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Abstract—DNA computing has been applied to many different 

decision or combinatorial problems when being proved of its 

feasibility in experimental demonstration. In this paper, for the 

objective to reduce the DNA volume of the dominating set 

problem which belongs to the NP- complete problem, the pruning 

strategy is introduced into the DNA supercomputing and a new 

DNA algorithm is advanced. The new algorithm consists of a 

donimating set searcher, a donimating set generator, a parallel 

searcher and a minimum dominating set searcher. In a computer 

simulation, the new algorithm is testified to be highly space- 

efficient and error-tolerant compared to conventional bruteforce 

searching.

Keywords—DNA-based supercomputing, dominating set problem, 

pruning strategy, NP- complete problem 

I. INTRODUCTION

The successful solution of the NP complete Hamiltonian 
directed path problem with seven-vertex by a DNA algorithm 
opened the field of biomolecular computing [1]. DNA 
computing has been employed to many different decision or 
combinatorial optimization problems for the experimental 
demonstration of its feasibility and it has led to an important 
breakthrough in computing [2-6]. DNA computing makes use 
of biomolecules as its information storage materials and 
biological laboratory experiments as its information processing 
operators [1-6].  

The power of parallel, high density computation by 
molecules in solution allows DNA computers to solve hard 
computational problems such as NP-complete problems in 
polynomial increasing time, while a conventional Turing 
machine requires exponentially increasing time. However, 
most of the current DNA computing strategies are based on 
enumerating all candidate solutions [7-15]. These algorithms 
require that the size of the initial data pool increases 
exponentially with the number of variables in the calculation, 
so that the capacity of the DNA computer is limited. And what 
is more, Fu presented the enumeration algorithms made the 
length may also too long to make the algorithm to be 
length-efficient [16]. 

In order to break the barrier of simply enumerate method, 
Bach et al proposed a n1.89n volume, O(n2+m2) time molecular 
algorithm for the 3-coloring problem and a 1.51n volume, 
O(n2m2) time molecular algorithm for the independent set 
problem, where n and m are, subsequently, the number of 
vertices and the number of edges in the problems resolved. Fu 
presented a polynomial- time algorithm with a 1.497n volume 
for the 3-SAT problem, a polynomial time algorithm with a 
1.345n volume for the 3-coloring problem and a 
polynomial-time algorithm with a 1.229n volume for the 
independent set. Though the size of those volumes is lower, 
constructing those volumes is more difficult and the time 
complexity is higher. 

The dominating set problem is widely used in network 
routing, town planning, and other real applications. Now the 
algorithm for the dominating set problem can not meet the 
needs of the application. Hence, we use the problem as an 
example to clarify the power of DNA computing for solving 
NP-complete problem. 

In this paper, we describe a novel algorithm to solve the 
Dominating-set problem. Since Huiqin’s paradigm proposed in 
2004 demonstrated the feasibility of applying DNA computer 
to tackle such an NP-complete problem. Instead of surveying 
all possible assignment sequences generated in the very 
beginning, we use the operations of Adleman-Lipton model 
and the solution space of sticker, then applying the pruning 
strategy, a new DNA algorithm for dominating-set problem is 
proposed. 

 The paper is organized as follows. Section 2 introduces 
the Chang et al.’s model in detail. Section 3 introduces the 
DNA algorithm to solve the dominating- set problem for the 
sticker solution space. In section 4, the experimental results by 
simulated DNA computing are given. Conclusions and future 
research work are drawn in Section 5. 

II. DNA MODEL OF COMPUTATION 

Our novel model employs only mature DNA biological 
operations. We use the model that took biological operations in 
the Adleman–Lipton model [1] and the solution space of 
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stickers[17,18] in the sticker-based model in our algorithm.  
This model has several advantages from the sticker-based 
model and the Adleman–Lipton model in the following: 

1). The new model has finished all the basic mathematical 
functions and the number of tubes, the longest length of DNA 
library strands, the number of DNA library strands and the 
number of biological operations are polynomial.  

2). The basic biological operations in the Adleman –Lipton 
model have been performed in a fully automated manner in 
their lab. The full automation manner is essential not only for 
the speedup of computation but also for error-free computation. 

3).Chang and Guo [10, 11] also employed the sticker-based 
model and the Adleman–Lipton model for dealing with Cook’s 
theorem, the set-packing and clique problems, the 
subset-product problem and many other NP complete problems 
for decreasing the error rate of hybridization. 

