and its interactions from both the internal and
the external points of view. With regards the static part
description, since we have no specific and/or particular
requirements, it does not make sense to redefine an
existing formalism. Thus we decided to adopt the UML
specification and more specifically the Class Diagrams.
Class Diagrams allow to represent any type of classes,
attributes and relationships among classes and attributes
(association, aggregation, composition, generalization, re-
alization, dependency, multiplicity, etc.). In this way
SPEDP inherits the character of generality of UML in
modeling the static organization of the software.

GVOrganization 
Diagram (GVOD)1

GV OD x.y….z

S1 Sn

SVOrganization D . i

Si1 Sij Sip
SV Resource 

Diagram (RD) i

Behavioral D. 
BDi1 BDij BDip

BDip1 BDipt

BDip1.1 BDip1.q

Global View

Detailed View

Specification View

Si

Figure 1: SPEDP logical view.

Concerning the dynamic part, SPEDP can be consid-
ered as a characterization of UML, providing a stronger
semantics than UML. SPEDP defines a specific process
that, if followed, drives in developing a performance
model. So, in the following we only consider the dynamic
part of the software architecture, describing how it is
expressed by SPEDP.

The first step a user should do to describe a software ar-
chitecture following SPEDP is to identify and separate in-
dependent processes, tasks or critical parts, decomposing
the global project into several logical blocks. The blocks,
whose behaviors are considered of interest in terms of
performance, are selected to be further investigated: they
must be detailed defining workloads, resources alloca-
tion requirements and behaviors. All such information
are translated into a three logical views representation,
pictorially depicted in Fig. 1.

The Global view is devoted to represent the general as-
pects of the system. The Specification view characterizes
the independent parts of the overall software architecture
selected for a performance analysis, coming into the de-
scription of the overall logic organization (requirements,
workloads, resources deployment). The Detailed view
defines the referred block(s) from a behavioral point of
view.

The complexity of the software architecture is reflected
in the corresponding SPEDP model in terms of a Global
view levels’ hierarchy. Referring to Fig. 1, at least one
level must compose such hierarchy: the lower level GV
Organization Diagram (GVODx.y...z), which Scenarios
S1, ..., Sn must be alternative (only one of them can be
performed at time) or absolutely not overlapped (they
are not interacting, totally independent, different tasks,
resources and workloads). In order to investigate the
performance of such Scenarios, each of them must be
adequately described by the Specification and the Detailed
views. The Specification view Organization Diagram Sce-
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S P E D P  C o r e

S t a t i c s B e h a v i o r

R e s o u r c eO r g a n i z a t i o n

P e r f o r m a n c e

Figure 2: The SPEDP Packages Organization.

narios (Sij) describe interacting parts of the SA. They
can share workloads and resources. Their behaviors are
detailed by the corresponding Behavior Diagrams.

B. The SPEDP Specification

In this subsection we provide the meta-modeling spec-
ification of the SPEDP representation notation, by adopt-
ing the MDA-MOF approach.

The packages organization of SPEDP describing its
logical organization is reported in Fig. 2. The SPEDP
Core package specifies the relationships between the
diagrams and the views according to subsection III-A.
The Statics package contains elements to characterize
the SA architecture, such as resources, functionalities,
services and workloads. The resource deployment of the
SA is modeled through the elements contained in the
Resource package, while the SA functionality features are
described by the Organization package. The SA behavior
is modeled by the elements of the Behavior package.
Finally, the Performance Requirements package includes
elements characterizing the performance domain, such
as probability density functions (PDF) and scheduling
policies.

In order to describes the approach adopted in the
SPEDP specification we only provide in the following
the meta-model formalization of the SPEDP Core sub-
package. Details on the specification of the other sub-
packages can be found in [21].

SPEDP Core is the most fundamental sub-package
composing the SPEDP package. It defines the basic con-
structs needed for the development of SPEDP compliant
models.

