
Quantitative Analysis of System Based on
Extended UML State Diagrams and Probabilistic

Model Checking

Yefei Zhao
Department of Computer Science, East China Normal University, Shanghai, China

Email: derekzhaoecnu@gmail.com

Zongyuan Yang, Jinkui Xie and Qiang Liu
Department of Computer Science, East China Normal University, Shanghai, China

Email: yzyuan@cs.ecnu.edu.cn, jkxie@cs.ecnu.edu.cn, lqiangecnu@gmail.com

Abstract—If probabilistic model checking is applied in
software architecture, function validation and quantitative
analysis for Markov process based real-time model can be
automatically performed in model refinement, which will
improve software quality. In this paper, the exact definitions
and mapping rules between UML state diagrams and
probabilistic Kripke structure semantics are proposed, as
well as the general translation algorithm of formal
semantics. An asynchronous parallel composited DTMC
system is illustrated, the key non-function properties of
system are described by PCTL, which is automatically
validated and analyzed by PRISM model checker. The key
system properties are also manually deduced and proved,
and compared with the experiment results. The mapping
rules we proposed are bi-direction, so it can be used in both
forward and reverse software engineering.

Index Terms—UML state diagrams, Markov process,
Probabilistic model checking, Software assurance, PRISM

I. INTRODUCTION

UML (Unified Modeling Language) is a graphical
object-oriented language, which comprises of class
diagrams, state diagrams, sequence diagrams, component
diagrams, etc. Different aspects of system such as static
topology structure and dynamic behavior can be
described by different UML diagrams. Presently UML
has become the de factor standard modeling language in
industry ([1], [2]). However, UML is a meta-model with
only static semantics but without dynamic formal
semantics, thus automatic verification for key system
properties can’t be performed.

Software procedure is usually comprised of
requirement, design, modeling, development, test,
deployment, etc. In early stage of system requirement,
shareholders usually describe the structure, behavior and

composition mechanism of system with different UML
diagrams (class diagrams, state diagrams, sequence
diagrams, etc.), however, key performance measures of
system, such as responding time, safety, reliability, etc.
are often ignored. These quantitative measures have only
just start to be cared lately in phase of development or
test. If some key quantitative properties of system are not
consistent with requirement at that time, it will cost more
and reward less to modify the almost-finish system.

In probabilistic model checking, structure and
behavior of system are described by probabilistic or
stochastic Kripke structure, and key system properties to
be validated are described by PCTL (Probabilistic
Computation Tree Logic) or CSL (Continuous Stochastic
Logic), thus key quantitative measures of system related
with time or probability can be automatically reasoned
and deduced. Three real-time models comprised of
DTMC (Discrete-Time Markov Chains), MDP (Markov
Decision Processes) and CTMC (Continuous-Time
Markov Chains) can be automatically analyzed in
probabilistic model checking. PRISM developed by
Oxford University is a probabilistic model checking tools
set, which supports solving the above three Markov
processes.

If probabilistic model checking can be applied in
early stage of software procedure, automatic function
validation and quantitative analysis can be performed to
improve software quality. It is a possible direction in
software design methodology. In early stage of system
requirement and design, if UML diagrams are assigned
with formal semantics related with time and probability,
key quantitative performance measures of system can be
automatically deduced and analyzed to guarantee
software reliability in model refinement.

The significance and contents of this paper lie in:
(1) After the semantics of basic element “action” in

UML state diagrams are changed, there are
implicit mapping relationship between UML state
diagrams and probabilistic Kripke structure. In
this paper, we explicitly proposed the exact

Project number: No. 60703004, No. 20060269002, No. 09JC1405000,
No. 09ZR1409500 and No. 2009054.
Corresponding author: Zongyuan Yang.

JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010 793

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.7.793-800

definitions and mapping rules between UML state
diagrams and probabilistic model checking, thus
UML state diagrams are assigned with formal
semantics.

(2) The generating algorithm of translating UML state
diagrams to probabilistic Kripke structure are
presented in this paper. Both single module that
comprised of state initialization, variable
initialization, state transmission, etc. and different
composition mechanisms that comprised of
several modules are formalized with dynamic
semantics.

