
Ontology Based Automatic Attributes Extracting
and Queries Translating for Deep Web

Hao Liang1, 2

1. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
2. Department of Information, Changchun Taxation College, Changchun 130117, China

Email: liangh434@163.com

Fei Ren3, WanLi Zuo1, 4+, FengLing He1, 4
3. China Development Bank, Center of Operations, Beijing, 100037, China

4. Key Laboratory of Symbol Computation and Knowledge Engineering of the Ministry of Education, Changchun,
130012, China

Email: renf854@163.com wanli@jlu.edu.cn fengling@jlu.edu.cn

Abstract—Search engines and web crawlers can not access
the Deep Web directly. The workable way to access the
hidden database is through query interfaces. Automatic
extracting attributes from query interfaces and translating
queries is a solvable way for addressing the current
limitations in accessing Deep Web. However, the query
interface provides semantic constraints, some attributes are
co-occurred and the others are exclusive sometimes. To
generate a valid query, we have to reconcile the key
attributes and semantic relation between them. We design a
framework to automatically extract attributes from query
interfaces taking full advantage of instances information
and enrich the attribute sets embedded in the semantic
query interface by Ontology technique. Each attribute is
extended into a candidate attribute expressed by a hierarchy
tree and describes the semantic relation of the attributes.
We carry out our experiments in the real-world domain and
results showed the validation of query translation
framework.

Index Terms—Deep Web, Surface Web, query interface,
WordNet, Ontology, hierarchy tree

I. INTRODUCTION

Recently, we witnessed the rapid growth of databases
on the Web, which enriched the information of WWW.
The World Wide Web should be divided into the Surface
Web and the Deep Web [1]. The Surface Web consists of
billions of searchable pages, while the Deep Web is
hidden behind the Surface Web remaining unsearchable.
A survey in April 2004 estimated there were more than
450,000 online databases [2]. Myriad information may not
be accessed through static URLs because they are
presented as result after users submitted the query. The
Deep Web databases require manual query interfaces and
dynamic programs to access their contents, thus
preventing Web crawlers from automatically extracting
their contents and indexing them, and therefore not being

included in search engine results.
Some methods can be concerned such as type-based

search-driven translation framework by leveraging the
“regularities” across the implicit data types of query
constraints. He B, et al. found that query constraints of
different concepts often share similar patterns, and
encoded more generic translation knowledge for each
data type [3, 4, 5]. They provided an extensible search-
driven mechanism. We propose an attribute search-driven
mechanism, in our framework the most important factor
is the attribute and semantic relations between them. The
schemas of Deep Web are composed of attributes in the
query interfaces, so the validation and effectiveness of
attribute extraction is the most important factor during the
accessing to Deep Web. We try to extract abundant
attributes, which describe the concepts, and the semantic
relationships between attributes. The most efficient and
effective Ontology technique of detecting the semantic
relation between words is the WordNet. We extend each
attribute into a concept set which is used for semantic
matching.

In the previous work, attributes of the query interfaces
were obtained manually and the co-occurrence of
attributes was used to evaluate the domain information [6].
In our framework, we measure the relevance of attributes
not only with the exact matching, but also with the
semantic similarity. The automatic attribute extraction is
the indispensable previous pretreatment of schema
matching, schema merging, and the carrying out of some
correlated research fields depended on the result of it,
such as discovering, categorizing, indexing, and query
capability modeling Deep Web sources and extracting
domain knowledge [7-9]. However, the automatic attribute
extraction has always been proven to be a difficult task

[10]. Yoo, et al. have put forward an automatic attribute
extraction algorithm to automatically determine the
attributes of Deep Web query interfaces by utilizing
WordNet[11]. Two types of attributes, programmer
viewpoint attributes and user viewpoint attributes, were
defined. The final attributes of a query interface were
determined by checking the overlapping areas between
programmer and user viewpoint attribute sets. The most

Corresponding author: WanLi Zuo, Wanli@jlu.edu.cn

JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010 713

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.7.713-720

obvious difference between the methods of Yoo’s and
ours is that we extracted the instances information during
the attributes extraction procedure. We believed instances
are a major part of describing the semantic attributes and
sometimes provide instantial information in query
interfaces to depict the meaningless words, such as
“From”, “To”, “ISSN”, et al. The semantic of query
interfaces is not complete with some meaningless words
semantically un-instantiated. The recall of query
translation is lowered by the semantic incomplete query
instances.