M o d e l

+ N a m e :  S t r i n g

G V O r g a n i z a t i o n D i a g r a m

+ N a m e :  S t r i n g

O r g a n i z a t i o n D i a g r a m

+ N a m e :  S t r i n g

R e s o u r c e D i a g r a m

+ N a m e :  S t r i n g

S V O r g a n i z a t i o n D i a g r a m

+ N a m e :  S t r i n g

+ p a r e n t

+ o d s + r e s

B e h a v i o r a l D i a g r a m

+ N a m e :  S t r i n g

+ g v o d 0..1

+ c h i l d
*

+ r d+ s v o d

1..*+ b d

1..*

**+ p a r e n t0..1

+ c h i l d
*

Figure 3: The SPEDP Core Abstract Syntax meta-model.

a) Abstract Syntax: The SPEDP Core meta-model
reported in Fig. 3 describes how a SPEDP model has to
be built. A model is represented by the Model class on the

top of the hierarchy, associated to the GVOrganizationDi-
agram class by the composition relationship with multi-
plicity of 1. The GVOrganizationDiagram class is related
to itself by parent/child associations with multiplicity of
[0..1] and [∗], respectively, in order to implement the
SPEDP global view hierarchy. The GVOrganizationDia-
gram class is associated to both SVOrganizationDiagram
and ResourceDiagram classes implementing the SPEDP
specification view by the composition relationship, both
with the same ([∗]) multiplicity for the component classes.
The association between SVOrganizationDiagram and Re-
sourceDiagram is two-way, the ods association end has
multiplicity [1..∗], while the other end has multiplicity
1. The SVOrganizationDiagram and GVOrganizationDi-
agram specify the OrganizationDiagram class. Finally,
the composition relationship links the SVOrganization-
Diagram and the BehavioralDiagram implementing the
SPEDP detailed view, with [1..∗] multiplicity at the bd
end.

b) Well-formedness Rules: The well-formedness
rules (wfrs) regarding the SPEDP Core package are
reported in the following, defined and formalized through
OCL constrains.

context GVOrganizationDiagram
inv base: self→size()≥ 1

self.svod→ forAll(sv: SVOrganizationDiagram | sv.bd→size()≥ 1)

(a) base wfr

context GVOrganizationDiagram
inv gvodsucc:

if(self.child→forAll(s:GVOrganizationDiagram | s→size()== 0) then
self.svod→forAll(sv:SVOrganizationDiagram | sv→size()> 0) and
self.rd→forAll(res:ResourceDiagram | res→size()> 0)

else
self.svod→forAll(sv:SVOrganizationDiagram | sv→size()== 0) and
self.rd→forAll(res:ResourceDiagram | res→size()== 0)

(b) gvodsucc wfr

Figure 4: SPEDP Core package wfrs.

i) The base rule, reported in Fig. 4a, specifies
that the Model must be composed of at least
one GVOrganizationDiagram element. More-
over, all the SVOrganizationDiagram composing
a GVOrganizationDiagram, must be detailed by
a set of BehavioralDiagram elements.

ii) The gvodsucc wrf of Fig. 4b specifies that
the lower level GVOrganizationDiagrams, the
leaves of the GVOrganizationDiagrams’ hier-
archy of Fig. 1, characterized by attribute
child == null, must be composed of SVOr-
ganizationDiagram and ResourceDiagram ele-
ments.

c) Detailed Semantics.: The SPEDP Model repre-
sents the whole SA to be modeled. A Model is composed
of GVOrganizationDiagram instances. The GVOrganiza-
tionDiagrams identify the main independent/alternative
scenarios of the SA, specifying the interactions between
the SA and the external environment. According to the
gvodsucc wfr of Fig. 4b, the scenarios contained into the
leaves of the GVOrganizationDiagrams parent/child hier-
archy are selected to be investigated in terms of perfor-
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mance. SVOrganizationDiagram and ResourceDiagram
objects implement the Specification view, representing the
internal organization and the resource deployment of the
selected scenarios, respectively. In the Detailed views,
The BehavioralDiagrams implements the Detailed view
of the subsystem under exam, characterizing the dynamic
behavior of each scenario specified in a SVOrganization-
Diagram.

IV. USING SPEDP: A WEB-BASED VIDEO

APPLICATION

In this section we describe how the SPEDP is applied
to the development of a web-based video application,
extending an example presented in [2], [3], also inves-
tigated in [9] and originally taken from the OMG SPT
specification [5]. The videos, uploaded into the system
by the administrator, can be listed by a generic user
belonging to the surfer or the client categories and can
also be requested and downloaded only by registered users
(clients). Below, we present the modeling of such applica-
tion according to the SPEDP guidelines, by specifying the
three views (Global view, Specification view and Detailed
view) following the specifications provided in subsection
III-A.

