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Abstract—If probabilistic model checking is applied in 
software architecture, function validation and quantitative 
analysis for Markov process based real-time model can be 
automatically performed in model refinement, which will 
improve software quality. In this paper, the exact definitions 
and mapping rules between UML state diagrams and 
probabilistic Kripke structure semantics are proposed, as 
well as the general translation algorithm of formal 
semantics. An asynchronous parallel composited DTMC 
system is illustrated, the key non-function properties of 
system are described by PCTL, which is automatically 
validated and analyzed by PRISM model checker. The key 
system properties are also manually deduced and proved, 
and compared with the experiment results. The mapping 
rules we proposed are bi-direction, so it can be used in both 
forward and reverse software engineering. 
 
Index Terms—UML state diagrams, Markov process, 
Probabilistic model checking, Software assurance, PRISM 
 

I.  INTRODUCTION 

UML (Unified Modeling Language) is a graphical 
object-oriented language, which comprises of class 
diagrams, state diagrams, sequence diagrams, component 
diagrams, etc. Different aspects of system such as static 
topology structure and dynamic behavior can be 
described by different UML diagrams. Presently UML 
has become the de factor standard modeling language in 
industry ([1], [2]). However, UML is a meta-model with 
only static semantics but without dynamic formal 
semantics, thus automatic verification for key system 
properties can’t be performed. 

Software procedure is usually comprised of 
requirement, design, modeling, development, test, 
deployment, etc. In early stage of system requirement, 
shareholders usually describe the structure, behavior and 

composition mechanism of system with different UML 
diagrams (class diagrams, state diagrams, sequence 
diagrams, etc.), however, key performance measures of 
system, such as responding time, safety, reliability, etc. 
are often ignored. These quantitative measures have only 
just start to be cared lately in phase of development or 
test. If some key quantitative properties of system are not 
consistent with requirement at that time, it will cost more 
and reward less to modify the almost-finish system. 

In probabilistic model checking, structure and 
behavior of system are described by probabilistic or 
stochastic Kripke structure, and key system properties to 
be validated are described by PCTL (Probabilistic 
Computation Tree Logic) or CSL (Continuous Stochastic 
Logic), thus key quantitative measures of system related 
with time or probability can be automatically reasoned 
and deduced. Three real-time models comprised of 
DTMC (Discrete-Time Markov Chains), MDP (Markov 
Decision Processes) and CTMC (Continuous-Time 
Markov Chains) can be automatically analyzed in 
probabilistic model checking. PRISM developed by 
Oxford University is a probabilistic model checking tools 
set, which supports solving the above three Markov 
processes. 

If probabilistic model checking can be applied in 
early stage of software procedure, automatic function 
validation and quantitative analysis can be performed to 
improve software quality. It is a possible direction in 
software design methodology. In early stage of system 
requirement and design, if UML diagrams are assigned 
with formal semantics related with time and probability, 
key quantitative performance measures of system can be 
automatically deduced and analyzed to guarantee 
software reliability in model refinement. 

The significance and contents of this paper lie in: 
(1) After the semantics of basic element “action” in 

UML state diagrams are changed, there are 
implicit mapping relationship between UML state 
diagrams and probabilistic Kripke structure. In 
this paper, we explicitly proposed the exact 
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definitions and mapping rules between UML state 
diagrams and probabilistic model checking, thus 
UML state diagrams are assigned with formal 
semantics. 

(2) The generating algorithm of translating UML state 
diagrams to probabilistic Kripke structure are 
presented in this paper. Both single module that 
comprised of state initialization, variable 
initialization, state transmission, etc. and different 
composition mechanisms that comprised of 
several modules are formalized with dynamic 
semantics. 

(3) After extended UML state diagrams are translated 
to probabilistic Kripke structure semantics, the 
key system properties related with time or 
probability are described by PCTL, and 
quantitative measures can be automatically 
validated in probabilistic model checker, thus 
system designer needn’t manually deduce and 
analyze these properties. Both quantitative 
performance measures and function properties can 
be described by PCTL, thus function validation 
and quantitative analysis can be simultaneously 
performed to improve software quality. 