In this paper, we present a translation framework of
translating queries utilizing automatic attributes
extraction and Ontology technique. During the procedure,
the instance information is extracted and used to
instantiate meaningless attributes and semantic containers
based query translation mechanism reconcile the
semantic relationships between attributes. Ontology
provides semantic support by using controlled terms for
attributes mapping in a domain. We combine query
interfaces of the Deep Web and Ontology approach of the
Semantic Web. Summing up the previous works, our
approach makes the following contributions:
1. The query interface attributes are automatically

extracted from query interfaces and the instances
information are used to instantiate some attributes
semantically. By instantiating meaningless attributes,
the semantic completeness is confirmed. During
attributes extraction, Ontology technology is utilized
to extend the pre-matching attributes, in order to
ensure the effectiveness of attributes matching
between different query interfaces of Deep Web. We
improve the recall and precision of attribute
extraction by using the instance information
contained in query interfaces.

2. The precision of queries translation is improved by
the translation mechanism based on the extracted
semantic container, by which query interfaces
semantic restrictions are described.

II. AUTOMATIC ATTRIBUTES EXTRACTION ALGORITHM

In Fig 1, we can see that all the information of the
query interface showing in the form of HTML. The
HTML shows a number of common elements. The
<label>, <select>, and <option> occur in pair style, and
there are some element names and texts showing between
each pair of elements. Take the label “Depart From” for
example, the “departure city” is the element name given
by the programmer in the programming environment, and
“Depart From” is text attribute of the element. When
users query against the query interface, they can only see
text attributes of the form elements, but after users
pushing down the search button the translation between
the name and text of the element is carried out. So we
take EN short for element name and ET for element text.
Both EN and ET are important information to get the
semantic understanding of a query interface. In our demo,
we extract EN set and ET set of a query interface to
determine valid attributes, candidate attributes are stored
in the refined EN set and ET set. Given a set of query
interfaces, the EN set are obtained from the inner

identifiers, the ET set are obtained from free text within
the query interface.

In Fig 2, the candidate automatic attributes extraction
algorithm is composed of three steps: extracting EN set;
extracting ET set and generating valid attributes. During
the ET extracting, the instance information is extracted
together and attached to semantic related candidate
attributes. By attaching instance information, some
meaningless words are instantiated by instances. This
process is very necessary to deal with situations of query
interfaces semantic incompleteness.

A. EN extraction algorithm

The inner identifiers can be easily obtained from
HTML elements by a program, but they can not be
directly used for further analysis. We need to do some
additional process works, because the inner identifiers are
usually comprised of several words and symbols. The IIS,
which is shorted for inner identifier set, should be
condensed into more general words.

The preprocess function step is used to finish these
preprocessing tasks. First, there are some information
retrieval pre-processing method should be used, such as
stop word removal and stemming. Some words we get
from query interface are no value, so removing stop word
and stemming attribute names and domain values. We
can build domain stop word list manually according to
general stop word list. Second, we have to expand some
abbreviations and acronyms to their full words, e.g., from
“dept” to “department”. The expansion procedure is done
based on some domain information collected from other
source form in the same subject. Last, during this step, we
break a label item into atomic words. Such items are
usually concatenated words showed in the web pages. For

Algorithm: Candidate Attribute Automatic Extracting

step 1. Get IIS (inner identifier set) and TIKW from web data source,
step 2. Remove special symbols, generate more substrings. Special

symbols (:, -, _, @, $, &, #, ?, !, *,etc.)
step 3. Remove duplicated in the IIS and TIKW.
step 4. Extract all text between <option> and </option> form the

instance set, INS for short.
step 5. Pre-process function, PPF for short.
step 6. Extend the key words of IIS, TIKW and INS into a set by

utilizing WordNet.
step 7. Generate hierarchy tree for EN and ET.
step 8. Add instances into ET tree mark the relation between candidate

attributes and instances; mark the relation between candidate
attributes and instances.

step 9. Refine the hierarchy tree and get EN and ET set in a hierarchy
relation tree.

Figure 2. Algorithm of candidate attribute automatic extraction

<FORM action= “...” method= “…”>
<P><LABEL for= “departure city”>Depart from
</LABEL>
<SELECT size= “2” name= “depart_city”>
<OPTION selected value= “city1”>New York</OPTION>
<OPTION>Washington</OPTION></SELECT><P>
Where is your departure from?