A. SPEDP Modeling

WebVideo:Model

Name=WebVideo Applicat ion

gvod:GVOrganizationDiagram

Name=VideoManagement

bd1:BehavioralDiagram

Name=Browsing

bd2:BehavioralDiagram

Name=Request

bd3:BehavioralDiagram

Name=Upload

rd:ResourceDiagram

Name=Resource

svod:SVOrganizationDiagram

Name=Organizat ion

bd4:BehavioralDiagram

Name=ProcRequest

(a) Core

User:Stakeholder

Ass:Association

VideoManagement:Scenario

access.capacity=6
access.concurrent=3

(b) GVOrganization-
Diagram

Figure 5: Core and Global view organization diagram of
the web-based video application

The SPEDP model representing the software architec-
ture under exam is composed by a GVOrganizationDia-
grams, a SVOrganizationDiagrams and four Behavioral-
Diagrams implementing the global, detailed and specifi-
cation views respectively, as shown in the diagram of Fig.
5a representing the overall SPEDP model. The first step of
the SPEDP representation algorithm is the identification
of the independent parts of the software architecture under
exam. The GVOrganizationDiagram of Fig. 5b represents
the Global view of the web-based video application.

The VideoManagement scenario specifies the access
policy regulating the requests incoming to the web-based
video application. At most six requests are accepted by
the application (access.capacity=6) and three of them
can be managed concurrently (access.capacity=3). The
VideoManagement scenario is associated by the Ass
object to the User Stakeholder representing the generic
interactions with the environment.

The next step is to detail the GVOrganizationDiagram’s
VideoManagement scenario by specifying its specifica-
tion view through the SVOrganizationDiagram and the
ResourceDiagram of Fig.s 6a and 6b, respectively.

The SVOrganizationDiagram of Fig. 6a characterizes
the global view User Stakeholder with three WorkLoads:
Surfer, Admin and Client. The Surfer object is an
open workload (population=-1), while there is only one
administrator (Admin.population=1) and ten registered
users (Client.population=10). Each WorkLoad, charac-
terized by a PDF representing the interarrival time, is
probabilistically associated to the corresponding Scenario
by the Association instance. Three Scenarios are identified
in the SVOrganizationDiagram: the Browsing, the Re-
questVideo and the UploadVideo, to be further specified
by the SPEDP detailed view.

The ResourceDiagram of Fig. 6b describes the ar-
chitecture of the computing system elaborating the
application. The ClientWorkstation, WebServerNode,
VideoServerNode and Internet objects are ActiveRe-
source instances, associated to each other by Asso-
ciations. The ClientWorkstation, the WebServerN-
ode and the VideoServerNode are managed by
FIFO policies (schdPolicy=FIFO), while the Internet
object is managed by a preemptive resume policy
(schdPolicy=PreemptiveResume).

The last step of the SPEDP modeling algorithm is to
investigate the behavior of the application under exam
by specifying its detailed view. Each scenario of the
specification view is detailed by a BehavioralDiagram.
Fig. 7 shows the dynamic behavior of the Browsing
scenario by specifying two nested BehavioralDiagrams:
the main flow is depicted in Fig. 7a, while Fig. 7b
reports the ProcRequest (sub-)BehavioralDiagram. All
the Process objects are associated to the corresponding
Resources (ClientWorkStation and WebServerNode in
the specific).

The execution time spent in such Resources by the
BehaviorProcess tasks (RequestPage, SendContent,
ShowPage, GetCookie, LoadProperties, CreateDy-
namicPage) are specified into the demandPDF at-
tributes. ProcessingRequest is a particular Behavior-
Process without attributes since it models the (sub-
)BehavioralDiagram connection. The br1 Branch object
of Fig. 7b models a selection between two BehaviorPro-
cesses, whose condition’s verification is probabilistically
quantified by the prob attribute of the following Transi-
tions. Similarly, Fig. 8 describes the dynamic behaviors
of the RequestVideo and UploadVideo scenarios. Fig.
8a highlights the parallel computing, represented by fk1
Fork and jn1 Join objects.