(4) The mapping rules proposed in this paper are bi-
direction, thus it can be applied in both forward 
and reverse software engineering. Given UML 
state diagrams, they can be translated to formal 
semantics, vice versa. 

The structure of this paper is: in section 2, the related 
works are presented; in section 3, the exact definitions 
and mapping rules between UML state diagrams and 
probabilistic Kripke structure are proposed, as well as the 
translation algorithm; in section 4, a asynchronous 
parallel composited distributed system is illustrated to 
show how quantitative analysis can be automatically 
performed in model checker after UML state diagrams 
are assigned with formal semantics, and the key 
quantitative measures are also manually deduced in 
theory; conclusion and future work are presented in 
section 5. 

II.  RELATED WORKS 

In [7], the mapping rules from probabilistic pi-
calculus to probabilistic model checking are presented 
based on operational semantics, thus automatic 
translation can be performed. Process algebra is based on 
LTS (Label Transition System) structure, probabilistic 
model checking is based on probabilistic/stochastic 
Kripke structure, explicit mapping rules between the 
above two mathematics models are found up in [7]. 
Inspired by [7], internal state transmissions of object are 
described by UML state diagrams, which can be 
implicitly mapped to probabilistic Kripke structure. In 
this paper, the mapping rules and translation algorithm 
are presented, quantitative analysis for UML state 
diagrams can be automatically performed based on 
probabilistic Kripke structure semantics. 

In [8] and [9], UML state diagrams and activity 
diagrams are translated to PEPA (Performance 
Evaluation Process Algebra) code, thus key quantitative 
properties such as steady-state probability, state or 
transition reward, etc. can be automatically analyzed. 
PEPA based on probabilistic LTS structure is in higher 
abstract level than probabilistic model checking, so it has 
one-to-one mapping relationship with UML state 
diagrams. However, probabilistic Kripke structure is in 
lower abstract level. In this paper, the mapping 
relationship from basic elements and composition 
mechanism of UML state diagrams to probabilistic 
Kripke structure is presented. The key quantitative 
properties are described by PCTL in probabilistic model 
checking, where range of validation is wider than PEPA. 

In [10], firstly UML state diagrams are extended with 
time and probability, secondly translated to probabilistic 
time automata, thirdly translated to probabilistic model 
checking code, so the probabilistic temporal properties 
related with reliability can be automatically analyzed. 
However, the translation algorithm in [10] isn’t described 
by exact mathematics model, neither specified with 
definitions and mapping rules, so the correctness of 
translation can’t be proved by structure induction method. 

In [11], P-statechart is UML state diagrams extended with 
probability. Model behaviors are described by P-
statechart, models composition are described by UML 
collaboration diagrams, so validation and analysis of 
system can be automatically performed after 
formalization of UML diagrams. However, for the most 
important semantics translation, only state, guard and 
event in UML state diagrams are mapped to probabilistic 
model checking. Composition mechanisms are not 
referred in [11], and the mapping rules are not described 
by exact mathematic rules, so it is unable to direct the 
development of translation tools. 

Ⅲ.  PROBABILISTIC KRIPKE STRUCTURE SEMANTICS OF 
EXTENDED UML STATE DIAGRAMS 

A.  System initialization and labels of state 
Definition 1: labels of state. It is defined as a function: 
S→ AP2 , where S represents source state, AP represents 
a set of atomic propositions. In UML state diagrams, a 
system state is related with a set of labels, where the 
value of label is true in the state, otherwise is false. 

 

Figure 1.  System initialization 

In Fig. 1, the solid circle represents starting point that 
points to initial state, 0S  represents name of a state, a 

and b represent label names in state 0S . When system 
states are generalized, each state will be assigned with a 
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unique number, and the value of each label in system is 
assigned with true or false in system initialization. 