A. The Adleman–Lipton model  

Supposing that a tube is a multi-set of DNA strands over an 
alphabet set {A, G, C, T}, one can perform the following 
operations of the Adleman-Lipton model [10,11]:  

1) Extract(T, S, (T, S)+, (T, S) ): To produce two tubes (T,
S)+ and (T, S) . (T, S)+ is composed of the DNA molecules in T
which contain S as a substrand and (T,S)  is composed of all 
the DNA molecules in T which do not contain S.

2) Merge(T0, T1, T2…Tn): To pour the n tubes T1, T2…Tn

into tube T0. After this operation, the tube T1, T2…Tn will be 
empty. 

3) Amplify(T0, T1, T2…Tn): To produce n new tubes T1,
T2…Tn which are copies of T0 and T0 becomes empty tube. 

4) Append(T, S): To append S onto the end of every strand 
in T.

5) Discard(T): To discard all the DNA strands in tube T.

6) Read(T): To describe a single molecule contained in tube 
T.

7) Detect(T): To check weather there is at least one DNA 
strand left in tube T. If T includes at least one DNA molecule it 
returns ‘yes,’ and if T contains no DNA molecule it returns 
‘no’. 

B. Sticker-based solution space 

Our algorithm is ground on the solution space of sticker 
model, which is a model of molecular computation introduced 
in [10].The sticker model employs two basic groups of single 
strand DNA molecular in its representation of a bit string. As 
shown in Figure 1, the model involves stickers and a memory 
strand. The memory strand was divided into k non-overlapping 
sub-strands which has m bases is a single-stranded DNA with n
bases. The sticker that has m bases is complementary to one of 
the k sub-strands in the memory strand. During the process of 
computation, each sub-strand is considered ‘1’ (on) or ‘0’ (off).
If a sticker is annealed to its corresponding region on the given 
memory strand, then particular region is on for that strand. If 
no sticker is annealed to a region, then that region’s bit is off. A 
memory complex is the term defined as a memory strand where 
parts of the sub-strands are annealed by the matching stickers. 
Therefore the computational information can be carried in a 
binary format along the memory complex. 

Figure1. Illustrations of the sticker model, which are encoded 010110 and 0101010 respectively. 
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In the sticker model, the input is a test tube called initial 
date pool and the output is a sequence of test tubes which are 
called final date pool. The final date pool is read by analyzing 
all the DNA strands in it. 

On the assumption that an undirected graph G = (V, E), 
where V is the set of the vertices and E is the set of the edges. 

Assume that 
V

= m which represents the number of the 

vertices in V and
E

 = n that represents the number of the 
edges in E.

Suppose S is one of the dominating sets of G, if the ith bit 
in an n-digit binary number is set to “1”, then it represents that 
the ith vertex in S is also in G but not in V\S and if the ith bit in 
an n-digit binary number is set to “0”, then it represents that the 
ith vertex is not in S but in V\S. To implement this, all of the 
possible dominating sets in G are transformed into n-bits 
binary numbers. Supposing that n one-bit binary numbers 
x1x2….xn represent n vertexes in the set S and the ith (0  i  n)
one-bit binary number refers to ith the vertex in S.

For the objective of representing all the possible 
dominating set for the dominating set problem, in our 
algorithm, vertices are represented by their binary 
representations using stickers. For every vertex, we denoted 
two symbols represented by 15-base stickers to encode the 
information into DNA strands: 

 1   if the vertex  is in the dominating set
(1 ) (1)

 0   otherwise

i

i

v
x i n

III. THE NOVEL DNA ALGORITHM FOR SOLVING

THE DOMINATING SET PROBLEM 

A. Dominating Set Problem[19]

Let G be a graph with vertex-set V(G) and edge- set E(G). 
For any vertex v V, the neighborhood of v is defined by N(v)
={u V(G): uv E(G)}. 

Mathematically, a dominating set (DS) of a graph G = (V,

E) is a subset S V such that each vertex in V\S is adjacent to 

at least one vertex in S.
S

is denoted as the dominating 
number. The dominating-set problem is to find a minimum size 
dominating set in G and has been proved to be a NP-complete 
problem.  

Dominating-set’s mathematical model can be described as 
follows (See Equation 2, 3). 

1

[ ( , ) ] 1, 1, {1,2,..., }

n

i

i

j i i

f min x

x A i j x x j n
    (2)             

 1   if the vertex  is adjacent to 
( , )

 0   otherwise

i jv v
A i j

      (3) 

Now, we will introduce two important theorems about 
Dominating-set problem in the following. 

Theorems 1: The vertex vi whose degree are one is not 
dominating vertex and its adjacent vertex vj is dominating 
vertice.

Theorems 2: For a graph G with n vertexes, the 

dominating number
( )

2

n
G

.