V. IMPLEMENTATION OF SPEDP ON THE UML–PCM
DOMAIN

In this section, we describe the implementation of
SPEDP into the UML–PCM domain. As introduced in
subsection III-A, the SPEDP static part is fully speci-
fied by the UML standard through the class diagrams

876 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER



Client:Workload

populat ion=10
pdfWork=Exponential(50) prob4:Association

prob=0.87

Browsing:Scenario
Surfer:Workload

populat ion=-1
pdfWork=Poisson(5)

prob1:Association

prob=1

prob2:Association

prob=0.75Admin:Workload

populat ion=1
pdfWork=Exponent ial(100)

prob5:Association

prob=0.13

RequestVideo:Scenario

UploadVideo:Scenario

prob3:Association

prob=0.25

(a) SVOrganizationDiagram

ClientWorkstation:ActiveResource

power=1
schdPolicy=FIFO

Ass1:Association Ass2:Association Ass3:Association

WebServerNode:ActiveResource

power=2
schdPolicy=FIFO

VideoServerNode:ActiveResource

power=2
schdPolicy=FIFO

     Internet:ActiveResource

power=1
schdPolicy=PreemptiveResume

(b) ResourceDiagram

Figure 6: Specification view of web-based video application
init :Start

tr1:Transition

ClientWorkstation:ActiveResource

power=1
schdPolicy=FIFO

   RequestPage:BehaviorProcess

demandPDF=Exponential(10)

tr2:Transition

ProcessingRequest:BehaviorProcess

WebServerNode:ActiveResource

power=2
schdPolicy=FIFO

tr3:Transitiontr4:Transition

tr5:Transition

end:End

ProcRequest:BehaviorDiagram

  SendContent:BehaviorProcess 

demandPDF=Exponential(5)

     ShowPage:BehaviorProcess

demandPDF=Exponential(5)

(a) Browsing BehavioralDiagram

init :Start

tr1:Transition

WebServerNode:ActiveResource

power=2
schdPolicy=FIFO

       GetCookie:BehaviorProcess

demandPDF=Determinist ic(0.1)

br1:Branch

tr2:Transition

pr1:Transition

prob=0.60

pr2:Transition

prob=0.40

mg:Mergetr3:Transition tr4:Transition

    LoadProperties:BehaviorProcess

demandPDF=Exponential(0.5)

CreateDynamicPage:BehaviorProcess

demandPDF=Determinist ic(0.1)

end:End

(b) ProcRequest sub-BehavioralDiagram

Figure 7: The Detailed view Browsing scenario

syntax and semantics. In this section we focus on the
dynamic/behavioral part of SPEDP specified in section
III. More specifically, we specify how to map SPEDP
elements into corresponding UML–PCM elements by
following the modeling of the example discussed in the
previous section. The UML–PCM domain derives from
the UML OMG specifications [4], [22] and also from the

PCM-SPT extending the SPT OMG profile [5]. Details
on PCM–SPT can be found in [21].

A. Core & Performance

SPEDP UML PCM-SPT Stp

Model Model
OrganizationDia-

gram
Use Case
Diagram

ResourceDiagram Deployment
Diagram

BehavioralDiagram Interaction/
Activity/
StateChart
Diagram

PDF PAperfValue,

RTarrivalPattern
Policy PAresource

TABLE I.: Correspondences among SPEDP
Core/Performance packages and UML/PCM-SPT
elements.

Table I specifies the correspondences between the
SPEDP Core and Performance packages’ elements and
the UML–PCM elements. This is the most fundamental
among the tables, referred in all the following subsections.
From this table we can argue that a UML–PCM Model
implementing the SPEDP technique is composed by just
Use Case Diagrams, Deployment Diagrams,
Activity Diagrams, StateChart Diagrams
and Interaction Diagrams (Sequence and/or
Collaboration Diagrams).

B. OrganizationDiagram

SPEDP UML PCM-SPT Stp

Scenario UseCase PAcontext
Stakeholder Actor
Workload Actor PAclosedLoad,

PClosedWorkload
Association Association PAstep
Relationship Extend /

Include

TABLE II.: Correspondences among SPEDP Organiza-
tion package and UML/PCM-SPT elements.