(3) After extended UML state diagrams are translated
to probabilistic Kripke structure semantics, the
key system properties related with time or
probability are described by PCTL, and
quantitative measures can be automatically
validated in probabilistic model checker, thus
system designer needn’t manually deduce and
analyze these properties. Both quantitative
performance measures and function properties can
be described by PCTL, thus function validation
and quantitative analysis can be simultaneously
performed to improve software quality.

(4) The mapping rules proposed in this paper are bi-
direction, thus it can be applied in both forward
and reverse software engineering. Given UML
state diagrams, they can be translated to formal
semantics, vice versa.

The structure of this paper is: in section 2, the related
works are presented; in section 3, the exact definitions
and mapping rules between UML state diagrams and
probabilistic Kripke structure are proposed, as well as the
translation algorithm; in section 4, a asynchronous
parallel composited distributed system is illustrated to
show how quantitative analysis can be automatically
performed in model checker after UML state diagrams
are assigned with formal semantics, and the key
quantitative measures are also manually deduced in
theory; conclusion and future work are presented in
section 5.

II. RELATED WORKS

In [7], the mapping rules from probabilistic pi-
calculus to probabilistic model checking are presented
based on operational semantics, thus automatic
translation can be performed. Process algebra is based on
LTS (Label Transition System) structure, probabilistic
model checking is based on probabilistic/stochastic
Kripke structure, explicit mapping rules between the
above two mathematics models are found up in [7].
Inspired by [7], internal state transmissions of object are
described by UML state diagrams, which can be
implicitly mapped to probabilistic Kripke structure. In
this paper, the mapping rules and translation algorithm
are presented, quantitative analysis for UML state
diagrams can be automatically performed based on
probabilistic Kripke structure semantics.

In [8] and [9], UML state diagrams and activity
diagrams are translated to PEPA (Performance
Evaluation Process Algebra) code, thus key quantitative
properties such as steady-state probability, state or
transition reward, etc. can be automatically analyzed.
PEPA based on probabilistic LTS structure is in higher
abstract level than probabilistic model checking, so it has
one-to-one mapping relationship with UML state
diagrams. However, probabilistic Kripke structure is in
lower abstract level. In this paper, the mapping
relationship from basic elements and composition
mechanism of UML state diagrams to probabilistic
Kripke structure is presented. The key quantitative
properties are described by PCTL in probabilistic model
checking, where range of validation is wider than PEPA.

In [10], firstly UML state diagrams are extended with
time and probability, secondly translated to probabilistic
time automata, thirdly translated to probabilistic model
checking code, so the probabilistic temporal properties
related with reliability can be automatically analyzed.
However, the translation algorithm in [10] isn’t described
by exact mathematics model, neither specified with
definitions and mapping rules, so the correctness of
translation can’t be proved by structure induction method.

In [11], P-statechart is UML state diagrams extended with
probability. Model behaviors are described by P-
statechart, models composition are described by UML
collaboration diagrams, so validation and analysis of
system can be automatically performed after
formalization of UML diagrams. However, for the most
important semantics translation, only state, guard and
event in UML state diagrams are mapped to probabilistic
model checking. Composition mechanisms are not
referred in [11], and the mapping rules are not described
by exact mathematic rules, so it is unable to direct the
development of translation tools.

Ⅲ. PROBABILISTIC KRIPKE STRUCTURE SEMANTICS OF
EXTENDED UML STATE DIAGRAMS

A. System initialization and labels of state
Definition 1: labels of state. It is defined as a function:
S→ AP2 , where S represents source state, AP represents
a set of atomic propositions. In UML state diagrams, a
system state is related with a set of labels, where the
value of label is true in the state, otherwise is false.

Figure 1. System initialization

In Fig. 1, the solid circle represents starting point that
points to initial state, 0S represents name of a state, a

and b represent label names in state 0S . When system
states are generalized, each state will be assigned with a

794 JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

unique number, and the value of each label in system is
assigned with true or false in system initialization.