Rule 1. Each state in UML state diagrams is assigned 
with a unique number, and the number of state in PRISM 
is recorded by an enumeration variable. The labels in 
state are mapped to a bool-type variable in PRISM, which 
is set true or false according to whether the label holds 
true in the state or not. 
     From Deifintion 1 and Rule 1, we can get the PRISM 
code in Fig. 1 as follows: 

s : [0..n] init 0; 
a : bool init true; 
b : bool init true; 

B.  Sequential transition of state 
Definition 2: Sequential transition. It is abstracted as a 
function: S × event × guard × Dist(S) → T, where S 
represents source state, T represents object state, “event” 
represents triggering event, “guard” represents guard 
condition, and Disg(S) represents the occurence 
probability of triggering event. In UML state diagrams, 
given the guard conditon holds true and triggering event 
is triggered, source state transmits to target state with 
probability p. 

UML state diagrams comprised of five elements: 
source state, target state, event, guard condition and 
action. 

 

Figure 2.  Squential transition 

Each system state is assigned with a unique number 
after generalization, and “event” represents the triggering 
event. In DTMC, all the selection transitions are 
probabilistic, so event is NULL; in MDP, non-
deterministic selection transitions exists, non-
deterministic is solved by event. 
Rule 2. Source state and target state in UML state 
diagrams are respectively mapped to an enumeration 
variable in PRISM, the value of enumeration variable is 
determined by generalized system variable. Event, guard 
and action in UML state diagrams are respectively 
mapped to event, guard and probability in PRISM. 
     “guard” represents guard condition, which is 
necessary for occurrence of transition. “guard” is bool 
expression of system variable. The semantics of “action” 
is extended as the occurrence probability of transition. In 
DTMC, for a same source state, the probability 
summation of all transitions equals to 1. In MDP, for a 
same sate, the probability summation of all transitions for 
a same event equals to 1. 

From Definition 2 and Rule 2, we can get the PRISM 
code in Fig. 2 as follows: 

s : [Source, Target] init Source; 
[event] guard -> p: (s’=Target); 

C.  Internal transition of state 
Definition 3: Internal transition. It is abstracted as a 
function: S × event × guard × Dist(S) → S, where S 
represents source state, other definitions of variable is the 
same as sequential transition. In UML state diagrams, 
given triggering event occurs and guard condition holds 
true, source state transmits to itself with probability p. 

 
Figure 3.  Internal transition 

     From Definition 3 and Rule 2, we can get the PRISM 
code in Fig. 3 as follows: 

s : [Source, Target] init Source; 
a : bool init true; 
b : bool init true; 
[event] guard -> p : (s’=Source); 

D.  Selection transition of state 
Definition 4: Selection transition. It is abstracted as a 
function: (S × )(2 sDistguard× → T) ∧ 
( ∑

∈

=
}..1{

1)(
ni

iSDist ), where S represents source state, 

)(2 sDistguard×  represents several partial orders of guard 
condition and probability distribution exist, 

∑
∈

=
}..1{

1)(
ni

iSDist  is a constraint, which represents 

probability summation must equal to 1. In UML state 
diagrams, a state may have several successive states, and 
the mapping rules of state, labels, guard condition, event 
and probability is the same as sequential transition’s. 

 
Figure 4.  Selection transition in DTMC 

     According to different guard conditions, source state 
transmits to respective target state with a different 
probability. A constraint must be satisfied: ∑

∈

=
}..1{

1
ni

iP  

Rule 3. In UML state diagrams, a selection transition is 
comprised of several sequential transitions, which are 
mapped to several statements of sequential transition in 
PRISM. At the same time, a constraint must be satisfied: 

⇒jS ∑
∈

=
}..1{

1
ni

iP , which represents that the probability 

summation of selection transitions for the same source 
state must equal to 1. 
     From Definition 4 and Rule 3, we can get the PRISM 
code in Fig. 4 as follows: 
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s : [S0,T1,T2,...,Tn] init S0; 
guard1 -> P1 : (s’=T1); 
guard2 -> P2 : (s’=T2); 
...... 
guardn -> Pn : (s’=Tn); 
Definition 5: Non-deterministic selection transition. It 

is abstracted as a function: (S× )(2 sDistguardevent ×× →T) 

∧ ( ⇒ievent ∑
∈

=
}..1{

1)(
ni

iSDist ), where the 

definitions of variable are the same as selection 
transition’. According to different triggering event, a 
source state respectively transmits to different target state 
with a different probability, and the probability 
summation for a same triggering event must equal to 1. 