Theorems 3: Using notation
( )G

 to denote the max 

degree of all the vertexes in graph G and
( )G

to denote the 
dominating number, we can get the formula 

( ) ( )
1 ( )

n
G n G

G
.

A DS is called a connected dominating set (CDS) if it also 
induces a connected subgraph. A k-tuple dominating set (k-DS) 

S V of G is a set of vertices such that each vertex u V is 
k-dominated by vertices of S. (Note that in some literatures, 
k-DS only requires that each node in V\S is dominated by at 
least k nodes in S) . 

B. The DNA algorithm for Dominating Set Generator  

First of all, it produces the solution space for the problem 
that will be resolved in the Adleman-Lipton model. Then, the 
biological operations are employed to remove illegal solutions 
from the solution space. Hence, the first step of settling the 
dominating-set problem is to generate a test tube consisting of 
all the possible dominating sets. 

Based on Theorems 1 and the definition of Dominating set 
problem, a new algorithm for constructing the solution space of 
the dominating set problem is proposed.  

Procedure Dominating_Set_Generator(T0, G, n)

<Input>: Test Tube T0 and The graph G with n vertexes where 
n is the number of the vertex. 

<Output>: Test Tube T0 which contains the solution space of 
the Dominating sets 

1: For every vertex vi whose degree is one 

2: Append(T0 , x0
i).

3:    For the vertex vj that is adjacent to vi

4:       Append(T0 , x1
j).

5: EndFor 

6: V =V - vi - vj

7: EndFor

8: For i = 1 to n where n is the number of the vertex in the set 
V whose solution space has not produced

9: Amplify(T0, T1, T2). 

10: Append(T1, x
0
i ). 

11: Append(T1, x
1
i ). 

12: Merge(T0, T1, T2).
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13:    For each vertex vj adjacent to vi whose solution space 
has not produced

14: Amplify(T0 , T1 , T2).

15:        Append(T1, x
0
j). 

16:        Append(T1, x
1
j). 

17:        Merge(T0 , T1 , T2).

18: EndFor

19:    Dominateing_Set_Searcher(T0 , vi).

20: EndFor

Lemma 1. The solution space of the dominating set can be 
constructed with sticker in a sticker- based model from the 
algorithm, Dominating_Set_ Generator(T0, G, n). 

Proof: The algorithm, Dominating_Set_Generator(T0, G, n)
is implemented via the Append, Amplify and Merge operations.  

Due to Theorems 1, we know that the vertex whose degree 
is one is not a dominating vertex and its adjacent vertex is a 
dominating vertex. Line(1)- Line(7) is an outer loop. On the 
first execution of Line(2) to Line(6), we append the DNA 
strands representing xi = 0 on all the library strands in tube T0,
that is to say the vertex vi is not in the dominating set S.
Line(3)-Line(5) is an inner loop. For each vertex adjacent to 
the vertex vi , Line(5) will be run, so the DNA strands 
representing will be append on the tail of all the library strands 
in tube T0. In the Line(7), the vertexes vi and its adjacent vertex 
vi will be removed from the vertex set V.

Line(8)-Line(20) is also an outer loop, it will generate the 
full solution space of the dominating set problem resolved. 

Assume that T0 T1 and T2 are distinct test tubes but only T1 and 

T2 are empty. The outer loop is implemented via the Amplify,
Append and Merge operations. Each time Line(9) is used to 
amplify tube T0 and to generate two new tubes, T1 and T2,
which are copies of T0. Tube T0 becomes empty. Then, Line(10) 
is applied to append a DNA sequence (sticker), representing 
the value “0” for xi, onto the end of every strand in tube T1.
Line(11) is also employed to append a DNA sequence (sticker), 
representing the value “0” for xi, onto the end of every strand in 
tube T2. Next, Line(12) is used to pour tube T1 and T2 into tube 
T0. This indicates that DNA strands in tube T0 include DNA 
sequences of xi = 1 and xi = 0. Line(13)-Line(18) is an inner 
loop which produces the solution space of the vertexes adjacent 
to the vertex vi. Each time Line(9) is used to amplify tube T0

and to generate two new tubes, T1 and T2, which are copies of 
T0. Tube T0 becomes empty. Then, Line(10) is applied to 
append a DNA sequence (sticker), representing the value “0” 
for xj, onto the end of every strand in tube T1. Line(11) is also 
employed to append a DNA sequence (sticker), representing 
the value “0” for xj, onto the end of every strand in tube T2.
Next, Line(12) is used to pour tube T1 and T2 into tube T0. This 
indicates that DNA strands in tube T0 include DNA sequences 
of xj = 1 and xj = 0. On the running of Line(19), it will execute 
the algorithm Dominateing_Set_Searcher(T0 , vi) to eliminate 
the illegal DNA strands that referring to the vertex vi and its 
adjacent vertex.  