Rule 1. Each state in UML state diagrams is assigned
with a unique number, and the number of state in PRISM
is recorded by an enumeration variable. The labels in
state are mapped to a bool-type variable in PRISM, which
is set true or false according to whether the label holds
true in the state or not.
 From Deifintion 1 and Rule 1, we can get the PRISM
code in Fig. 1 as follows:

s : [0..n] init 0;
a : bool init true;
b : bool init true;

B. Sequential transition of state
Definition 2: Sequential transition. It is abstracted as a
function: S × event × guard × Dist(S) → T, where S
represents source state, T represents object state, “event”
represents triggering event, “guard” represents guard
condition, and Disg(S) represents the occurence
probability of triggering event. In UML state diagrams,
given the guard conditon holds true and triggering event
is triggered, source state transmits to target state with
probability p.

UML state diagrams comprised of five elements:
source state, target state, event, guard condition and
action.

Figure 2. Squential transition

Each system state is assigned with a unique number
after generalization, and “event” represents the triggering
event. In DTMC, all the selection transitions are
probabilistic, so event is NULL; in MDP, non-
deterministic selection transitions exists, non-
deterministic is solved by event.
Rule 2. Source state and target state in UML state
diagrams are respectively mapped to an enumeration
variable in PRISM, the value of enumeration variable is
determined by generalized system variable. Event, guard
and action in UML state diagrams are respectively
mapped to event, guard and probability in PRISM.
 “guard” represents guard condition, which is
necessary for occurrence of transition. “guard” is bool
expression of system variable. The semantics of “action”
is extended as the occurrence probability of transition. In
DTMC, for a same source state, the probability
summation of all transitions equals to 1. In MDP, for a
same sate, the probability summation of all transitions for
a same event equals to 1.

From Definition 2 and Rule 2, we can get the PRISM
code in Fig. 2 as follows:

s : [Source, Target] init Source;
[event] guard -> p: (s’=Target);

C. Internal transition of state
Definition 3: Internal transition. It is abstracted as a
function: S × event × guard × Dist(S) → S, where S
represents source state, other definitions of variable is the
same as sequential transition. In UML state diagrams,
given triggering event occurs and guard condition holds
true, source state transmits to itself with probability p.

Figure 3. Internal transition

 From Definition 3 and Rule 2, we can get the PRISM
code in Fig. 3 as follows:

s : [Source, Target] init Source;
a : bool init true;
b : bool init true;
[event] guard -> p : (s’=Source);

D. Selection transition of state
Definition 4: Selection transition. It is abstracted as a
function: (S ×)(2 sDistguard× → T) ∧
(∑

∈

=
}..1{

1)(
ni

iSDist), where S represents source state,

)(2 sDistguard× represents several partial orders of guard
condition and probability distribution exist,

∑
∈

=
}..1{

1)(
ni

iSDist is a constraint, which represents

probability summation must equal to 1. In UML state
diagrams, a state may have several successive states, and
the mapping rules of state, labels, guard condition, event
and probability is the same as sequential transition’s.

Figure 4. Selection transition in DTMC

 According to different guard conditions, source state
transmits to respective target state with a different
probability. A constraint must be satisfied: ∑

∈

=
}..1{

1
ni

iP

Rule 3. In UML state diagrams, a selection transition is
comprised of several sequential transitions, which are
mapped to several statements of sequential transition in
PRISM. At the same time, a constraint must be satisfied:

⇒jS ∑
∈

=
}..1{

1
ni

iP , which represents that the probability

summation of selection transitions for the same source
state must equal to 1.
 From Definition 4 and Rule 3, we can get the PRISM
code in Fig. 4 as follows:

JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010 795

© 2010 ACADEMY PUBLISHER

s : [S0,T1,T2,...,Tn] init S0;
guard1 -> P1 : (s’=T1);
guard2 -> P2 : (s’=T2);
......
guardn -> Pn : (s’=Tn);
Definition 5: Non-deterministic selection transition. It

is abstracted as a function: (S×)(2 sDistguardevent ×× →T)

∧ (⇒ievent ∑
∈

=
}..1{

1)(
ni

iSDist), where the

definitions of variable are the same as selection
transition’. According to different triggering event, a
source state respectively transmits to different target state
with a different probability, and the probability
summation for a same triggering event must equal to 1.