<INPUT type= “text” id= “id”><P> Search by :< BR>
<INPUT type= “radio” name=“search by” value=“only”> only

<INPUT type=“radio” name=“search by” value=
“schedule”>schedule<P>

Figure 1. HTML code of query interface

714 JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

example, we can break “fromCity” into “from City”, and
“first-name” into “first name”. However, this step has to
be done with care. For example, we may have “Baths”
and “Bathrooms” if we split “Bath” with “rooms” it could
be a mistake because “rooms” could have many and
different meanings. To avoid this situation, we need to
make sure that “Bathroom” is not an English word before
splitting it, so we need an English dictionary or domain
describing taxonomy.

Ontology is employed for processing text from the
query interfaces of Deep Web sources efficiently filtering
words from the Deep Web data sources. The Ontology
adds a semantic layer to the Deep Web. In this paper,
WordNet is utilized as a kind of Ontology instrument for
extending the candidate key words and finding matches
between EN set and ET set, based on synonyms. It is also
used for eliminating stop words to allow correct attribute
retrieval. Among the WordNet categories, nouns, verbs,
adjectives, and adverbs, we focus on nouns based on the
observation that semantics are mostly carried by them.

Take the key words set S1= {departure city, airline
code} as an example, we extend the each word and keep
their semantic relation together by using WordNet. In Fig
3a, the “departure city” is extended into Edeparture=
{departing, going away} and Ecity = {metropolis, urban
center}. The hierarchy tree is generated by extending
procedure. Sometimes in the query interface, there are so
many candidate key words for the inner identifier, so we
should refine the hierarchy tree to get more general
candidate attributes and specific semantic relations. The
refined result shows in Fig 3b. During the refining step,
we get more general words for the candidate key words
and delete the phrase. The phrase expression is difficult
to match between each other and it has more complicated
meanings.

B. ET extraction algorithm
ET sets are utilized to determine the final attributes of

each Web data source too, and they are obtained from the
free text within the query interface. It requires that the
free text between two HTML tags, which potentially
embodies semantics, is added into the set TIKW (text-
based identifier key words). Texts between <option> and
</option> are also considered because they describe
instances for candidate key words. We believe that the
instances contain semantic information which describing
the attribute, and we can take the attribute as the concept
of Ontology. So we try to extract the instances in the text
section which is not like Yoo’s, because they thought the
instance was no value to be concerned during attributes
extraction. We finish four different parts of extraction
work. First, we generate the text-based identifier key
words. Second, the instance information can be extracted
from the text of the query interface. Thirdly, after getting
valid candidate attributes, we generate the hierarchy tree
for the ET. Finally, add instances into the ET tree and
mark the relation.

In order to add right instances into the ET tree, we
need to design a method to measure the semantic relation
between the instance and the candidate attribute. In the
query interface, the layout format includes the

information describing the relation between the each
labels and elements and free texts of the query interface.
We find that there are two heuristics info can be
calculated to measure the semantic relation between the
correlative elements of the query interface.

C. Finding semantic relation between text instance and
candidate attribute

At this step, we consider the texts of instance
information in query interface and compute the visual
distance with respect to each field of the form F. The
visual distance between a text instance ti and a candidate
attribute ca is computed as following:
1. We can use the APIs provided by the browser to

obtain the coordinates of a rectangle enclosing ca
and a rectangle enclosing ti. If ti is in a HTML table
cell, and it is the unique text inside, then we can
mark the correlative relation between them.

2. We also obtain the angle of the shortest line joining
both rectangles. The angle is approximated to the
nearest multiple of π/4.

For each candidate attribute, we try to obtain the texts
instance semantically linked with it in the query interface.
For selecting the best matching text information for a ca,
we apply the following steps:
1. We add all the text instances with shortest distance

with respect to ca into a list.
2. Those text instances having a distance lesser with

respect to ca are added to the list ordered by
distance. This step discards those text instances that
are significantly further from the field.

3. Text instances with the same distance are ordered
according to its angle. The preference order for
angles privileges texts aligned with the fields. The
main standards to measure the preference is that
privileges left with respect to right and top with
respect to bottom, because they are the preferred
positions for labels in forms.