 

Figure 5.  Non-deterministic selection transition in MDP 

Rule 4. In UML state diagrams, according to different 
triggering event, a source state non-deterministic 
transmits to different target state, and they are mapped to 
several statements of sequential transition in PRISM. A 

constraint must be satisfied: ⇒∧ kj eventS ∑
∈

=
}..1{

1
ni

iP , 

where the probability summation must equal to 1 for the 
same source state. 
     From Definition 5 and Rule 4, we can get the PRISM 
code in Fig. 5 as follows: 
s : [S0,T1,T2,...Tn,K1,K2,...Km]; 
[e1] guard1 -> PT1 : (s’=T1); 
[e1] guard2 -> PT2 : (s’=T2); 

...... 
[e1] guardn -> PTn : (s’=Tn); 
[e2] g1 -> PK1 : (s’=K1); 
[e2] g2 -> PK2 : (s’=K2); 

...... 
[e2] gm -> PKm : (s’=Km); 

E.  Module declaration 
Definition 6: Module declaration. Module is the 
smallest entity in probabilistic model checking, it is 
comprised of state initialization, state labels initialization, 
and several sequential (non-deterministic) selection 
(selection) transitions of state. 

 
Figure 6.  Module declaration 

Rule 5. In UML state diagrams, a nest state comprised of 
state initialization and several sequential or selection 
transitions are mapped to a statement of module 
declaration prefixed with keyword “module” in PRISM, 
and the syntax should conform to above BNF paradigm. 
     From Definition 6 and Rule 5, we can get the PRISM 
code in Fig. 6 as follows: 
Module arbiter 

s : [0..N] init 0; 

F.  Modules composition 
Modules composition is comprised of synchronous 

parallel composition, asynchronous parallel composition, 
and constraint parallel composition. Inter-module 
synchronous can be realized by event. Synchronous 
parallel composition is default in probabilistic model 
checking. 
Definition 7: Synchronous parallel composition. 
Synchronous parallel composited modules parallel 
execute on all the same actions. 

 
Figure 7.  Synchronous parallel composition 

Rule 6. In UML state diagrams, synchronous parallel 
composited modules are mapped to a statement prefixed 
by keyword “||” and should conform to above BNF 
paradigm in PRISM. 

From Definition 7 and Rule 6, we can get the PRISM 
code in Fig. 7 as follows: 
system  

module1 || module2 || module3 
endsystem 
Definition 8: Asynchronous parallel composition. 
Complete interleaving semantics rather than synchronous 
relationship are generated in asynchronous parallel 
composited modules. 
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Figure 8.  Asynchronous parallel composition 

Rule 7. In UML state diagrams, asynchronous parallel 
composited modules are mapped to a statement prefixed 
by keyword “|||” and should conform to above BNF 
paradigm in PRISM. 

From Definition 8 and Rule 7, we can get the PRISM 
code in Fig. 8 as follows: 
system  

module1 ||| module2 ||| module3 
endsystem 
     Besides synchronous and asynchronous parallel 
compositions, there are still constraint parallel 
composition and action-hidden parallel composition in 
probabilistic model checking. We won’t discuss them 
because of page limitation. 

G.  Generation algorithm of probabilistic Kripke 
structure semantics 

In this section, we will propose the algorithm of 
translating UML state diagrams to probabilistic Kripke 
structure semantics. The basic idea is: Firstly system 
states are circularly exhausted, and each state is assigned 
with a unique number; secondly each module in system is 
circularly found and translated to PRISM code according 
to above definitions and rules; finally formal semantics 
are generated according to different composition 
mechanism of modules. The java-like source code of the 
algorithm is as follows: 
i := 0; 
while((s=StateSet.NextElement()) != NULL)   

// each system state is assigned with an unique 
number 
{ s.num := i++; } 
while((m=ModuleSet.NextElement()) != NULL)   

// module declaration are translated to the PRISM 
code 
{  m.StateInit();  m.VarInit();   

// state and variable initialization 
   m.SeqTrans();  m.InternalTrans();   

// state transition are translated to PRISM code 
m.SelTrans();  m.MdpSelTrans(); 