After repeating execution of Line(1) through Line(20), it 
finally produces tube T0 that consists of DNA sequences 
representing all the possible dominating set of the graph G.

From Dominating_Set_Generator(T0, G, n), it takes (n-c)
amplify operations, (cn+2(n-c)) append operations, (n-c) merge 
operations where c is the number of the vertexes whose degrees 
are one, n Dominateing_Set_Searcher(T0 , vi) and three test 
tubes to construct sticker-based solution space. 

 An n-bit binary number corresponds to an array of input. 
A value sequence for every bit contains 15 bases. Therefore, 
the length of a DNA strand, encoding a subset, is 15×n bases 
consisting of the concatenation of one value sequence for each 
bit. 

C.  The Construction of a Dominating Set Searcher 

 Due to the definition of the Dominating Set problem, a 
Dominating Set Searcher is designed in the following. 

Procedure Dominating_Set_Searcher (T0, vi)

<Input>: Tube T0 includes solution space of all the possible 
dominating sets for the vertex vi and its adjacent vertexes. 

<Output>: The test tube T0 of the satisfiable solution space for 
the vertex vi and its adjacent vertexes 

1: Extract(T0, xi
1, + (T0, xi

1) , - (T0, xi
1)).

2:  T1 := + (T0, xi
1) and T2 := - (T0, xi

1).  

3: For j = 1 to 
( )iN v

 where 
( )iN v

 is the number of 

elements in
( )iN v

4:      Extract(T2, xj
1, + (T2 , x1

j) , - (T2 , x
1
j)). 

5:      T3 := +( T2 , x1
j) and T4 := - ( T2 , x

1
j). 

6:      Merge(T0 , T1 , T3).

7: EndFor

8: Discard (T4). 

Lemma 2. Algorithm Dominating_Set_Searcher (T0, vi) is 
used to remove the illegal solution space referring to the vertex 
vi and its adjacent vertexes. 

Proof: From the definition of dominating-set problem, we 
can see that each vertex in V\S is adjacent to at least one vertex 

in S. Hence, If the vertex vi S, there is at least one vertex that 
is adjacent to vi in the dominating-set S. The algorithm, 
Dominating_Set_ Searcher (T0, vi), is implemented by the 
extract, Merge and Discard operations.  

On the running of Line(1), it applies extract operation to 
produce two tubes T1 and T2. The first tube T1 contains all of the 
DNA strands that have xi=1 and the second tube T2 consist of 
the DNA strands that have xi=0.Now, tube T1 represents those 
partitions that vertex vi is in the dominating set and tube 
represents those partitions that the vertex vi is not in the 
dominating set. Line(3)-(7) is an loop for finding out the illegal 
DNA strands referring to the vertex vi and its adjacent vertexes. 
Every time Line(3) is applied to extract tube T2 and to generate 
two new tubes, T3 and T4. The first tube T3 contains all of the 
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DNA strands that have xj=1 and the second tube T4 consist of 
the DNA strands that have xj=0.Then, Line(6) is used to pour 
tube T1 and T3 into tube T0. This indicates that DNA strands in 
tube T0 include DNA sequences of xi = 1 and xi = 0, xj = 0. 
After repeating the execution of Line(3) to Line(7), it finally 
get tube T4 that consists of the illegal DNA sequences. Finally, 
on the running of Line(8), we use discard operation to discard 
all the DNA in tube T4.

From Dominating_Set_Searcher (T0, vi), it takes n extract 
operations, n-1 merge operations, one discard operation and 
five test tubes.  

D.  The Construction of a Parallel Searcher 

In order to remove the DNA strands which are not the 
dominating set of the graph G, a parallel clique generator is 
designed. 

Procedure Parallel_Searcher (T0)

<Input>: Tube T0 includes solution space of DNA sequences 
to encode all of the possible dominating sets 

<Output>: Test tube T0 showing all the dominating sets 

1: For i = 1 to n

2: Extract(T0, xi
1, + (T0, xi

1) , - (T0, xi
1)). 

3:    T1 := + (T0, xi
1) and T2 := - (T0, xi

1).

4: For every vertex vj that is adjacent to vi

5:        Extract(T2, xj
1, + (T2 , x

1
j) , - (T2 , x

1
j)). 

6:        T3 := +( T2, x
1
j) and T4 := - ( T2, x

1
j).

7:        Merge(T0 , T1, T3). 

8: EndFor

9: Discard (T4). 