4. After extracting the ET, we also can get a tree
hierarchy exhibition of the candidate attributes. In
the Figure 3c, it shows an ET tree extracted from the
HTML of query interface showed in Fig 1. In the
Fig 3d, it shows the refined ET tree and added
instances.

In the Fig 3c, the “from” and “search” are in dashed
blocks, because they are a little different from the other
terms. We can get no information form WordNet about
“from” and we also find that “search” is the more general
word in the group of the same meaning words set. In this
situation, “from” and “search” are called atom lemmas.
So there are no extra information form the WordNet and
they have no leave nodes comparing with “depart” and
“by”.

Definition 1: In WordNet, given a word w1 is in the
higher level of the synset or there is no description
information about w1, w1 is called atom lemma.

Definition 2: In WordNet, given word w1 and w2, if
there exits “w2 IS INSTANCE OF => w1” relationship
between two words, then w1 is called source lemma and
w2 is called instance lemma of w1.

In the Fig 3d, there are two text instances and showed
in circle blocks. We believe that the instances information

JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010 715

© 2010 ACADEMY PUBLISHER

are belonged to both “depart” and “from”. It is easy to
find that the instance “New York is an INSTANCE OF
city, metropolis” and “urban center” in the WordNet. In
other words, “city” is the source lemma of “New York”.
We describe the relation between candidate attributes and
instance like:

Sdepart= {depart || departure, INSTANCE ((New York,
“instance of” (city, metropolis)), (Washington, “instance
of” (city, metropolis)))},

Sfrom= {from || INSTANCE ((New York, “instance of”
(city, metropolis)), (Washington, “instance of” (city,
metropolis)))}.

The instance information and candidate attributes is

expressed by hierarchy relation during the programming
for the framework. We name the ‘depart’ as the value of
Sdepart and the “departure” as alias. The next step of our
framework is to generate the finial valid attributes.

D. Final Attribute extraction algorithm
After extracting the EN set and ET set, we can build

the candidate attributes mapping between the two sets
and get the final attribute set. The procedure of the final
attributes extraction is to merge the two trees of EN set
and ET set. In the tree, we don’t break the semantic
relation between the two words shown together, such like
“depart from” and “departure city”, because in human’s
sense they express the name of passengers’ start point of
the journey. The programmers and users of the query
interface are in the same human sense, so we believe it is
necessary to keep the semantic relation.

Before describing the final attribute extraction
algorithm, we explain the different kind nodes of the EN
and ET tree. There are four kinds of node in the tree:
• Instance node: the instance extracted from the free

text, such as “New York” in Fig 3d. The instance
nodes are always shown in the bottom of the tree, so
L (leaf) is short for the instance node.

• Ally node: the extended words for the key words
derived from WordNet, such as “departure” is an ally
node of “depart”. A is short for the ally node.

• Value node: the extracted key word from the query
interface, such as “depart”. V is short for the value
node, () () (){ }mn lIlIlIaaavV KK 2121 ,,,|= .

• Semantic node: the direct ancestor node of value
node, there are at least one value node below the
semantic node. The semantic node is the set of
related value nodes. S is short for the semantic
node, { }nvvvS K21,= .

• Root node: the root of ET or EN tree.

We take the ET tree as the blueprint and EN tree as the
source tree, merge the candidate attributes of EN into ET.
The final attribute extraction is composed of three steps.
First, we generate the ally nodes by instance node. During
this procedure, we get the hypernyms of the instance
node from WordNet and create ally nodes using them.
After creating ally nodes, we need attach the new ones to
value nodes which the instance nodes belonged to. There
are two situations to be concerned, one is that there are
ally nodes belong to the value node and the other is there
is no ally node belongs to the value node. In the first
situation, we will not attach the new ally nodes to the
value node, because these kinds of value nodes have been
extended by the WordNet. In the last situation, we attach
the new ally nodes to the value nodes directly to improve
the precision of matching, because these kinds of value
nodes are always meaningless words or the most general
words. Second, we merge the semantic nodes. During this
step, we merge the semantic nodes when, at least, one of
the two sets of value nodes is matched. After merging, we
get the tree of ET’, in it the semantic nodes are expanded.
Third, we merge the value nodes. We rearrange the value
nodes and the ally nodes, delete the reduplicate ones and
sometimes exchange the value nodes and ally nodes. The
rule of the exchanging is basing on the ET tree and
making the more general words in the value node. The
algorithm is shown in Fig 4.