} 
// modules composition are translated to PRISM code 
If(System.CompMod = 0) then System.SynComp();   

// synchronous, asynchronous and constraint parallel  
// composition 

Else if(System.CompMod = 1) then 
System.AsynComp(); 
Else if(System.CompMod = 2) then 
System.ConstraComp(); 

Ⅳ.  AUTOMATIC VALIDATION AND ANALYSIS BASED ON 
PROBABILISTIC KRIPKE STRUCTURE 

A.  Probabilistic Kripke structure semantics of UML state 
diagrams 

In this section, a distributed system comprised of two 
asynchronous parallel composited modules is illustrated 
to show how to model a time-probability related system 
with extended UML state diagrams and probabilistic 
model checking, and function validation and performance 
analysis are automatically performed. An asynchronous 
parallel composited DTMC system is presented in Fig. 9 
([6]). Module “process1” is a critical resource requesting 
example: the initial state of system 0s  transmits to “try” 

state 1s  with probability 1, 1s  respectively transmits to 

itself, “fail” state 2s  and “succ” state 3s  with probability 

of 0.01, 0.01 and 0.98, 2s  and 3s  respective transmits to 

0s  and 3s  itself. Module “process2” is a die example: 

initial state 0T  respectively transmits to “heads” state 1T  

and “tails” state 2T  with probability of 0.5 and 0.5, and 

state 1T  and 2T  return to initial state 0T  with probability 
1. Module “process1” and “process2” are asynchronous 
parallel composited, so complete interleaving semantics 
are generated. 

 

Figure 9.  Asynchronous parallel composited DTMC system 

From the definitions and rules in section 3, and the 
translating algorithm in section 3.7, we can get the 
PRISM code in Fig. 9 as follows: 

dtmc 
module process1 
  s : [0..3] init 0; 
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  try : bool init false; 
  succ : bool init false; 
  fail : bool init false; 
  [] s=0 -> 1 : (s'=1) & (try'=true); 
  [] s=1 -> 0.01 : (s'=1) + 0.01 : (s'=2) & (try'=false) & 
(fail'=true) + 0.98 : (s'=3) & (succ'=true) & (try'=false); 
  [] s=2 -> 1 : (s'=0) & (fail'=false); 
  [] s=3 -> 1 : (s'=3) & (succ'=true); 
endmodule 
module process2 

  t : [0..2] init 0; 
  heads : bool init false; 
  tails : bool init false; 
  [] t=0 -> 0.5 : (t'=1) & (heads'=true) + 0.5 : (t'=2) & 
(tails'=true); 
  [] t=1 -> 1 : (t'=0) & (heads'=false); 
  [] t=2 -> 1 : (t'=0) & (tails'=false); 
endmodule 
system process1 ||| process2 endsystem 

B.  PCTL representation of key system properties and 
automatic validation 
Key system properties are comprised of safety, fairness, 
liveliness, etc. Both function properties and quantitative 
measures can be automatically validated and deduced in 
probabilistic model checking. System properties of 
DTMC and MDP models are described by PCTL, and 
properties of CTMC models are described by CSL. The 
distributed system in Fig. 9 is based on DTMC. For more 
syntax and semantics of PCTL, please refer to [5] and 
[6]. 
Definition 9: Safety. System is in either “try” state or 
“succ” state in Fig. 9. 
PCTL formulas: label "safe" = try | succ;  

P>=0.99 [ F "safe" ] 
P>=0.99 [ G "safe" ] 

     The semantics of the above PCTL formula are: the 
probability of either satisfying safety state in the future 
or globally satisfying safety state is more than 0.99. 
Definition 10: Liveliness. Given system in “try” state, 
system can definitely arrive at “succ” state in the future 
in Fig. 9. 
PCTL formulas:   