Since, as specified in Table I, the SPEDP Organization-
Diagram corresponds to a UML Use Case Diagram,
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init :Start tr1:Transition

ClientWorkstation:ActiveResource

power=1
schdPolicy=FIFO

SelectService:BehaviorProcess

demandPDF=Exponential(10)

tr2:Transition
HandleSelection:BehaviorProcess

demandPDF=Determinist ic(2.0)

WebServerNode:ActiveResource

power=2
schdPolicy=FIFO

tr3:Transitionfk1:Forktr4:Transition

tr5:Transition

  InitiatePlayout:BehaviorProcess

demandPDF=Exponential(5.0)

VideoServerNode:ActiveResource

power=2
schdPolicy=FIFO

tr6:Transition

InitializePlayer:BehaviorProcess

demandPDF=Determinist ic(0.5)

  Confirm:BehaviorProcess
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Figure 8: The Detailed view of Request and Upload
scenarios

the elements of the former have a corresponding element
in the latter, as reported in Table II.

SPEDP Scenarios are mapped by UML UseCases,
annotated by the PAcontext PCM-SPT stereotype,
if they belongs to a leaf of the GVOrganizationDia-
gram tree, since they represent independent SA sub-
systems to further detail and investigate in terms of
performance. Stakeholders correspond to Actors, mod-
eling Workloads characterized by population=-1 (open)
or population>0 (closed) if they are annotated by the
PAopenLoad or PAclosedLoad stereotypes, respec-
tively. The SPEDP Association is mapped by UML
Association characterized by the PAstep annotation
in order to model the probabilistic association.

Fig. 9a shows the web-video application UML–PCM
global view Use Case Diagram corresponding to the
SPEDP GVOrganizationDiagram of Fig. 5b. It is obtained
by applying the mapping rules specified in Tables I
and II. The names used in the SPEDP GVOrganiza-
tionDiagram corresponds to the ones specified in the
Use Case Diagram. So, they both specify a Video-
Management SPEDP Scenario/UML–PCM Use Case
representing the video management functionalities, and a

User

VideoManagement

<<PAcontext>>

capacity=6

concurrent=3

*

(a) UML–PCM Global View

Surfer

Browsing

<<PAopenLoad>>

PAoccurrence=(’unbounded’,’poisson’,5)

<<PAstep>>

PAprob=1

Admin

<<PAclosedLoad>>

PApopulation=1

PAextDelay=(’assm’,’dist’,’exponential’,100)

<<PAstep>>

PAprob=0.75

Upload  Video

<<PAstep>>

PAprob=0.25

Request  Video

Client

<<PAstep>>

PAprob=0.87

<<PAstep>>

PAprob=0.13

<<PAclosedLoad>>

PApopulation=10

PAextDelay=(’assm’,’dist’,’exponential’,50)

(b) UML–PCM Specification View

Figure 9: Global and Specification view of the web-based
video application in UML–PCM domain

User Stakeholder/Actor to model the generic interac-
tions, as reported in Fig. 9a. The PAcontext PCM-
SPT annotation associated to the VideoManagement
Use Case specifies its access policy, represented by the
specific attributes of the SPEDP Scenario.

In the same way the Use Case Diagram of Fig. 9b
models what specified by the SVOrganizationDiagram of
Fig. 6a in the SPEDP domain. Thus, Surfer, Admin
and Client Actors annotated by PAworkload
stereotypes correspond to the Surfer, Admin and Client
Workload objects of the SVOrganizationDiagram of
Fig.6a, respectively. The Admin and Client are closed
workload (population ≥ 1), while the Surfer is an
open workload (population = −1). Consequently, the
Admin and Client Actors are PAclosedload
stereotyped, while the Surfer is associated to the
PAopenload stereotype. The PApopulation and
PAextDelay Actor tags in Fig. 9b, are deduced by the
corresponding population and pdfWork SPEDP Workload
attributes. The probability of the associations between
Actor and Use Case is modeled by stereotyping the
UML Association with PCM-SPT PAsteps, speci-
fying in the PAprob tag such probability, in the specific
case drawn from the corresponding prob Association
values in Fig.6a.

C. Resource

Table III reports the mapping among the SPEDP Re-
sourceDiagram’s elements to the UML/PCM-SPT stereo-
typed Deployment Diagram elements.