E. Generating semantic container from query interface
We observe that Deep Web sources often have two

types of constraints on how predicate templates can be
queried together. First, a form may have binding
constraints, which require certain predicate templates be
filled as mandatory. For instance, the form in Figure 6a
may require price not be queried alone and thus each
form query must bind a predicate template from
attributes. Second, some predicate templates may only be
queried exclusively. For instance, the form in Fig 6b

Figure 3. Examples of algorithm

716 JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

allows only an exclusive selection among attributes
“Writer”, “Title” and “ISBN”. To solve this kind of
problems, we need to find relation between attributes in
the source and target query interface with the help of
semantic meanings of the web. We take the query
interface in Fig 5a as the source query interface and the
one in the Fig 5b as the target query interface.

Definition 3: Given a set of attributes of a query

interface, if a sub-set and only one attribute in it can be
translated with other attributes into a valid query
condition, then the relation between the attributes in it is
called exclusive.

Definition 4: Given a set of attributes of a query
interface , if a sub-set and all the attributes in it can be
and must be translated together into a valid query
condition with the semantic constraint provided by the
query interface, then the relation between the attributes is
called binding.

In Fig 5b, the function of the form is to provide queries
which contain only one of “Writer”, “Title”, “Subject”
and “ISBN”. The four query terms form a set, each time
we can only query about one of them. It is necessary to
find the relation between them when translating the query
for the target. It is obviously that we can find some
evidences from the code of the target form. It is easy to
find that the “Writer”, “Title” and “ISBN” share the same
container named ‘RB1’ from the code. We define a
predicate container to present the attributes being
constrained by the web semantics defined by the author
of the web form.

Definition 5: The semantic container is defined
as },,{ 21 relationaaaC n ≅= L , ia presents the attributes
in the same container, “relation” presents the relation
between the attributes.

binding} Price Title,Author, { Csource ≅=
exclusive} ISBN Title,{Writer,Ctarget ≅= .

After automatic extracting and mapping attributes, we
get valid attributes for the query translation. This step is
to generate valid query predicates from valid attributes.

The query predicate is in a kind of template
as >=< valueconstrattributeP ,, . Taking the attribute
“Author” as an example, the predicate template is
<author, like, ‘Joanne Kathleen Rowling’ >. It is a kind
of text template, which it is the most frequently template
used in the Deep Web. It is obviously that the attributes
may have different data types like text, numeric and
datetime. The predicate template of “price” is <price, <,
35>, in this template we use ‘<’, ‘>’, ‘<=’ and ‘>=’ as the
constraint. In the source query interface, user can use
three attributes to describe a book, which means that the
more attributes we have the more restrictive query
predicate we can get. When it comes to the target query
interface, user can use one of all the attributes to describe
one facet of the book each time. To get translation of the
different query interfaces, we have to get more valid
attributes as we can. If we have some domain knowledge
about book, we will find the “price” is the least important
attribute when describing a type of book, there are the
same situations in the other domains. When translating
queries, it is better to make numeric attributes useless.

�.RESULTS OF EXPERIMENTS AND DISCUSSION

The Deep Web data sources were downloaded from
the UIUC web integration repository. This dataset
contains original query interfaces and their manually
extracted query capabilities of 447 Deep Web sources.
We first extract the attributes in different domains to test
our automatic attributes extraction method. Take Airfares
and Automobiles as examples, we get the results in the
Table 1. The parameters are described as following:
• CA: candidate attribute;
• EA: extraction attribute;
• IA: instance attribute;
•

||
||/ EA

IAEI = ;

•
||

||/ CA
EACE = .

