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Abstract—This paper presents a memetic algorithm for
solving project resource allocation problems, where the
resource requirements of each project concern numbers of
monetary units and never exceeds the amount of capital
available. Our objectives are to obtain the best overall result
for which returns are maximized and costs are minimized.
Such problem, considered as a multi-objective optimization,
is too complex to be solved by exact methods. In the
proposed MA, the population generated by the crossover or
the mutation operator is further improved by a local search
method. The approximated Pareto front is updated using all
new solutions generated. The performance of MA is
demonstrated via an instance, consisting of six projects, and
120 units of capitals, and compared with the reference
Pareto front found by executing the exhaustive method.
Based on both solution quality and CPU time, the results of
such comparison have proved our MA to be an effective
optimal method in the multi-objective resource allocation
problems (MORAP).

Index Terms—multi-objective optimization, resource
allocation, memetic algorithm

I. INTRODUCTION

The funding of any specific project is tied to the
organizational capital and is important in transforming
goals into both plans and actions. When an organization
is involved in several projects competing for the same
monetary resource, it has to evaluate alternative ways of
distributing such resource across different projects. Thus,
every organization is faced with several monetary
allocation decisions permeating various levels of
management. Typical challenges faced by executives in
charge of allocating funding can be summarized as
follows: How should a limited amount of resources get
distributed among a large number of potential projects?
How should benefits be determined by multiple and often
conflicting objectives? What should allocation?

Academically, most studies have focused on the
scheduling rather than on the resource allocation
optimization. Moreover, in most cases, single objective
problems are often discussed; however, most real-world
optimization problems are multi-objective in nature. In

this paper we examine decisions on monetary allocation
in a multi-project environment. The firm executive has to
decide on the amount of capital that should be invested in
each of the projects to optimize its revenue (i.e. profit)
and minimize its expenditure (i.e. cost).

Like previously mentioned, the conventional resource
allocation problem only considers the single objective
function. However, in most real-world optimization
scenarios, the objectives are incommensurable and
conflicting. In such cases, there is no single optimal
solution but rather a set of alternative solutions. For this
reason, some works approach this multi-objective
decision problem by aggregating the objectives into a
single one. Other works concentrate on the approximation
of the Pareto optimal set. No matter what, this type of
problems has two goals: one is to find a set of solutions
as close as possible to the Pareto-optimal front; the other
is to find a set of solutions as diverse as possible. While
the first goal is mandatory, the second one is entirely
problem specific.

There exist various methods to solve the multi-
objective decision problem. Linear programming
algorithms [1,2] have been applied to the resource
allocation problem (RAP) with its objectives represented
by a linear function of discrete and continuous decision
variables. Dynamic programming algorithms [3–5] have
also been applied to solve the RAP but with different
problem formulations. For instance, Basso and Peccati [4]
proposed an efficient pruning procedure implemented in a
dynamic programming algorithm. In addition, branch and
bound algorithms [6,7] have all been applied to solve the
RAP sub-problems. Nevertheless, when the problem
sizes become large, generating the Pareto optimal set can
be computationally expensive and mathematical
programming techniques usually do not guarantee to
deliver exact solutions with reasonable time.

As for the previously mentioned reason, researchers
have sought an alternative to overcome this obstacle.
They apply various meta-heuristic algorithms since this
approach has been known to obtain feasible and near-
optimal solutions within reasonable computational
expense at large problem sizes. Publications on Genetic
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algorithm (GA) [8–11], ant colony optimization (ACO)
[12–14], and particle swarm optimization (PSO) [15–17]
have shown their effectiveness in solving well-known
NP-hard problems, including project planning and
activity scheduling under resource constraints. Dai et al.
[7] applied a genetic algorithm to the single objective
resource allocation problem (SORAP); however, Osman
et al. [9], Lin and Gen [10,11] used for solving multi-
objective resource allocation problem (MORAP). Yin
and Wang [16] proposed a particle swarm optimization
approach to the nonlinear type of problem. Inspired by
previous studies, this paper intends to present one of
effective metaheuristics –memetic algorithm (MA), for
solving monetary allocation in project management.