Figure 5. Non-deterministic selection transition in MDP

Rule 4. In UML state diagrams, according to different
triggering event, a source state non-deterministic
transmits to different target state, and they are mapped to
several statements of sequential transition in PRISM. A

constraint must be satisfied: ⇒∧ kj eventS ∑
∈

=
}..1{

1
ni

iP ,

where the probability summation must equal to 1 for the
same source state.
 From Definition 5 and Rule 4, we can get the PRISM
code in Fig. 5 as follows:
s : [S0,T1,T2,...Tn,K1,K2,...Km];
[e1] guard1 -> PT1 : (s’=T1);
[e1] guard2 -> PT2 : (s’=T2);

......
[e1] guardn -> PTn : (s’=Tn);
[e2] g1 -> PK1 : (s’=K1);
[e2] g2 -> PK2 : (s’=K2);

......
[e2] gm -> PKm : (s’=Km);

E. Module declaration
Definition 6: Module declaration. Module is the
smallest entity in probabilistic model checking, it is
comprised of state initialization, state labels initialization,
and several sequential (non-deterministic) selection
(selection) transitions of state.

Figure 6. Module declaration

Rule 5. In UML state diagrams, a nest state comprised of
state initialization and several sequential or selection
transitions are mapped to a statement of module
declaration prefixed with keyword “module” in PRISM,
and the syntax should conform to above BNF paradigm.
 From Definition 6 and Rule 5, we can get the PRISM
code in Fig. 6 as follows:
Module arbiter

s : [0..N] init 0;

F. Modules composition
Modules composition is comprised of synchronous

parallel composition, asynchronous parallel composition,
and constraint parallel composition. Inter-module
synchronous can be realized by event. Synchronous
parallel composition is default in probabilistic model
checking.
Definition 7: Synchronous parallel composition.
Synchronous parallel composited modules parallel
execute on all the same actions.

Figure 7. Synchronous parallel composition

Rule 6. In UML state diagrams, synchronous parallel
composited modules are mapped to a statement prefixed
by keyword “||” and should conform to above BNF
paradigm in PRISM.

From Definition 7 and Rule 6, we can get the PRISM
code in Fig. 7 as follows:
system

module1 || module2 || module3
endsystem
Definition 8: Asynchronous parallel composition.
Complete interleaving semantics rather than synchronous
relationship are generated in asynchronous parallel
composited modules.

796 JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

Figure 8. Asynchronous parallel composition

Rule 7. In UML state diagrams, asynchronous parallel
composited modules are mapped to a statement prefixed
by keyword “|||” and should conform to above BNF
paradigm in PRISM.

From Definition 8 and Rule 7, we can get the PRISM
code in Fig. 8 as follows:
system

module1 ||| module2 ||| module3
endsystem
 Besides synchronous and asynchronous parallel
compositions, there are still constraint parallel
composition and action-hidden parallel composition in
probabilistic model checking. We won’t discuss them
because of page limitation.

G. Generation algorithm of probabilistic Kripke
structure semantics

In this section, we will propose the algorithm of
translating UML state diagrams to probabilistic Kripke
structure semantics. The basic idea is: Firstly system
states are circularly exhausted, and each state is assigned
with a unique number; secondly each module in system is
circularly found and translated to PRISM code according
to above definitions and rules; finally formal semantics
are generated according to different composition
mechanism of modules. The java-like source code of the
algorithm is as follows:
i := 0;
while((s=StateSet.NextElement()) != NULL)

// each system state is assigned with an unique
number
{ s.num := i++; }
while((m=ModuleSet.NextElement()) != NULL)

// module declaration are translated to the PRISM
code
{ m.StateInit(); m.VarInit();

// state and variable initialization
 m.SeqTrans(); m.InternalTrans();

// state transition are translated to PRISM code
m.SelTrans(); m.MdpSelTrans();

}
// modules composition are translated to PRISM code
If(System.CompMod = 0) then System.SynComp();

// synchronous, asynchronous and constraint parallel
// composition

Else if(System.CompMod = 1) then
System.AsynComp();
Else if(System.CompMod = 2) then
System.ConstraComp();