We can get three clustered classes of Deep Web query
interfaces. The one of the clustered classes is
characterized by that there is none instance attribute in
the form. There are more than one instance attribute in
the second class of interfaces. The last class reflects both
strengths and weaknesses of our extraction algorithm, just
like showing both sides of the coin. The first side is that
our algorithm can find the instanced candidate attributes
in the very complicated coded query interfaces, while we
can not extract anymore attributes. The other side is that
when extracting the attribute embedded in a longer and

a. Source query interface b. Target query interface

Figure 5. Query interfaces with different semantic constraint

Algorithm: Final Attribute Extraction (EN, ET)

/*generate instances for value nodes in EN and ET*/
1. For each value node v in EN and ET do
2. If v has instance
3. Generate ally nodes for v
/*merge semantic related nodes in EN and ET*/
4. For each sni do (sni is a semantic node in EN tree, snj is a

semantic node in ET tree)
5. Find similarity between two semantic node sets

IF exits semantic nodes matched
6. Merge sni into snj
7. New generated semantic node in ET is marked
8. For each semantic node sn in ET do
9. If sn not marked
10. Remove sn from ET and generate ET’for ET
/* generate final attribute tree */
11. For each semantic node sn in ET’ do
12. For each value nodes v in sn do
13. Find similarity between each pair of value nodes in ET’
14. Merge value nodes
15. Return ET’ as the final attribute tree

Figure 4. Final attribute extraction algorithm

JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010 717

© 2010 ACADEMY PUBLISHER

irregular string, our algorithm shows inefficient. In Ref
[11], they removed all the information contained in the
instance between <option> and </option>, but they had
difficult in making the meaningless words meaningful in
the semantic query interface, such as “from”, “to”, .etc. It
is true that the number of meaningless words is very
limited in the interfaces of the Deep Web and we can
manually deal with the problem by building some related

mappings, but we believe that the automatic extraction is
very necessary. The Deep Web is heterogeneous and
grows rapidly, so we can’t foresee the future new
emerging domains of people life just like we can’t reach
all the Deep Web. The work we have done is just like
adding some neologies such as “blog”, “newbie”, “Wiki”,
.etc, into a dictionary by making them meaningful in
some domains.

The second step of our experiment is to translate

queries from one query interface to another in the same
domain. In this paper, we carry out experiment on
Airfares, Automobiles, Books, Music and Movies
domains. The experiment results and the comparison with
Yoo’s method are shown in Table 2. The parameters are
defined as following:
• QN: the number of query interfaces in specific

domain;
• AEP: the average precision of attribute extraction in

specific domain;
• TR: the recall of query translation in specific domain;

• TP: the precision of query translation in specific
domain;

• Yoo-TP: the precision of query translation of Yoo’s
algorithm.

The translating precision of our method is 2% higher
than Yoo’s on average. Especially in the Airfares domain,
we take full advantage of the text instance information to
improve the attribute extraction precision and translating
precision. However, there are some lacks of our method
in the Books and Music domains. The semantic container
is difficult to capture in the two domains and the default

TABLE I. THE RESULTS OF EXTRACTION IN AIRFARES AND AUTOMOBILES DOMAIN

WWW CA EA IA E/C(%) I/E(%) WWW CA EA IA E/C(%) I/E(%)