The term Memetic Algorithms, recognized as a hybrid
genetic algorithm, first appeared in the computing
literatures [18,19], has differentiated itself from the
genetic algorithm classification. Unlike conventional
genetic algorithms which emulate biological evolution,
memetic algorithms imitate cultural evolution. Their
conceptual difference is such that GA forbids individuals
to choose, modify and improve their own genes in its
natural process whereas MA allows individuals to
intentionally acquire, modify, and improve their memes
[19,20]. In other words, though GA is capable of finding
good regions in the search space, the exploitation of these
good regions needs more attention in which GA is not
designed for. Alternatively, MA has the local search
procedure employed every time some new solutions are
generated and emphasizes on local optimal solutions.
Our literature survey shows that memetic algorithms are
very effective and efficient in many hard combinatorial
optimization problems [20–23], but has not yet applied in
multi-objective resource allocation problems.

The remaining paper is organized in such a way that
the mathematical formulation on the multi-objective
resource allocation problem (MORAP) is introduced in
Section 2. Then the proposed methodological framework
for the MORAP is described in Section 3. In Section 4 an
illustrative application along with the experiments of
corresponding parameter calibration is discussed. Finally,
the concluding remarks are given in Section 5.

II. PROBLEM FORMULATION

Since multi-objective optimization problems involve
multiple, often conflicting objectives which are to be
minimized or maximized, our resource allocation
problem is formulated with multiple objectives in the
following scenarios. For each of J independent projects,
certain monetary amount xik, i=1, 2,…, J (called project
capital) has to be assigned to project i to maximizing the
overall return but minimize the total cost in this multi-
objective optimization model. Furthermore, upon
implementing allocation strategies in project i, pik is
assumed to be the expected profit and cik denotes the cost
of project i given monetary amount k respectively.
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The objective function (1) represents the expected
profit associated with any possible capital allocation
among projects. The objective function (2) justifies the
total execution cost incurred by the allocation decision.
The feasible allocations are specified by constraints (3)-
(5). Constraints (3) insure that the final resource
allocated to the projects do not exceed the upper bound of
the available capital. Constraints (4) and (5) assure that
exactly one allocation strategy is implemented for each
project.

III. METHODOLODY

In this section, we propose a memetic algorithm to
perform a monetary resource allocation (i.e. capital
allocation) among competing projects. To find the best
solution, our general framework makes use of the Pareto
optimality concept. The study aims to obtain a set of
non-dominated and sufficiently diversified solutions to
cover the entire Pareto frontier. For that, our MA begins
with InitializePop generating initial population which is
then improved by LocalSearch. Starting from Repeat
command, the search procedure goes through three main
steps, i.e. Selection, Crossover +LocalSearch, and
Mutation + LocalSearch, and completes when the
stopping criterion is satisfied. That is, the termination
occurs when the maximum number of generations is
reached. The MA framework is shown below and the
details are discussed accordingly.

InitializePop
LocalSearch
UpdateParetoFront
Repeat

Selection
Crossover
LocalSearch
UpdateParetoFront
Mutation
LocalSearch
UpdateParetoFront

Until(the stopping criterion is satisfied)
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Figure 2. An example of the initial solution encoding and generation
process.

Figure 1. An example of neighboring solutions in local search.

A. Initial Population Generation
For the initial population generation, a pre-specified

number of solutions (PS) are randomly generated. To
accommodate the constraint (3) in Section 2, where the
number of assigned monetary resource allocated to the
projects do not exceed the upper bound of the available
capital, a dummy task having zero cost and zero profit is
created in the encoding. Then the solution encoding for a
six-project example is shown in Figure 1 below. When
the available amount of capital is said to be 15 monetary
units, such amount will then be randomly assigned to
each project including the dummy one. The process
continues until all monetary units have been assigned. As
a result, the final solution in Figure 1 consists of three
monetary units for the first project, four for the second
project, two for the third project, and so on.