Ⅳ. AUTOMATIC VALIDATION AND ANALYSIS BASED ON
PROBABILISTIC KRIPKE STRUCTURE

A. Probabilistic Kripke structure semantics of UML state
diagrams

In this section, a distributed system comprised of two
asynchronous parallel composited modules is illustrated
to show how to model a time-probability related system
with extended UML state diagrams and probabilistic
model checking, and function validation and performance
analysis are automatically performed. An asynchronous
parallel composited DTMC system is presented in Fig. 9
([6]). Module “process1” is a critical resource requesting
example: the initial state of system 0s transmits to “try”

state 1s with probability 1, 1s respectively transmits to

itself, “fail” state 2s and “succ” state 3s with probability

of 0.01, 0.01 and 0.98, 2s and 3s respective transmits to

0s and 3s itself. Module “process2” is a die example:

initial state 0T respectively transmits to “heads” state 1T

and “tails” state 2T with probability of 0.5 and 0.5, and

state 1T and 2T return to initial state 0T with probability
1. Module “process1” and “process2” are asynchronous
parallel composited, so complete interleaving semantics
are generated.

Figure 9. Asynchronous parallel composited DTMC system

From the definitions and rules in section 3, and the
translating algorithm in section 3.7, we can get the
PRISM code in Fig. 9 as follows:

dtmc
module process1
 s : [0..3] init 0;

JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010 797

© 2010 ACADEMY PUBLISHER

 try : bool init false;
 succ : bool init false;
 fail : bool init false;
 [] s=0 -> 1 : (s'=1) & (try'=true);
 [] s=1 -> 0.01 : (s'=1) + 0.01 : (s'=2) & (try'=false) &
(fail'=true) + 0.98 : (s'=3) & (succ'=true) & (try'=false);
 [] s=2 -> 1 : (s'=0) & (fail'=false);
 [] s=3 -> 1 : (s'=3) & (succ'=true);
endmodule
module process2

 t : [0..2] init 0;
 heads : bool init false;
 tails : bool init false;
 [] t=0 -> 0.5 : (t'=1) & (heads'=true) + 0.5 : (t'=2) &
(tails'=true);
 [] t=1 -> 1 : (t'=0) & (heads'=false);
 [] t=2 -> 1 : (t'=0) & (tails'=false);
endmodule
system process1 ||| process2 endsystem

B. PCTL representation of key system properties and
automatic validation
Key system properties are comprised of safety, fairness,
liveliness, etc. Both function properties and quantitative
measures can be automatically validated and deduced in
probabilistic model checking. System properties of
DTMC and MDP models are described by PCTL, and
properties of CTMC models are described by CSL. The
distributed system in Fig. 9 is based on DTMC. For more
syntax and semantics of PCTL, please refer to [5] and
[6].
Definition 9: Safety. System is in either “try” state or
“succ” state in Fig. 9.
PCTL formulas: label "safe" = try | succ;

P>=0.99 [F "safe"]
P>=0.99 [G "safe"]

 The semantics of the above PCTL formula are: the
probability of either satisfying safety state in the future
or globally satisfying safety state is more than 0.99.
Definition 10: Liveliness. Given system in “try” state,
system can definitely arrive at “succ” state in the future
in Fig. 9.
PCTL formulas:

P=? [try U succ {s=0}] P=? [try U succ {s=1}]
P=? [try U succ {s=2}] P=? [try U succ {s=3}]
P>=1 [F heads=true] P>=1 [F tails=true]
The semantics of the above PCTL formulas are:

while system in different active state, the probability of
satisfying “try” until “succ” becomes true is described by
“P=? [try U succ {s=0/1/2/3}]”. Starting from the initial
state, the probability of satisfying “heads” or “tails” in
the future is more than 1, which is described by “P>=1 [
F tails/heads=true]”.
Definition 11: Next-step liveliness. While system in
different state, liveliness is satisfied in the next step
rather than next several steps.
PCTL formulas: label "active" = !try | succ;

P=? [X "active" {s=0}] P=? [X "active" {s=1}]
P=? [X "active" {s=2}] P=? [X "active" {s=3}]
The semantics of the above PCTL formulas are:

while system in different state, the probability of
satisfying next-step liveliness is described by “P=? [X
"active" {s=0/1/2/3}]”.