By applying it to the ResourceDiagram of Fig. 6b
describing the specification view computing system
architecture of the web-based video application, the
Deployment Diagram of Fig. 10 is obtained. The
ClientWorkstation, ServerNode, VideoServerNode
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SPEDP UML PCM-SPT Stp

Resource Node, Component
ActiveResource Node PAhost
PassiveResource Node, Component

PhysicalPResource Node PAresource
LogicalPResource Component PAresource

LinkResource Relationship
Association Association
Dependency Dependency GRMdeploys

TABLE III.: Correspondences among SPEDP Resource
package and UML/PCM-SPT elements.

ClientWorkStation

<<PAhost>>

PArate=1.0

PAschdPolicy=’FIFO’

WebServerNode

<<PAhost>>

PArate=2.0

PAschdPolicy=’FIFO’

VideoServerNode

<<PAhost>>

PArate=2.0

PAschdPolicy=’FIFO’

Internet
<<PAhost>>

PArate=1.0

PAschdPolicy=’PreemptResume’

Figure 10: Specification view resources of the web-based
video application in UML–PCM domain

and Internet ActiveResources are mapped into
ClientWorkStation, WebServerNode,
VideoServerNode and Internet UML Nodes,
respectively. Such Nodes are all associated to PAhost
stereotypes, mapping the schdPolicy and power Resource
attributes with the corresponding PAschdPolicy and
PArate tags.

D. Behavior

Table IV reports the mapping from SPEDP
BehavioralDiagram to UML 2 [22] PCM-SPT
annotated Activity Diagram (AD), StateChart
Diagram (SCD) and Interaction Diagram
(ID) (Sequence, Collaboration and
Communication Diagrams), characterized in
the corresponding columns. The last column of such
table reports the PCM-SPT stereotypes associated
to the UML diagrams’ elements identified by the
acronym (AD, SCD, ID). UML PAstep stereotyped
Activity Edge of Activity Diagrams and
Transitions of StateChart Diagrams map
SPEDP probabilistic Transitions outgoing from
Branches, while in Interaction Diagrams
these latter correspond to CombinedFragments
with Interaction-OperatorKind=‘‘opt’’
objects, also annotated by PAstep stereotypes.
In the specific case where the BehavioralDiagram
contains a Merge followed by the matching
Branch, this construct represents a loop,
and it is mapped into UML Interaction
Diagrams by specific CombinedFragments
(Interaction-OperatorKind=‘‘loop’’).
In the same way, a Fork-Join statement has
corresponding elements in both Activity Diagrams
(ForkNode, JoinNode) and StateChart
Diagrams (PseudoState -Kind=‘‘fork’’
and -Kind=‘‘join’’), while the whole statement
corresponds to a specific CombinedFragment

with Interaction-OperatorKind=‘‘par’’
in UML 2 Interaction Diagrams. The SPEDP
Resource objects are mapped into Partitions
swim-lanes of Activity Diagrams into
Regions of StateChart Diagrams and
into Interaction Diagrams’ Lifelines,
characterized by the corresponding Deployment
Diagram Components/Nodes’ names.

ClientWorkstation

start

Request Page

WebServer Node

<<PAstep>>

PAdemand=(’assm’,’dist’,’exponential’,10)
Processing Request

Send Content

<<PAstep>>

PAdemand=(’assm’,’dist’,’exponential’,5)

Show Page
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PAdemand=(’est’,’mean’,0.1)
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[has cookie]

<<PAstep>>

PAprob=0.40

<<PAstep>>

PAdemand=(’assm’,’dist’,’exponential’,0.5)

Create Dynamic Page 

[wi thout cookie]

<<PAstep>>

PAdemand=(’est’,’mean’,0.1)

<<PAstep>>

PAprob=0.60

<<PAstep>>

PAextOp=(’ProcRequest’,1)

(a) Browsing AD & ProcRequest Sub-AD

GetCookie

<<PAstep>>

PAdemand(’est’,’mean’,0.1)

LoadProperties CreateDynamic Page

<<PAstep>>

PAprob=0.40
<<PAstep>>

PAprob=0.60

<<PAstep>>

PAdemand(’assm’,’dist’,’exponential’,0.5)

<<PAstep>>

PAdemand(’est’,’mean’,0.1)