B. Local Search
Recognized as an evolutionary-based search

augmented by hybridizing with one or more phases of
local search procedures, our local search is designed as
follows: First, the algorithm randomly generates a
number d from the set of {1, 2,…, dmax} where d
represents the units of capital transferred from one project
to another and dmax denotes a pre-specified upper bound
for the capital change. Next, a complete local search will
be conducted to the chosen solutions. Since the local
search is embedded with initial population generation,
crossover, and mutation, the chosen solutions can be
either the entire initial population, the offspring generated
in crossover operation, or the mutated solutions by the
mutation operation, respectively. Once the neighboring
solutions are constructed, all of them will be used to
update the approximated Pareto front, i.e. the non-
dominated set obtained by MA. Figure 2 demonstrates
the neighboring solutions of a six-project example when
the value of d is set to two. Looking at neighboring
solution 1, two monetary units get transferred from
project 1 to project 2.

Similarly, for neighboring solution 2, we have two
monetary units transferred from project 1 to project 3.
Note that in the local search mechanism, the amount of
monetary unit in the dummy project can also be modified;
in the case of neighboring solution m, two monetary units
get transferred from project 3 to the dummy. In doing so,
we can obtain more flexibility of increasing or decreasing
monetary resources among competing projects. However,
subtracting or adding d monetary units may cause the
amount of project capitals to be either less than zero or
greater than the upper bound limit. When this situation
does occur, our local search procedure then skips these
particular neighboring solutions and precedes the
followings.

C. Selection and Crossover Operations
The first operation in the search procedure begins with

the selection, choosing two parents for the consecutive
crossover operation. Since the study investigates on
multi-objective resource allocation problem, the
conventional biased roulette wheel cannot be applied here
though this technique is most commonly applied in single
objective GA approach. So instinctively at each selection
step, we randomly select two non-dominated solutions
from the current approximated Pareto front as parents.

After the selection of parent solutions, the uniform
crossover operation is performed next and repeated for
PS/2 times until PS parents are collected. Figure 3
illustrates the uniform crossover and the process
description is as follows: First, assuming the total
available capital are 15 monetary units and six projects
are under consideration, the procedure picks the value of
assigned capital units of project i from one of the parents
with equal probability. Note that, the dummy projects for
both parents are not considered when the crossover
operation is performed; however, once the proto-
offspring are constructed, the amounts of unassigned
capitals are determined for the dummy project.

The following is an example in offspring 1. The
capital of projects 1, 2 and 4 are chosen from parent 1
while the amount of capital allocation in projects 3, 5 and
6 are from parent 2 (as shown by the shaded blocks). The
amount of capital units (i.e. 7) for the dummy project is
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Figure 3. An example of the uniform crossover operation.

Figure 4. An example of mutation operation.

determined by subtracting the sum of all six project’s
capitals (i.e. 1 + 3 + 0 + 1 + 1 + 2 = 8) from the total
available capital. In a similar manner another offspring
can be generated. When the total number of capitals
assigned exceeds the available monetary amount, we say
such solutions are infeasible, and the crossover operation
will be repeated until enough offspring are generated.

D. Mutation Operation
The last search step of the memetic algorithm is the

mutation operation, applied to all non-dominated
solutions in the current approximated Pareto front. The
study applies such operation to prevent the solutions from
trapping at the local optima. To do so, we first randomly
select two projects, say projects 2 and 4 as shown in
Figure 4; as well, we randomly determine a number of
monetary units u allowable for capital exchange. The
amount u must be within a range of {1, 2,…, umax}. In
this case, say 2 monetary units. Thereafter, 2 monetary
units will be taken away from project 2 and be reassigned
to project 4 (as illustrated in Figure 4). The dummy
project can also be selected for more alternatives.

IV. RESULT AND DISCUSSION

This section will demonstrate the performance of MA
by testing on an instance which consists of six projects,
and 120 units of capitals. Therefore, the upper bound of
units (Ri) for each project is set to 20. The details of
expected profit (pij) and expected cost (cij) for the
instance are summarized in Tables 1 and 2 respectively.
Our MA is coded on Borland C++ Builder 6.0, and run
on a PC with Intel® Core™ Quad CPU Q6600 @ 2.40
GHz and 2.39 GHz and memory is 2.0 GB. To collect
data for statistical analysis, MA is run five times using
different random number seeds.