Software and hardware environment of the
experiment are: Windows XP, Pentium 2.4G, 1G
memory, probabilistic model checker PRISM 3.2 ([5],
[6]). The experiment result is shown in Fig. 10 as
follows:

Figure 10. Automatic validation result in PRISM

 Automatic validation results from PRISM model
checker in Fig. 10 are extracted as Tab.1 as follows:

TABLE I. AUTOMATIC VALIDATION RESULTS OF PROPERTIES

PCTL formula Result
P>=0.99 [F "safe"] true
P>=0.99 [G "safe"] false

P=? [try U succ {s=0}] 0
P=? [try U succ {s=1}] 0.989898
P=? [try U succ {s=2}] 0
P=? [try U succ {s=3}] 1
P=? [X "active" {s=0}] 0.5
P=? [X "active" {s=1}] 0.495
P=? [X "active" {s=2}] 1
P=? [X "active" {s=3}] 1

P>=1 [F heads=true] true
P>=1 [F tails=true] true

C. Deduction procedure of key system properties in
theory

Next the above key properties are deduced and
analyzed in theory.
(1) Safety

The result of PCTL formula “P>=0.99 [F "safe"]”
is false, which represents the probability of satisfying
safety state is more than 0.99.

For trace “ 10 SS → ”, Q (Dist(10 SS →) = 1) >=

0.99 ∧ L(1S) = {try}, ∴ the result should be true.
The result of PCTL formula “P>=0.99 [G "safe"]”

is false, which represents the probability of always
satisfying safety state is less than 0.99.

For trace “ 310 SSS →→ ”, Q

(Dist(310 SSS →→) = 0.98) < 0.99 ∧ L(3S) =
{succ}, ∴ the result should be false.

798 JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

(2) Liveliness
The result of PCTL formula “P=? [try U succ {s=0}

]” is 0, which represents that: starting from initial state

0s , the probability of “try” holding true until “succ”
becomes true is zero.

Q L(0S)={NULL}⇒ (try=false), ∴ we can draw
the conclusion that: P=0.

The result and deduction procedure of PCTL
formula “P=? [try U succ {s=2}]” are similar to formula
“P=? [try U succ {s=0}]”.

The result of PCTL formula “P=? [try U succ {s=1}
]” is 0.989898, which represents that: starting from the
initial state 1s , the probability of “try” holding true until
“succ” becomes true is 0.989898.

Q P(try U succ) = 1 – P(!(try U succ)) = 1 – (0.01 +

0.01×0.01 + 0.01×0.01×0.01 + ...) = 1 - ∑
∞

=1
)01.0(

i

i =

99
98

 = 0.989898, ∴ we can draw the above conclusion.

The result of formula “P=? [try U succ {s=3}]” is
1, which represents that: starting from the initial state

3s , the probability of “try” holding true until “succ”
becomes true is 1.

Q L(3S)={succ}⇒ ((try U succ) = true), ∴ we
can draw the conclusion: P=1.

The result of formula “P>=1 [F heads=true]” is
true, which represents that: starting from the initial state

0T , the probability of reaching the state where “heads”
eventually holds true is more than 1.

Q P(F heads=true) = P(!(F heads=true)) = 1 –
∞)5.0(= 1, ∴ we can draw the above conclusion. The

result and deduction procedure of formula “P>=1 [F
tails=true]” is similar to “P>=1 [F heads=true]”.
(3) Next-step liveliness

The result of formula “P=? [X "active" {s=0}]” is
0.5, which represents that: starting from the initial state

0s , the probability of reaching the state where “active”
holds true in the next step is 0.5. Because process1 |||
process2, which represents process 1 and process 2 are
asynchronous parallel composited, the two modules are
scheduled with the same probability, so the probability is
0.5.
Q If process1 is scheduled, then (Dist(10 SS →)=1

∧ L(1S) = {try})⇒ P(X "active")=0; if process1 isn’t

scheduled, then (Dist(0S)=1 ∧ L(0S) =
{NULL}) ⇒ P(X "active")=1; from full probability
formula, P(X "active" {s=0}) = 0.5×0 + 0.5×1 = 0.5, ∴
we can draw the above conclusion.