P=? [ try U succ {s=0} ]   P=? [ try U succ {s=1} ] 
P=? [ try U succ {s=2} ]   P=? [ try U succ {s=3} ] 
P>=1 [ F heads=true ]     P>=1 [ F tails=true ] 
The semantics of the above PCTL formulas are: 

while system in different active state, the probability of 
satisfying “try” until “succ” becomes true is described by 
“P=? [ try U succ {s=0/1/2/3} ]”. Starting from the initial 
state, the probability of satisfying “heads” or “tails” in 
the future is more than 1, which is described by “P>=1 [ 
F tails/heads=true ]”. 
Definition 11: Next-step liveliness. While system in 
different state, liveliness is satisfied in the next step 
rather than next several steps. 
PCTL formulas: label  "active" = !try | succ; 

P=? [ X "active" {s=0} ]    P=? [ X "active" {s=1} ] 
P=? [ X "active" {s=2} ]    P=? [ X "active" {s=3} ] 
The semantics of the above PCTL formulas are: 

while system in different state, the probability of 
satisfying next-step liveliness is described by “P=? [ X 
"active" {s=0/1/2/3} ]”. 

Software and hardware environment of the 
experiment are: Windows XP, Pentium 2.4G, 1G 
memory, probabilistic model checker PRISM 3.2 ([5], 
[6]). The experiment result is shown in Fig. 10 as 
follows: 

 
Figure 10.  Automatic validation result in PRISM 

     Automatic validation results from PRISM model 
checker in Fig. 10 are extracted as Tab.1 as follows: 

TABLE I.  AUTOMATIC VALIDATION RESULTS OF PROPERTIES 

PCTL formula Result 
P>=0.99 [ F "safe" ] true 
P>=0.99 [ G "safe" ] false 

P=? [ try U succ {s=0} ] 0 
P=? [ try U succ {s=1} ] 0.989898 
P=? [ try U succ {s=2} ] 0 
P=? [ try U succ {s=3} ] 1 
P=? [ X "active" {s=0} ] 0.5 
P=? [ X "active" {s=1} ] 0.495 
P=? [ X "active" {s=2} ] 1 
P=? [ X "active" {s=3} ] 1 

P>=1 [ F heads=true ] true 
P>=1 [ F tails=true ] true 

 

C. Deduction procedure of key system properties in 
theory 

Next the above key properties are deduced and 
analyzed in theory. 
(1) Safety 

The result of PCTL formula “P>=0.99 [ F "safe" ]” 
is false, which represents the probability of satisfying 
safety state is more than 0.99.  

For trace “ 10 SS → ”, Q  (Dist( 10 SS → ) = 1) >= 

0.99 ∧ L( 1S ) = {try}, ∴ the result should be true. 
The result of PCTL formula “P>=0.99 [ G "safe" ]” 

is false, which represents the probability of always 
satisfying safety state is less than 0.99.  

For trace “ 310 SSS →→ ”, Q 

(Dist( 310 SSS →→ ) = 0.98) < 0.99 ∧ L( 3S ) = 
{succ}, ∴ the result should be false. 
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(2) Liveliness 
The result of PCTL formula “P=? [ try U succ {s=0} 

]” is 0, which represents that: starting from initial state 

0s , the probability of “try” holding true until “succ” 
becomes true is zero.  

Q L( 0S )={NULL}⇒ (try=false), ∴  we can draw 
the conclusion that: P=0. 

The result and deduction procedure of PCTL 
formula “P=? [ try U succ {s=2} ]” are similar to formula 
“P=? [ try U succ {s=0} ]”. 

The result of PCTL formula “P=? [ try U succ {s=1} 
]” is 0.989898, which represents that: starting from the 
initial state 1s , the probability of “try” holding true until 
“succ” becomes true is 0.989898.  

Q P(try U succ) = 1 – P(!(try U succ)) = 1 – (0.01 + 

0.01×0.01 + 0.01×0.01×0.01 + ...) = 1 - ∑
∞

=1
)01.0(

i

i  = 

99
98

 = 0.989898, ∴ we can draw the above conclusion. 

The result of formula “P=? [ try U succ {s=3} ]” is 
1, which represents that: starting from the initial state 

3s , the probability of “try” holding true until “succ” 
becomes true is 1.  

Q L( 3S )={succ}⇒ ( (try U succ) = true ), ∴ we 
can draw the conclusion: P=1. 

The result of formula “P>=1 [ F heads=true ]” is 
true, which represents that: starting from the initial state 

0T , the probability of reaching the state where “heads” 
eventually  holds true is more than 1.  