10: EndFor

Lemma 3: Algorithm Parallel_Searcher (T0) is applied to 
remove the illegal DNA strands. 

Proof: The algorithm, Parallel_Searcher (T0) is 
implemented by the extract, Merge and Discard operations.  

On the first running of Line(1) which is an outer loop, it 
applies extract operation to produce two tubes T1 and T2. The 
first tube T1 contains all of the DNA strands that have xi=1 and 
the second tube T2 consist of the DNA strands that have xi=0.
Now, tube T1 represents those partitions that vertex vi is in the 
dominating set and tube represents those partitions that the 
vertex vi is not in the dominating set.  

Line(3)-(7) is an loop for finding out the illegal DNA 
strands referring to the vertex vi and its adjacent vertexes. 
Every time Line(3) is applied to extract tube T2 and to generate 
two new tubes, T3 and T4. The first tube T3 contains all of the 
DNA strands that have xj=1 and the second tube T4 consist of 
the DNA strands that have xj=0.Then, Line(6) is used to pour 
tube T1 and T3 into tube T0. This indicates that DNA strands in 
tube T0 include DNA sequences of xi = 1 and xi = 0, xj = 0. 

After repeating the execution of Line(3) to Line(7), it finally 
get tube T4 that consists of the illegal DNA sequences.  

Finally, on the running of Line(8), we use discard operation 
to discard all the DNA in tube T4. After repeating of Line(2)- 
Line(9), all the illegal strands of dominating set problem will 
be eliminated. 

From Parallel_Searcher(T0), it takes 1

( )
n

i

i

N v

+ n =n2

extract operations, 1

( )
n

i

i

N v

= n(n-1) merge operations, n
discard operation and five test tubes.  

E.  The Construction of a MiniDominating Set Searcher 

Procedure MiniDominating_Set_Searcher(T0)

<Input>: Tube T0 showing all the dominating sets 

<Output>: Tubes Ti (0 i n) representing the dominating set 
that contains i vertexes

1:  For i = 0 to n-1

2: k = min{i, n/2}

3: For j = k down to 0    

4:      Extract(Tj, y1
i+1, + (Tj, y1

i+1) , -(Tj, y1
i+1)). 

5:      T1:= + (Tj, y1
i+1) and Tj :=-(Tj, y1

i+1).

6:      Merge(Tj+1 , Tj+1 , T1).

7: EndFor 

8:  EndFor  

9:  If (Detect(Tn/2+1) = ‘yes’) then 

10: Discard(Tn/2+1).

11:  EndIf 

12:  For i = 1 to
1 ( )

n

G

13:     If(Detect(Ti) = ‘yes’) then 

14: Discard(Ti). 

15:     EndIF 

16:  EndFor 

Lemma 4: The algorithm, MiniDominating_Set_ 
Searcher(T0), can be applied to search the solution of the 
minimum dominating set problem. 

Proof:The algorithm, MiniDominating_Set_ Searcher(T0), 
is implemented via Extract, Detect, Merge and Discard 
operations. 

 Line(1) is the outer loop and is mainly used to form the 
K+2 tubes and the DNA strands in tube Ti contains i “1”, for 0 

i n/2.  

Line(3) is an inner loop. On the first execution of Line(3), it 
uses the Extract operation to form two test tubes: T1 and T0.
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Tube T1 includes all of the strands that have y1 = 1. Tube T0

consists all of the strands that have y1 = 0. 

On the execution of Line(6) uses the merge operation to 
pour two tubes T1and T0 into tube T1. Tube T1 currently 
consists of one “1”.  

Repeat execution of Line(4) and Line(6) until every bit in 
the elements are considered. Line(9) is a detect operations to 
check if tube Tn/2+1 contains DNA strands. The DNA strands 
that have more than n/2+1 ‘1’ in the space solution of elements 
are in tube Tn/2+1. If it returns a ‘yes’, discard the tube Tn/2+1.

Due to Theorems 3, we know that the dominating number 

( )G 1 ( )

n

G
.Therefore the DNA strands in tube Ti (0 i

1 ( )

n

G
) are illegal strands. 

From MiniDominating_Set_Searcher(T0), it takes k×(k+1)/2
= n×(n+2)/8 (k n/2) extract operations, k×(k+1)/2 = n×(n+2)/8

merge operations, 
1 ( )

n

G
+1 detect operations, and n/2 +1 

test tubes. 

F. An improved DNA algorithm for Dominating Set Problem 

The following DNA algorithm is applied to solve the 
Maximum Clique Problem  

Algorithm 5. Dominating_Set (G, n)

<Input>: The graph G with n vertexes where n is the number 
of the vertex in G

<Output>: The minimum Dominating set of the graph G with 
n vertexes

1:  Dominating_Set_Generator(T0, n).