Airfares
spiritair.com 12 2 2 16.7 100 united.com 15 12 2 80.0 16.7

usairways.com 12 2 2 16.7 100 airfrance.usc 14 14 2 100.0 14.3

skyauction.com 5 5 3 100.0 60.0 hotwire.com 7 7 1 100.0 14.3

aireuropa.com 8 4 2 50.0 50.0 flyairnorth.com 20 19 2 95.0 10.5

flyasiana.com 10 10 4 100.0 40.0 flights.com 19 16 1 84.2 6.3

southwest.com 12 11 3 91.7 27.3 bargaintravel.com 11 9 0 81.8 0.0

priceline.com 10 8 2 80.0 25.0 cheapairlines.com 8 8 0 100.0 0.0

134.americanexpress.com 11 9 2 81.8 22.2 delta.com 13 10 0 76.9 0.0

lowestfare.com 9 9 2 100.0 22.2 expedia.com 11 9 0 81.8 0.0

continental.com 13 10 2 76.9 20.0 faremax.com 12 8 0 66.7 0.0

finnair.com 10 10 2 100.0 20.0 nwa.com 13 12 0 92.3 0.0

koreanair.com 10 10 2 100.0 20.0 orbitz.com 16 12 0 75.0 0.0

aircanada.com 18 16 3 88.9 18.8 res99.com 8 7 0 87.5 0.0

singaporeair.com 11 11 2 100.0 18.2 smartertravel.com 7 7 0 100.0 0.0

Automobiles
classicmo.com 23 16 3 69.6 18.8 inventory 32 24 2 75.0 8.3

drive.com 20 18 3 90.0 16.7 carsite.com 14 12 1 85.7 8.3

cunninghamgm 22 19 3 86.4 15.8 gmgiant.com 15 13 1 86.7 7.7

motors.search.ebay 29 22 3 75.9 13.6 carsforsale.com 14 13 1 92.9 7.7

inventory_default 33 25 3 75.8 12.0 xtra.autopoint 15 13 1 86.7 7.7

autobytel.com 23 17 2 73.9 11.8 barriermotors 15 14 1 93.3 7.1

autoweb.com 20 17 2 85.0 11.8 autofinder.com 17 14 1 82.4 7.1

2buycars.net 21 18 2 85.7 11.1 audi.traverse 17 14 1 82.4 7.1

cars.com 20 18 2 90.0 11.1 akguam.com 20 15 1 75.0 6.7

carsdirect.com 22 18 2 81.8 11.1 tonkin.com 22 16 1 72.7 6.3

gotcars4sale.com 10 10 1 100.0 10.0 inventory 11 10 0 90.9 0.0

kbb.com 10 10 1 100.0 10.0 autobroker.net 6 6 0 100.0 0.0

autonetmail.com 25 21 2 84.0 9.5 autonation.com 4 4 0 100.0 0.0

autos.msn.com 13 11 1 84.6 9.1 autoseek.com 9 8 0 88.9 0.0

lead.carprices.com 12 11 1 91.7 9.1 worldparts.com 5 5 0 100.0 0.0

718 JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

processing of the semantic container is not effective
enough.

During the experiment we find that:

1. It is not necessary to fill all the form controls. There
are different and special attributes in each query
interfaces. In order to get related results from
different query interfaces, we need only translate the
query instances on the common attributes of the
query interfaces.

2. Some complex form controls and semantic relation
are too hard to deal with. In the situation of
absenting semantic container, the default semantic
relation between the attributes is binding, which can
make sure a high recall of related results.

3. Before carrying out experiments, we are assuming
that Web programmers are well educated and are
using meaningful field names, but it is not the truth.
The programmers of different region use different
meaningful field names and the programmers of the
same region also have different field named
mechanism.

4. Some forms are designed under the universal
templates and the attribute named mechanisms are
under the team instruction, so some attributes are
expressed in long and irregular strings of characters.
Some special characters, such as “#”, “$”and “￥”,
are also used in the strings. The large-scale use of
advanced graphics controls and uncommon design
method also lower the precision of the attributes
extraction.

There is still something we can do to improve the
precision of translation.

�.FUTURE WORK

Our framework illustrates an automatic process of
extracting attributes from query interfaces and query
translating. We propose to get more valid attributes by
using Ontology technology, each candidate attribute is
extended into form a synonym set by WordNet and stored
in a tree data structure. During the attributes extracting,
the instance information is extracted together in the aim
of being attached to semantic attributes and instantiating
meaningless attributes. As we all know, attributes in the
query interface are still part of the schema hidden in the
Web database, so in our opinion the semantic
completeness of the query interface is very important
factor of determining precision and recall of query
translation. After attributes extraction, query translation is
carried out based on the semantic containers generated

from query interfaces. The precision and recall of query
translation are improved by attributes extracted and
instantiated by our algorithm, especially in the Airfares
domain. However, the precision and recall are not
effective enough, because the semantic restrictions in
query interfaces are too hard to deal with only by parsing
technique. The design style and purpose of query
interfaces can not be modeled by anyone else except the
designer.

ACKNOWLEDGMENT

The research is under the support of Natural Science
Foundation of China under grant No. 60973040,
60903098; the Specialized Research Foundation for the
Doctoral Program of Higher Education of China under
Grant No. 200801830021; the Science and Technology
Development Program of Jilin Province of China under
Grant No.20070533; the Basic Scientific Research
Foundation for the Interdisciplinary Research and
Innovation Project of Jilin University under Grant
No.200810025.

REFERENCES
[1] Bin He, Kevin Chen-Chuan Chang. Statistical schema

matching across Web query interfaces. In Proceedings of
the 2003 ACM SIGMOD International Conference on
Management of Data, San Diego, California, USA, June,
2003, pp: 217-228.

[2] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang,
Structured databases on the web: Observations and
Implications, ACM SIGMOD Record, September 2004.
33(3):61-70.