Q  P(F heads=true) = P(!(F heads=true)) = 1 – 
∞)5.0( = 1, ∴ we can draw the above conclusion. The 

result and deduction procedure of formula “P>=1 [ F 
tails=true ]” is similar to “P>=1 [ F heads=true ]”. 
(3) Next-step liveliness 

The result of formula “P=? [ X "active" {s=0} ]” is 
0.5, which represents that: starting from the initial state 

0s , the probability of reaching the state where “active” 
holds true in the next step is 0.5. Because process1 ||| 
process2, which represents process 1 and process 2 are 
asynchronous parallel composited, the two modules are 
scheduled with the same probability, so the probability is 
0.5.  
Q If process1 is scheduled, then (Dist( 10 SS → )=1 

∧ L( 1S ) = {try})⇒ P(X "active")=0; if process1 isn’t 

scheduled, then (Dist( 0S )=1 ∧  L( 0S ) = 
{NULL}) ⇒ P(X "active")=1; from full probability 
formula, P(X "active" {s=0}) = 0.5×0 + 0.5×1 = 0.5, ∴ 
we can draw the above conclusion. 

The result of formula “P=? [ X "active" {s=1} ]” is 
0.495, which represents that: starting from the initial 
state 1s , the probability of reaching the state where 
“active” holds true in the next step is 0.495.  

Q  starting from 1s , ∴ 1s , 2s , and 3s  can be 
reached in the next step, and P(“active”{s=1}) = 0.01×0 
=0 ， P(“active”{s=2}) = 0.01 × 1 =0.01 ，
P(“active”{s=3}) = 0.98×1 = 0.98. From full probability 
formula and equiprobability of asynchronous parallel 
composition, P(X "active" {s=1}) = 0.5×(0.01×0 + 
0.01×1 + 0.98×1) = 0.495, ∴  we can draw the above 
conclusion. 

The deduction procedure of the other two PCTL 
formulas are similar to formula “P=? [ X "active" {s=1} 
]”. 

From section 4.2 and 4.3, the deduction procedure of 
these PCTL formulas in theory is consistent with the 
automatic validation result from PRISM model checker, 
which proves the practicability and validity of the 
translating algorithm from UML state diagrams to 
probabilistic Kripke structure semantics. 

Ⅴ.  CONCLUSION AND FUTURE WORK 

If probabilistic model checking is applied in software 
architecture, function validation and quantitative analysis 
can be automatically performed in model refinement, 
which will improve software reliability. In this paper, the 
exact definitions and bi-direction mapping rules between 
UML state diagrams and probabilistic Kripke structure 
are proposed, as well as the translating algorithm. An 
asynchronous parallel composited DTMC system is 
illustrated to perform automatically function validation 
and quantitative analysis for key properties in PRISM 
model checker. Manual deduction results are consistent 
with automatic verification results in model checker, 
which proves the practicability and validity of the above 
theory. The mapping rules proposed in this paper are bi-
direction, so they can be applied in both forward and 
reverse software engineering. 
      In [13] and [14], design component ([15]) is 
described by UML diagrams, which are respectively 
assigned with pi-calculus semantics and Kripke structure 
semantics, so function validation can be automatically 
performed. In this paper, we proposed a method to do 
automatic quantitative analysis for key properties in 
phase of requirement and design. 
     Possible future work: according to the theory, we will 
develop a prototype tools that can formalize UML state 
diagrams with probabilistic Kripke structure semantics. 
A possible practical route: Poseidon for UML  XMI 
text format  Java DOM (Docuement Object Model) 
parser  PRISM input code. 

     In current research work of assigning UML 
diagrams with formal semantics related with time or 
probability, continuous-time real-time models based on 
CTMC and discrete-time probabilistic models can only 
be separately processed in probabilistic model checking. 
We notice that the formal parameters and their number of 
DTMC, MDP and CTMC are consistent with each other. 
So we will propose a theory framework comprised of 
UML, DTMC, MDP and CTMC, which can 
simultaneously recognize different types of model, so 
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perform function validation and quantitative analysis can 
be automatically performed. 
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