The result of formula “P=? [X "active" {s=1}]” is
0.495, which represents that: starting from the initial
state 1s , the probability of reaching the state where
“active” holds true in the next step is 0.495.

Q starting from 1s , ∴ 1s , 2s , and 3s can be
reached in the next step, and P(“active”{s=1}) = 0.01×0
=0 ， P(“active”{s=2}) = 0.01 × 1 =0.01 ，
P(“active”{s=3}) = 0.98×1 = 0.98. From full probability
formula and equiprobability of asynchronous parallel
composition, P(X "active" {s=1}) = 0.5×(0.01×0 +
0.01×1 + 0.98×1) = 0.495, ∴ we can draw the above
conclusion.

The deduction procedure of the other two PCTL
formulas are similar to formula “P=? [X "active" {s=1}
]”.

From section 4.2 and 4.3, the deduction procedure of
these PCTL formulas in theory is consistent with the
automatic validation result from PRISM model checker,
which proves the practicability and validity of the
translating algorithm from UML state diagrams to
probabilistic Kripke structure semantics.

Ⅴ. CONCLUSION AND FUTURE WORK

If probabilistic model checking is applied in software
architecture, function validation and quantitative analysis
can be automatically performed in model refinement,
which will improve software reliability. In this paper, the
exact definitions and bi-direction mapping rules between
UML state diagrams and probabilistic Kripke structure
are proposed, as well as the translating algorithm. An
asynchronous parallel composited DTMC system is
illustrated to perform automatically function validation
and quantitative analysis for key properties in PRISM
model checker. Manual deduction results are consistent
with automatic verification results in model checker,
which proves the practicability and validity of the above
theory. The mapping rules proposed in this paper are bi-
direction, so they can be applied in both forward and
reverse software engineering.
 In [13] and [14], design component ([15]) is
described by UML diagrams, which are respectively
assigned with pi-calculus semantics and Kripke structure
semantics, so function validation can be automatically
performed. In this paper, we proposed a method to do
automatic quantitative analysis for key properties in
phase of requirement and design.
 Possible future work: according to the theory, we will
develop a prototype tools that can formalize UML state
diagrams with probabilistic Kripke structure semantics.
A possible practical route: Poseidon for UML XMI
text format Java DOM (Docuement Object Model)
parser PRISM input code.

 In current research work of assigning UML
diagrams with formal semantics related with time or
probability, continuous-time real-time models based on
CTMC and discrete-time probabilistic models can only
be separately processed in probabilistic model checking.
We notice that the formal parameters and their number of
DTMC, MDP and CTMC are consistent with each other.
So we will propose a theory framework comprised of
UML, DTMC, MDP and CTMC, which can
simultaneously recognize different types of model, so

JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010 799

© 2010 ACADEMY PUBLISHER

perform function validation and quantitative analysis can
be automatically performed.

ACKNOWLEDGMENT

The work was supported by the National Natural
Science Foundation of China under Grant No. 60703004,
the National Research Fund for the Doctoral Program of
Higher Education of China under Grant No.
20060269002, Key Project of Basic Research of
Shanghai under Grant No. 09JC1405000, Natural
Science Foundation of Shanghai under Gran No.
09ZR1409500, and PhD Program Scholarship Fund of
ECNU 2007 under Grant No. 2009054.

REFERENCES

[1] OMG. OMG Unified Modeling Language specification
version 1.5, March 2003. http://www.omg.org

[2] G. Booch, J. Rumbaugh and I. Jacobson. UML notation
guide, version 1.1. Rational Software Corporation, Santa
Clara, CA, 1997.

[3] Michael Sharpe. General theory of Markov processes.
Academic Press, San Diego, 1988.

[4] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 2.0:
A tool for probabilistic model checking. In Proc. 1st
International Conference on Quantitative Evaluation of
Systems (QEST’04), pages 322–323. IEEE Computer
Society Press, 2004.