[3] B. He, Zhen Zhang, and Kevin C.-C. Chang, MetaQuerier:
Querying Structured Web Sources On-the-fly, In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, Baltimore, Maryland,
USA, June, 2005, pp: 927-929.

[4] B. He, K. C.-C. Chang, Automatic complex schema
matching across web query interfaces: A correlation
mining approach, ACM Transactions on Database
Systems, Association for Computing Machinery,
Vol.31(1), 2006, pp: 346-395.

[5] B. He, Patel M, Zhang Z, K. C.-C. Chang, Accessing the
deep web, Communication OF The ACM, Vol.50 (5),
MAY 2007: 95-101.

[6] G. Kabra, C. Li and K.C. Chang. Query Routing: Finding
Ways in the Maze of the Deep Web. In Proceedings of the
International Workshop on challenges in Web Information
Retrieval and Integration, Tokyo, Japan, April, 2005, pp:
64-73.

[7] Caverlee J, Liu L, Rocco D, Discovering Interesting
Relationships among Deep Web Databases: A Source-
Biased Approach, World Wide Web-Internet and Web
Information Systems, Vol.9(4): 585-622, Springer, 2006.

[8] Shu LC, Meng WY, He H, Yu C, Querying Capability
Modeling and Construction of Deep Web Sources, In
Proceedings of 8th International Conference on Web
Information Systems Engineering, Nancy, France, Dec,
2007, pp: 13-25.

[9] LIU Wei, MENG Xiao-Feng, MENG Wei-Yi, A Survey of
Deep Web Data Integration. Chinese Journal of
Computers, Vol.30, No. 9, Sept, 2007, pp: 1475-1489.

[10] Sriram Raghavan, Hector Garcia-Molina. Crawling the
hidden Web. In Proceedings of 27th International
Conference on Very Large Data Bases, Roma, Italy,
Morgan Kaufmann, September, 2001, pp: 129-138.

TABLE II. THE RESULTS OF AIRFARES,
AUTOMOBILES, BOOKS, MUSIC AND MOVIES DOMAINS

Domain QN AEP TR TP Yoo-TP
Airfares 35 85.3% 81.7% 76.7% 67.8%

Automobiles 36 87.3% 82% 74.5% 70%

Books 25 93% 85% 79% 100%

Music 25 87% 83% 72.2% 77%

Movies 25 95% 87% 82.7% 60%

Average: 29 89.5% 83.7% 77% 75%

JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010 719

© 2010 ACADEMY PUBLISHER

[11] Yoo Jung An, James Geller, Yi-Ta Wu, Soon Ae Chun:
Semantic deep web: automatic attribute extraction from the
deep web data sources. In Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC2007), Seoul,
Korea, March, 2007, pp: 1667-1672.

LIANG Hao was born in Jilin of China in Jun 1980. He is a

Ph.D. candidate at the Department of Computer Science and
technology, Jilin University. His current research interests
include Web Intelligence, Ontology Engineering and
Information integration.

 ZUO Wan-Li was born in Jilin of China in Dec 1957. He is
a professor and doctoral supervisor at Department of Computer
Science and technology, Jilin University. Main research area
covers Database Theory, Machine Learning, Data Mining and
Web Mining, Web Search Engines, Web Intelligence.

He was as a senior visiting scholar, engaged in collaborative
research in Louisiana State University (USA) from 1996-1997.
He was principle responsible member of 3 national NSFC
programs. More than 40 papers of him were published in key
Chinese journals or international conferences, 8 of which are

cited by SCI/EI. Three books were published by him in Higher
Education Press of China and he obtained 3 national and
departmental awards.

He is a member of System Software Committee of China's
Computer Federation, prominent young and middle-aged
specialist of Jilin Province.

Ren Fei was born in Inner Mongolia of China in Aug 1981.
She is a Systems Architecture Engineer in China Development
Bank. She received Ph.D. at the Department of Computer
Science and technology, Jilin University. Her current research
interests include Data Mining, Intrusion Detection, Information
Security, and Artificial Immune Algorithm.

FengLing He was born in Jilin of China in May 1962. He is

a professor and supervisor at Department of Computer Science
and technology, Jilin University. Main research area covers
Data Mining and Web Mining, Web Search Engines, Web
Intelligence.

720 JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