2:  Parellel_Searcher(T0)

3:  MinDominating_Set_Searcher(T0)

4:  For i = 1 to n/2 

5: If ( Detect(Ti)= ‘yes’ ) 

6:      Read(Ti). 

7: EndIf

8:  EndFor 

Theorem 5: From those steps in Algorithm 1, the improved
DNA based algorithm for dominating set problem can be 
solved.

Proof: On the execution of Line 1, Dominating_ 
Set_Generator(T0, n) is mainly used to produce the satisfiable 
solution space of the Dominating set. The vertexes whose 
degrees are 0 is sure not to be in the dominating set and its 
adjacent vertexes are in the dominating set. 

 In Line(2) the algorithm, Parallel_ Searcher(T0) is 
employed to search the solution of the dominating set from the 
solution space. The algorithm, MinDominating_Set_ 

Searcher(T0) mainly used to separate the DNA strands in tube 
T0 according to the number of the DNA sequence representing 
the value “1”.  

Line(4) is loop and is mainly employed to search the 
solution of the dominating set. On the execution of Line(5), it 
employs the detect operations to detect whether there has any 
strands in Ti. If it returns ‘yes’, then we can get the solution of 
the dominating set from tube Ti.

G.  The performance analysis of the proposed DNA 

algorithm  

The following theorems describe time complexity of 
Algorithm 1, the number of the tube used in Algorithm 1 and 
the longest library strand in solution space in Algorithm1. 

Theorem 3.7: The Dominating set problem for any 
undirected n-vertex graph G with m edges can be solved with 
O(n2) biological operations, O(n) tubes and the longest library 
strand, O(n) , where n is the number of vertices in G and. 

Proof: Algorithm 1 include four six main steps in the 
following. 

From the algorithm, Step 1, is mainly applied to produce 
the solution space for the maximum clique problem. It is very 
obvious that it takes (n-c) amplify operations, (cn+2(n-c))
append operations, (n-c) merge operations where c is the 
number of the vertexes whose degrees are one, n Dominateing_ 
Set_Searcher(T0 , vi) and three test tubes to construct 
sticker-based solution space. 

Step 2 is mainly applied to satisfiable solution space for the 
dominating set problem. It is indicated that it n(n-1) merge 
operations, n discard operation and five test tubes.  

Step3 is mainly applied to figure out the minimum 

dominating set and it takes n (n+2)/8 extract operations,

n (n+2)/8 merge operations, 
1 ( )

n

G
+1 detect operations, 

and n/2 +1 test tubes.. 

Step 4 is used to find out the final solution of our problem, 
it takes n/2 detect operations, one read operation and n/2 test 
tubes. 

Hence, from the statements mentioned above, it is at once 
inferred that the time complexity of Algorithm 1 is as follows. 

 ((n-c)+(cn+2(n-c))+(n-c)+n(n+(n-1)+1))+(n(n -1)+ n) + 

(n (n+2)/8 +n (n+2)/8 +(
1 ( )

n

G
 + 1))+ (n/2+1) 

=

213 1
(5 ) (1 4 )

4 1 ( )

n
c c

G
= O(n2)

Refer to the Algorithm 1, the number of the tube used in 
Algorithm 1 is O(n). Due to theorem 1 the longest strands in 
Algorithm 1 is O(n).  
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IV. EXPERIMENTAL RESULTS BY SIMULATED DNA

COMPUTING

The graph in Figure 2 denotes such a problem. In Figure 2, 
the graph G contains six vertexes and six edges. For 
convenience, the vertex vi is represented by i(0  i 6). 

Figure 2. the graph G of our problem 

A. DNA code 

In our experiment, we used a unique value sequence, a 
15-base DNA sequence, to implement each symbol of { x0

1,
x1

1, x0
2 , x1

2, x
0
3, x1

3, x0
4 , x1

4, x0
5 , x1

5, x0
6 , x1

6} in our algorithms.  

A library is a tube containing library strands, and the probes 
used for separating the library strands have sequences 
complementary to the value sequences. In DNA-based 
computation, there are errors in the separation of the library 
strands. To make the computation reliable, sequences must be 
designed to ensure that the following two conditions hold: one 
is that library strands have little secondary structure which 
might inhibit intended probelibrary hybridization, the other is 

that the design must exclude sequences that might encourage 
unintended probe-library hybridization. To help achieve the 
goals, good sequences were generated tosatisfy the following 
seven constraints defined by Braich et al. [7]. 