[5] A Hinton, M Kwiatkowska, G Norman, D Parker. PRISM:
A Tool for Automatic Verification of Probabilistic
Systems. Lecture Notes in Computer Science, Springer,
2006.

[6] PRISM model checker,
http://www.prismmodelchecker.org/tutorial/

[7] G Norman, C Palamidessi, D Parker, P Wu. Model
checking the probabilistic pi-calculus. Quantitative
Evaluation of Systems, 2007.

[8] D. N. Jasen, H. Hermanns, and J. P. Katoen. A Qos-
oriented extension of UML state charts. LNCS 2863: 76-
91.

[9] NV Haenel. User guide for the java edition of the pepa
workbench. LFCS, University of Edinburgh, 2003

[10] N Addouche, C Antoine, J Montmain. Combining
extended uml models and formal methods to analyze real-
time systems. Lecture notes in computer science, Springer,
2005.

[11] Jansen, D.N. Probabilistic UML statecharts for
specification and verification: a case study. In: Critical
systems development with UML: proceedings of the
UML'02 workshop, Leipzig, Germany. pp. 121-131.
Technical Report. 2002.

[12] Poseidong for UML. http://www.gentleware.com/
[13] Yefei Zhao, YANG Zong-yuan, Jinkui Xie. Formal

semantics of UML state diagram and automatic
verification Based on Kripke structure. 22nd IEEE
Canadian Conference on Electrical and Computer
Engineering (CCECE 2009). 2009.

[14] Yefei Zhao, YANG Zong-yuan, Jinkui Xie. Pi-calculus
based assembly mechanism of UML state diagram and
Validation of model refinement. International Conference
on Electronic Computer Technology (ICECT 2009).
2009.

[15] Keller, Rudolf K, Schauer Reinhard, Design components:
towards software composition at the design level. In:

Proceedings of the 20th International Conference on
Software Engineering, 302–311 ,1998

Yefei Zhao was born in Jinlin city,
China, in May, 1978; received B.S.
in Computer Science from North-
Eastern University, Shenyang, China;
received M.S. in Computer Science
from East China Normal University,
Shanghai, China. His research
interests include formal method and
software engineering.

He worked as a software engineer in Avant, SVA and
DBtel Corporation from July, 2001 to July July, 2005 in
Shanghai, China. Presently he works as a PH. D.
candidate in Computer Science from East China Normal
University, Shanghai, China. His publications include:
[16] Yefei Zhao, Zongyuan Yang, Jinkui Xie. Formal

semantics of UML state diagram and automatic
verification Based on Kripke structure. 22nd IEEE
Canadian Conference on Electrical and Computer
Engineering (CCECE 2009). May, 2009.

[17] Yefei Zhao, Zongyuan Yang, Jinkui Xie. Pi-calculus
based assembly mechanism of UML state diagram and
Validation of model refinement. International Conference
on Electronic Computer Technology (ICECT 2009).
February, 2009.

[18] Yefei Zhao, Zongyuan Yang, Jinkui Xie, Qiang Liu.
Formal model and analysis of sliding window protocol
based on NuSMV. Journal of Computers. May, 2009.

[19] Qiang Liu, Zongyuan Yang, Yefei Zhao. Design Patterns
in Situation Calculus. International Conference on
Software Technology and Engineering (ICSTE 2009).
July, 2009.

Yefei Zhao is IEEE student member, IACSIT senior
member, editor and reviewer of AICIT and IACSIT and
PC Member of several international conferences. His
work was supported by PhD Program Scholarship Fund
of ECNU 2007 (No. 2009054).

Zongyuan Yang was born in August, 1953, Shanghai,
China. He is a professor and PH. D. supervisor in
Computer Science of East China Normal University. His
research interests include software design and method,
software component and formal method.

Jinkui Xie was born in October, 1975, Guilin, China.
He received B.S., M.S. and PH.D. in Shanghai Jiao Tong
University. Presently he works as a teacher in Computer
Science, East China Normal University. His research
interests include software security, trustable computation
and type theory.

Qiang Liu was born in September, 1983 in Hunan
province, China. Presently he is a PH. D. candidate in
Computer Science, East China Normal University. His
research interests include software engineering and
formal method.

800 JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