WebServer Node 

[has cookie] [without cookie]

(b) ProcRequest Sub-SCD

:WebServerNode

GetCookie

LoadProperties

CreateDynamicPage

alt [has cookie]

[without cookie]

<<PAstep>>

PAprob=0.40

PAdemand=(’assm’,’dist’,’exponential’,0.5)

<<PAstep>>

PAprob=0.60

PAdemand=(’est’,’mean’,0.1)

<<PAstep>>

PAdemand=(’est’,’mean’,0.1)

SendContent

<<PAstep>>

PAdemand=(’assm’,’dist’,’exponential’,5)

sd ProcRequest

(c) ProcRequest Sub-SD

Figure 11: The Detailed view Browsing scenario of the
web-based video application in the UML–PCM domain.

One of the main benefit of the UML/PCM-SPT
characterization of SPEDP is the possibility to repre-
sent the behavior of the SA under exam by exploit-
ing several different diagrams, also nesting diagrams
and formalisms into hierarchical models. As an exam-
ple, in Fig. 11 we represent the dynamic behavior of
the Browsing scenario by using UML Activity,
Statechart and Sequence Diagrams mapping the
SPEDP BehavioralDiagram of Fig. 7, as stated by Ta-
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SPEDP UML AD UML SCD UML ID PCM-SPT Stp

Process ActivityNode Vertex
BehaviorProcess Action State Message PAstep

Transition ActivityEdge Transition MessageEnd AD/SCD PAstep
Statement ControlNode PseudoState

Branch DecisionNode PseudoState CombinedFragment ID PAstep
-Kind=‘‘choice’’ Interaction-

Merge MergeNode PseudoState -OperatorKind=‘‘alt’’
-Kind=‘‘junction’’

Merge/Branch CombinedFragment
(Conditional Interaction- ID PAstep

Loops) -OperatorKind=‘‘loop’’
Fork ForkNode PseudoState CombinedFragment

-Kind=‘‘fork’’ Interaction-
Join JoinNode PseudoState -OperatorKind=‘‘par’’

-Kind=‘‘join’’
Start Initial PseudoState Message

-Kind=‘‘initial’’ MessageKind=‘‘found’’
End FinalNode FinalState Message

MessageKind=‘‘lost’’
Resource ActivityPartition Region Lifeline

TABLE IV.: Correspondences among SPEDP Behavior package and UML/PCM-SPT elements.

ble I. The diagram of Fig. 11a is composed by two
hierarchical Activity Diagrams levels: the Brows-
ing one and the ProcRequest sub-diagram. In order
to highlight the versatility of the approach and the
equivalence, in it, of Activity, Statechart and
Sequence Diagrams, we represent the ProcRequest
sub-diagram by the SubActivity diagram of Fig. 11a
(grey part), the StateChart Diagram of Fig. 11b
and the Sequence Diagram reported in Fig. 11c.
The link from the higher level diagram to the sub-
diagram is implemented by annotating the Processing
Request ActionState of Fig. 11a by a PAstep
specifying in the PAextOp the name of the sub-
diagram and the mean number of times it is invoked
(PAextOp=(’ProcRequest’,1)).

According to Table IV, the SPEDP BehavioralDia-
gram’s BehaviorProcess objects correspond to UML
Activity Diagrams’ Actions, StateChart
Diagrams’ States and Sequence Diagrams’
Messages. The concept of BehaviorProcess is
close to both the Action and the State one, as
confirmed by the similarity of the corresponding
Browsing models shown in Fig.s 7, 11a and 11b,
respectively. But it is substantially different from
the Message one representing interactions. Thus,
in the Sequence Diagram of Fig. 11c, the
BehaviorProcesses are represented by Messages
exchanged by the ClientWorkStation and
WebServerNode Lifelines mapping the
corresponding ActiveResources of the BehavioralDiagram
of Fig. 7.