A. Performance Measurements
The performance of MA is evaluated mainly based on

two measurements: the Accuracy ratio (AR) [24] and the
D1R value [25]. For the determination of these measures,
a reference Pareto front denoted by Xref must first be
obtained. This is achieved by an exhaustive method,
which enumerates all feasible solutions and then finds the
true non-dominated solutions for the front. Then, the
numerator of the AR is calculated as in equation (6)
where XMA denotes the approximated Pareto front
obtained by the MA, ai a binary variable accounts for the
number of non-dominated solutions falls in both XMA and
Xref, and NMA represents the number of non-dominated
solutions in the set of XMA. The denominator of the
accuracy ratio is defined as the number of non-dominated
solutions in the reference Pareto front denoted by ref .X
It is obvious that the accuracy ratio is the higher the better.
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AR= where
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The second measure, D1R, proposed by Ishibuchi et al.
[25] indicates the average minimum distance from each
point in the reference Pareto front Xref to the
approximated Pareto front XMA. In equations (7) and (8),
x* denotes a solution in Xref and x represents a solution in
XMA. In addition, fc(.) indicates the cost objective
function value of a solution, and fp(.) is the profit
objective function value of a solution. Therefore, the
Euclidean distance ( *x x

d ) between the x* and x in the
objective function space can be calculated consequently.
Since this measure is used to evaluate both the diversity
and convergence of a multi-objective algorithm [25], the
smaller value of the D1R measure, the better.
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B. Parameter Calibration
The analysis on our computational results starts with

the parameter calibration. Several parameters in the
proposed MA need to be tuned up to get the best results,
such as the umax value in the mutation operator (that
controls the range of mutation), the dmax value in the local
search (that controls the size of neighborhood), the PS
value in the initial population (that represents the initial
population size and number of offspring in the crossover
operator), and the maximum number of generations for
the stopping criterion. To conduct the experiments, the
default parameter values are set to umax = 3, dmax = 10, PS
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Figure 8. Box plot of mutation range versus log(D1R ) over different
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Figure 9. Box plot of mutation range versus the accuracy ratio over
different generations.
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different generations.
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Figure 7. Box plot of population size versus D1R over different
generations.

= 20, and the maximum number of generations = 50
unless the parameters are specified.

The first experiment investigates the effect of mutation
range, where we set umax to be 1, 3, 5, and 7. The
relationship between the logarithmic value of D1R and the
mutation range is shown in Figure 5. Our observation
indicates when the umax value increases from one to three,
the performance improves while the improvement slows
down when the umax value becomes five. Moreover, the
improvement stagnates in the umax values of five and
seven. Figure 6 summarizes the box plot of another
measure –the accuracy ratio. A similar conclusion can
also be drawn because the accuracy ratio reaches the top
when the mutation range is five or seven.

Our investigation continues with the range of local
search, i.e. the upper bound for unit change. Three values
of dmax (i.e. 5, 10 and 15) are tested respectively. The
relationship of log(D1R) value and dmax over different
generations is summarized in Figure 7. Our finding has
indicated that the best performance is found when dmax =
10 with lower variance and lower log(D1R) value which
represents a more consistent performance. Comparison on
the accuracy ratios shown in Figure 8, the performance of
dmax = 10 is slightly better than the case of dmax = 15, and
outperforms the setting of dmax = 5.

Next, we are at exploring the effect of population size
(PS), and once again, three PS values (i.e. 10, 20 and 30)
are carried out. Figure 9 indicates the relationship of
population size and D1R over generations. Clearly, the
performance of PS = 20 is the most consistent one among
all three settings while the largest population size PS = 30
has the largest variance. As shown in Figure 10, the
comparison on the accuracy ratio verifies the superiority
of PS = 20 again.
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C. Performance of the Memetic Algorithm
From the experiments above, the best parameter

combination can be fixed as umax = 5, dmax = 10 and PS =
20, so a convergence analysis is then conducted to
determine the stopping criterion of MA. The average
log(D1R) value and the average accuracy ratio of MA
over five runs at the increment of 10 generations are
illustrated in Figure 9. As the number of generations
increases, the log(D1R) value drops to a very small value
of 0.022 and the average ratio reaches 97.9% of accuracy
at 50 generations.