1. Library sequences contain only A s, T s, and C s.

2. All library and probe sequences have no occurrence of 5 
or more consecutive identical nucleotides; i.e. no runs of more 
than 4 A s, 4 T s, 4 C s, or 4 G s occur in any library or probe 
sequences. 

3. Every probe sequence has at least 4 mismatches with all 
15 base alignment of any library sequence (except for with its 
matching value sequence). 

4. Every 15 base subsequence of a library sequence has at 
least 4 mismatches with all 15 base alignment of itself or any 
other library sequence. 

5. No probe sequence has a run of more than 7 matches 
with any 8 base alignment of any library sequence (except for 
with its matching value sequence). 

6. No library sequence has a run of more than 7 matches 
with any 8 base alignment of itself or any other library 
sequence. 

7. Every probe sequence has 4, 5, or 6 Gs in its sequence. 

DNA sequences generated by the modified Adleman 
program are shown in Table 1. With the nearest neighbor 
parameters, the Adleman program was used to calculate the 
enthalpy, entropy, and free energy for the binding of each 
probe to its corresponding region on a library strand. 

TABLE .  SEQUENCES CHOSEN WERE USED TO REPRESENT THE 12 BITS IN T0

bit 5’ 3’DNA Sequence Enthalpy energy (H) Entropy energy (S) Free energy (G))

x0
1 AATTCACAAACAATT 114.4 299.4 25.0 

x1
1 CCTTATCATCCAATC 112.8 284.9 24.3 

x0
2 AATTCCCATTCCCTA 108.5 273.0 27.8

x1
2 TCTCTCTCTAATCAT 105.2 270.5 28.2

x0
3 CTTCTCCACTATACT 111.1 288.3 27.8

x1
3 CCTTTCTAACCTTCA 103.8 272.6 28.2

x0
4 AAACTCTACATACAC 109.9 285.5 27.0

x1
4 AATTAACAATCATCT 104.3 273.0 24.1

x0
5 TTACTCTTAACATCT 112.1 282.8 24.4 

x1
5 TTAATCAAATCCCTA 102.1 266.0 22.6 

x0
6 ATTCTAACTCTACCT 105.2 277.1 25.0 

x1
6 TCTAATATAATTACT 104.8 283.7 22.4 

B. Solving Process of the improved algorithm for the 
Dominating set problem 

After DNA coding, we can simulate the Algorithm 1. In 
our problem, the vertex set V is {1, 2, 3, 4} and the edge set E
is {(1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (5, 6)}.The process of our 

novel algorithm for the dominating set problem is in the 
following.  

(1). Firstly, the vertex a and b whose degrees are one and 
their adjacent vertex c are found out.On the execution of the 
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algorithm, Dominating_Set_Generator(T0, n), from Theorems 
1, we know that the vertex 1 and 2 are not in the dominating 
set and their adjacent vertex 3 is in the dominating set. Hence, 
we append the DNA strands representing x0

1 , x
0
2 and x1

3 onto 
the tail of all the DNA strands in tube T0. Then, the DNA 
strands in tube T0 are{ x0

1 x0
2 x1

3 }. 

After removing the vertex 1, 2 and 3 from the vertex set V,
V is {4, 5, 6}. Generating the solution space of the vertex 4, the 
DNA strands in tube will be {x0

1 x0
2 x1

3 x0
4, x0

1 x0
2 x1

3

x1
4}.From the graph G, we can see that the vertex 5 and 6 is the 

adjacent vertexes of vertex 4. So we produce the solution space 
of the vertex 5 and 6. Considering the vertex 5, the DNA 
strands in tube will be {x0

1 x0
2 x1

3 x
0
4 x

0
5, x0

1 x0
2 x1

3 x
0
4 x

1
5,  x

0
1

x0
2 x1

3 x
1
4 x

0
5, x0

1 x0
2 x1

3 x
1
4 x

1
5}. Generating the solution space 

of vertex 6, the DNA strands in tube T0 will be{ x0
1 x0

2 x1
3 x

0
4

x0
5 x

0
6,  x

0
1 x0

2 x1
3 x

0
4 x

0
5 x

1
6,  x

0
1 x0

2 x1
3 x

0
4 x

1
5 x

0
6, x

0
1 x0

2 x1
3 x

0
4

x1
5 x1

6,  x
0
1 x0

2 x1
3 x1

4 x0
5 x0

6,  x
0
1 x0

2 x1
3 x1

4 x0
5 x1

6, x0
1 x0

2 x1
3

x1
4 x

1
5 x

0
6,  x

0
1 x0

2 x1
3 x

1
4 x

1
5 x

1
6}.So far, we get the full solution 

space of the dominating set problem.  