In this way the RequestPage, GetCookie, Load-
Properties, CreateDynamicPage, SendContent and
ShowPage BehaviorProcesses are represented by the
corresponding PAstep annotated Actions in the
Activity Diagram of Fig. 7, States of the
StateChart Diagram of Fig. 11b and Messages of
the Sequence Diagram of Fig. 11c. The PAstep’s
attributes and tags are obtained by the correspond-
ing BehaviorProcess instances’ attributes. The br1
Branch/Merge objects of Fig. 7b are mapped by

a DecisionNode and a MergeNode in the sub-
activity of Fig. 11a, and by two PseudoStates
(Kind=‘‘choice’’ and Kind=‘‘junction’’, re-
spectively) in the sub-statechart of Fig. 11b, while
they are represented by a CombinedFragment
(Interaction-OperatorKind =‘‘opt’’) com-
posed by two parts identified by the guards assigned
to the LoadProperties and CreateDynamicPage
Messages in the sub-sequence diagram of Fig. 11c.

Figs. 12a and 12b show the dynamic behavior of
the Request and Upload scenarios by means of UML
Activity Diagram. They correspond to the SPEDP
BehavioralDiagrams of Figs. 8a and 8b, respectively.

VI. PERFORMANCE EVALUATION THE WEB-BASED

VIDEO APPLICATION

The example described thoroughly the paper has
been implemented and analyzed by the ArgoPerfor-
mance tool [6], [20]. The results obtained are de-
picted in Fig. 13, that shows the utilization of the
resources specified in the Deployment Diagram
of Fig. 10 (Client Workstation, WebServer
VideoServer and Internet), within 15000 seconds.
In order to compare such results, we plot them altogether,
using a logarithmic scale for the utilization, in the ordinate
axis.

All the trends thus identified reach the steady state
after a transient phase. More specifically, since all the
users exploit the Client Workstation to access
the system, the utilization trend has a maximum value
of 86% after 234 seconds, then it slowly tends to
the steady state value of 67.10%. On the other hand,
since the WebServerNode is involved in the elab-
oration of the Browsing and the Request scenar-
ios its utilization (steady state utilization: 11.76%) is
lower than the Client Workstation one. Anyway
the WebServer has faster transient and higher val-
ues of utilization than the VideoServerNode ones
(steady state utilization: 0.77%). This is due to the
low probability to elaborate the scenarios involving the
VideoServerNode: Request and Upload. The for-
mer is occasionally performed by the client (13% of
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(a) Request (b) Upload

Figure 12: Detailed view Request and Upload scenario of the web-based video application in the UML–PCM domain.

the total cases), and the latter is invoked by the ad-
ministrator, that has the lowest arrival rates among the
workloads. Finally, the Internet is involved in the
SendVideo and UploadVideo activities (Fig. 12):
their computation implies an utilization (steady state
utilization: 48.16%) higher than WebServerNode and
VideoServerNode.

From such results we can argue that the most critical
resource for the system is the Client Workstation.
Therefore, in order to improve the performance of the
overall SA, it is necessary to enhance and/or replicate the
resources from which a user can access to the computing
system. Moreover, to improve the system performance
further Internet resources (bandwidth) are required as
shown in Fig. 13a. On the other hand, since both the
VideoServer and the Webserver Nodes show low
utilization they can manage higher workloads incoming
by increasing Client Workstation and Internet
resources.

Fig. 13b, show similar trends for the Client
Workstation and the Webserver Node through-
put, while lower throughput are experienced for
the VideoServer Node and especially for the
Internet.

VII. CONCLUSIONS

In previous works we defined an SPE technique based
on the intermediate Performance Context Model (PCM)
that automates the translation of the project requirements
from the design domain to a performance domain by the
ArgoPerformance tool. This has highlighted the necessity
of formalizing the description of a software architecture.
In this paper we address the problem from a wider point
of view, defining a software development process which
takes into account performance specifications and require-
ments, an integrated software performance engineering
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Figure 13: The Web Video Application Results

development process (SPEDP). In this way, a whole
process starting from the software architecture model
and the performance requirements aiming at implement-
ing a software architecture that meets the requirements
thoroughly all the software design phases is specified.
It is more powerful than both an SPE technique, since
it can be applied to existing software architecture as
a common performance evaluation methodology, and a
software performance evaluation technique, since it allows
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evaluation at early, design stage (SPE).
SPEDP has been formalized by using the model-driven

engineering meta-modeling approach. In this way, by
characterizing the PCM-SPT annotated UML as modeling
domain, we specify the representation methodology we
implemented in the ArgoPerformance tool, thus applied
to a Web-based video application example.
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