The reference Pareto front is found by executing the
exhaustive method, and a total number of 305 non-
dominated solutions are identified. Note that the total
number of feasible solutions in this instance is 8,576,612
and the CPU time needed for running the exhaustive
method is 4,865 seconds. However, as for MA, the
average number of evaluations is 283,667 at 50
generations, the CPU time is only 12.36 seconds, and
average 298.6 non-dominated solutions over five runs can
be found. Based on both solution quality and CPU time,
the results of such comparison have verified the potential
of our proposed MA in the multi-objective resource
allocation problems.

V. CONCLUSION

Inspired by one of real world scenario in which the
funding of any specific project is tied to the
organizational capital and is important in transforming

goals into both plans and actions, our study investigates
on monetary resource allocation among competing
projects. We say the problem to be one application of
resource allocation problems. Though the conventional
approach to such resource allocation problem only
considers the single objective function, a more applicable
approach should be multi-objective. Thus, this study
formulates a multi-objective optimization model, i.e.
maximizing the overall return but minimizing the total
cost. Under such model, the monetary requirements of
each project never exceed the overall amount of monetary
resource available. The approximation of the Pareto
optimal set is considered and can be computationally
expensive if mathematical programming techniques are
applied. To overcome this limitation, our literature
survey shows that memetic algorithms are very effective
and efficient in many hard combinatorial optimization
problems but has not yet applied in multi-objective
resource allocation problems. Therefore, we propose a
memetic algorithm to the MORAP.

The implementation of MA involves three main steps–
Selection, Crossover + LocalSearch, and Mutation +
LocalSearch. Their details and illustrations have been
shown in Section 3. The performance of our MA is based
on an instance which consists of six projects, and 120
units of capitals, and the parameter calibration where
several parameters in the proposed MA are tuned up for
the best results. Here, the umax value in the mutation
operator is set to be 5, the dmax value in the local search is
10, the PS value in the initial population is 20, and the
total number of generations is 50. Our computational
results are evaluated by two measurements: the accuracy
ratio [24] and the D1R value [25], whose detailed
calculations have been explained in Section 4.

The study compares the proposed MA with the
exhaustive method in terms of the Pareto fronts. As
shown by the experiments earlier, the quality of non-
dominated solutions obtained by MA is superior and the
distance between the approximated Pareto front and the
true Pareto front is small. The relative performance of
MA demonstrated its potential to be a very effective and
efficient optimal method in the multi-objective resource
allocation problems.
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TABLE I.
EXPECTED PROFIT PIJ OF INSTANCE

Projects
(i)

Units of Capitals (j)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 22 32 48 56 74 87 96 109 112 120 133 146 147 154 173 189 208 216 226 240 251

2 36 50 65 76 77 83 102 120 123 130 146 157 174 194 212 221 226 240 254 269 283

3 37 53 51 62 75 81 83 99 104 114 119 121 128 130 144 153 159 178 179 181 186

4 32 42 61 76 78 93 96 111 118 129 141 151 167 158 171 162 154 172 188 197 200

5 46 53 67 87 93 111 116 132 141 153 168 188 189 199 194 198 192 199 208 223 230

6 50 70 84 90 91 97 107 111 105 120 118 129 131 132 141 146 153 156 157 162 166
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TABLE II.
EXPECTED COST CIJ OF INSTANCE

Projects
(i)

Units of Capitals (j)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 40 33 46 63 70 72 73 77 91 98 100 113 117 126 146 159 161 179 184 204 198

2 28 44 50 68 81 93 112 122 140 157 177 189 196 213 219 233 244 259 252 263 278

3 45 46 47 48 51 53 61 81 82 96 112 113 110 122 126 134 138 139 131 139 152

4 28 45 62 70 89 94 97 113 118 135 155 163 182 183 188 205 222 239 241 246 266

5 48 56 64 79 82 96 101 98 118 122 134 141 159 169 188 181 200 204 211 228 244

6 43 63 69 77 80 95 101 121 113 126 134 136 149 153 165 180 198 204 201 202 212
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