On the execution of Dominateing_Set_Searcher(T0, v4), the 
DNA strands will contains ‘x0

4 x0
5 x0

6’are illegal. So we 
remove the DNA strands x0

1 x0
2 x1

3 x
0
4 x

0
5 x

0
6 from our solution 

space and the left DNA strands are{x0
1 x0

2 x1
3 x0

4 x0
5 x1

6,  x
0
1

x0
2 x1

3 x
0
4 x

1
5 x

0
6, x

0
1 x0

2 x1
3 x

0
4 x

1
5 x

1
6, x0

1 x0
2 x1

3 x
1
4 x

0
5 x

0
6,  x

0
1

x0
2 x1

3 x
1
4 x

0
5 x

1
6, x0

1 x0
2 x1

3 x
1

4 x
1
5 x

0
6, x0

1 x0
2 x1

3 x
1

4 x
1
5 x

1
6}.

(2). The algorithm Parellel_Searcher(T0) will be employed 
to remove all the illegal DNA strands from our solution space. 
By the running of the algorithm Parellel_Searcher(T0), we 
know that there are no illegal DNA strands left in tube T0 and
the DNA strands in the solution space are { x0

1 x0
2 x1

3 x
0
4 x

0
5

x1
6,  x

0
1 x0

2 x1
3 x

0
4 x

1
5 x

0
6, x

0
1 x0

2 x1
3 x

0
4 x

1
5 x

1
6, x0

1 x0
2 x1

3 x
1
4 x

0
5

x0
6,  x

0
1 x0

2 x1
3 x1

4 x0
5 x1

6, x0
1 x0

2 x1
3 x1

4 x1
5 x0

6, x0
1 x0

2 x1
3 x1

4

x1
5 x

1
6}.

(3). The algorithm MinDominating_Set_earcher(T0) will be 
executed to find out the minimum dominating set of our 
problem. From Theorems 2 and 3, we know that the 
dominating number is less than or equal to 6/2=3 and more 
than 6/(1+3)=1.5. By the algorithm MinDominating_Set_ 
Searcher(T0), we will get five tubes T0, T1 T2, T3 and T4 and in 
tube Ti there will be i vertexes in the dominating set. There are 
no DNA strands in tube T0 and T1 . The strands in tube T2 , T3

and T4 are { x0
1 x0

2 x1
3 x

0
4 x

0
5 x

1
6, x0

1 x0
2 x1

3 x
0
4 x

1
5 x

0
6, x

0
1 x0

2

x1
3 x

1
4 x

0
5 x

0
6},{ x0

1 x0
2 x1

3 x
0
4 x

1
5 x

1
6, x

0
1 x0

2 x1
3 x

1
4 x

0
5 x

1
6,  x

0
1

x0
2 x1

3 x
1
4 x

1
5 x

0
6}, {x0

1 x0
2 x1

3 x
1
4 x

1
5 x

1
6} respectively.  

Because of the dominating number is more than 1.5, so the 
DNA strands in tube T0, T1 are illegal.We can find out the 
solution of our dominating set problem from tubes T2, T3 and 
T4.

(4). Finally, detecting the tubes T2, it returns ‘yes’. So the 
DNA strands in tube T2 are the solution of our problem. Now, 
we get the DNA strands { x0

1 x0
2 x1

3 x
0
4 x

0
5 x

1
6,  x

0
1 x0

2 x1
3 x

0
4

x1
5 x

0
6, x

0
1 x0

2 x1
3 x

1
4 x

0
5 x

0
6}. Therefore, the dominating set of 

our problem are {3, 6}, {3, 5}and {3, 4}   

V. CONCLUSIONS 

As we all know, DNA computing has the advantage of 
huge parallelism. The volume’s exponential explosion problem 

is the critical factor that constraints the development of the 
DNA computing. For the objective to decrease the DNA 
volume of the dominating set problem, the pruning strategy is 
taken into the DNA-based supercomputing and a new 
DNA-based algorithm is proposed. Comparing with the 
enumerate DNA-based algorithm for dominating set problem 
the DNA library strands reduced considerably.  

In the future, molecular computers may be a good choice 
for massively parellel computations [21-26]. For the objective 
to reach a free stage in using DNA computers just as using 
classical digital computers, many technical difficulties such as 
real time updating a solution when the initial condition of a 
problem changes, finding out the exact answer quickly and 
efficiently and the size of the initial data pool increases 
exponentially with the number of variables in the calculation 
need to be overcome before this becomes real. We expect our 
study can make a contribution to clarify that DNA-based 
computing is a technology that worthwhile us seeking. 
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