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Abstract— The formal security policy model and security 
analysis is necessary to help Database Management System 
(DBMS) to attain a higher assurance level. In this paper we 
develop a formal security model for a DBMS enforcing 
multiple security policies including mandatory multilevel 
security policy, discretionary access control policy and role 
based access control policy.  A novel composition scheme of 
policies is introduced. And the security properties are 
comprehensively and accurately specified in terms of about 
17 state invariants and state transition constraints. 
Furthermore, the security of the model is proved with the 
Z/EVES theorem prover.  
 
Index Terms—-multiple security policies; formal language; 
security invariant; theorem proving 
 

I. INTRODUCTION 
Formal modeling plays a key role in building trusted 

software systems, such as trusted OS, DBMS or other 
applications. Various security evaluation standards and 
criteria, including Common Criteria [1], TCSEC [2] of 
US, GB17859 [3] of China, require that formal model and 
security analysis be presented to be evaluated at higher 
assurance level.  

The SeaView [4] model is one of the earliest 
influential security models for multilevel secure database 
based on Bell LaPadula model (BLP) [5]. It is verified in 
[6]. Recently [7] extended the object structure of the 
SeaView Model and, modeled the security policy in 
formal language and proved the security with the help of 
Coq proof assistant.  But role based access control 
(RBAC) [8] is not supported in these models. A powerful 
and flexible authorization mechanism was proposed in [9] 
to enforce any different security polices in DBMS. 
However, due to efficiency consideration, this 
mechanism is never adopted in practical DBMS. A design 
framework of database system supporting BLP, DAC 
(Discretionary Access Control) and RBAC policies was 
proposed in [10] while the formal security model is not 

presented. Because many commercial DBMSs are 
supporting these policies, there is an emerging demand 
for a formal and accurate security model of DBMS 
supporting all the previous security policies. 

In this paper, a formal security policy model (named as 
SEPOSTG, for Secure PostgreSQL) of DBMS supporting 
multiple security policies is proposed, based on which we 
enhanced the open source DBMS PostgreSQL [11] to 
enforce multiple security policies and aimed to boost its 
security level to TCSEC B2. 

Our main contributions in this paper are threefold: 1) 
Multiple security policies including BLP, DAC, and 
RBAC are modeled. Especially, a novel composition 
scheme of multiple policies is proposed. 2) We present 15 
state invariants and 2 state transitions in this paper, most 
of them are either new or improved compared to those in 
the literature, to model the security properties after 
analyzing the security policies thoroughly and 
comprehensively. 3) The model is expressed in formal 
language Z [12], and can be proved automatically with 
the help of the theorem prover Z/EVES. 

As the security model for fine-grained entities such as 
tuples, attributes, elements in a tuples is well defined in 
other works, we do not consider those entities in this 
paper so as to greatly facilitate the security proof of our 
model. Furthermore, our model can be easily integrated 
with the other security models consisting of fine-grained 
entities because of its modular design. 

The organization of this paper is as follows. In Section 
2, the policy composition scheme of multiple policies is 
discussed. In Sections 3, 4, 5, the basic definition of 
entities and principals, security requirement termed as 
invariants and constraints, and operation rules are 
presented sequentially. The security analysis of the model 
is described in Section 6. 

II. POLICIES COMPOSITION  
In the SEPOSTG model, three typical security policies, 

namely BLP, DAC, and RBAC, will be enforced. Among 
the policies, multilevel BLP is required by the standards 
for higher assurance level. From management point of 
view, the management privileges are assigned to a few 
managers in RBAC such that management privileges are 
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centralized and strictly protected, while every owner has 
the management privileges with regarding to his own data 
in DAC such that the management privileges is 
distributed and flexible. Although RBAC can simulate 
DAC or BLP model, the efficience is damaged. 
Therefore, our model supports both of them. The problem 
is the choice of policies composition scheme so as to 
make the model consistent, expressive, and effective. As 
to an access request, the access control decision made by 
the SEPOST model depends on the composition of 
decisions by BLP, DAC and RBAC respectively. We 
introduce a decision function to model the access control 
decision made by the composed policies.  

Suppose that, for a complete model, in one state of the 
system, for any access request to the model, the access 
control decision would be {YES, NO, UNDEFINED}. 
Then, we can build 38=6561 decision functions for 
composed policies from BLP, DAC and RBAC. 
According to the analysis of each decision function, most 
of them are impractical. Apparently, BLP is a mandatory 
policy that every access request should respect. However, 
the composition of RBAC and DAC with ‘OR’ relation is 
not suitable, because it will result in unnecessarily 
replicated authorizations. Based on the evaluation 
standards and the above observation, one may choose the 
composition as the following function: 

( )RD RBAC DAC BLP= ∨ ∧  
The connotation of this function is, all access requests 

must meet BLP policy, and meet either RBAC or DAC. 
Table 1 illustrates the composition when all policies 
involved are complete (without UNDEFINED decision). 
If the decision of any component policy is UNDEFINED 
with respect to an access request, then the decision of the 
composed policy is UNDEFINED. 

 
Table 1 Policies Composition 

 
RBAC 
decision  

DAC 
decision 

BLP  
decision 

SEPOSTG 
decision 

YES YES YES YES 
YES YES NO NO 
YES NO YES YES 
YES NO NO NO 
NO YES YES YES 
NO  YES NO NO 
NO NO YES NO 
NO NO NO NO 

 
However, the above straightforward composition is not 

satisfactory in practice. As we know, RBAC is more 
suitable for organizational policy, while DAC is more 
suitable for personal policy. Consequently, with 
regarding to the decision function RD, one may use DAC 
policy to corrupt the RBAC policy. The attack is as 
follows. The standard RBAC can not explicitly express 
negative authorization (which means to deny one role the 
privilege of access to one object) so that it is assumed by 
default that if there is no authorization for an access 

request then the request is denied. However, one subject 
which is assumed by the organizational policy 
administrator to be denied access to one object in RBAC 
may be granted access privilege in DAC by another 
subject. In this way, the effect of the RBAC policy 
becomes unexpected. One approach to this problem is to 
add negative privilege explicitly to RBAC policy, but the 
constraints of the approach is that it will add significant 
burden to the system administrator because there are huge 
volumes of data in DBMS generally.  

We take another approach to the problem. The objects 
are classified into two categories based on the owner of 
the object. The owners of objects are: system 
administrator, and others. RBAC policy are applicable to 
the objects owned by system administrator, DAC policy 
are applicable to objects owned by other owners. The 
owner of an object can be changed by the security 
administrator so that we can change the policy on an 
object by changing its owner. When a user is removed 
from the system, the owner of objects owned by this user 
is changed to be the system administrator. Furthermore, 
for all privilege with no specific objects (e.g. system 
privileges), it is subject to RBAC policy. 

Hence, the decision function of policy composition 
in our model SEPOSTG is formalized as: 

( ) ( )
_ ( ( )) SYSADM

( )

( ) ( )

BLP o RBAC o
if user kind owner o

RD o
o nil

BLP o DAC o otherwise

∧⎧
⎪ =⎪= ⎨ ∨ =⎪
⎪ ∧⎩

 

Remark: user_kind(), owner() and SYSADM will be 
defined in the following section. 

III. BASIC ELEMENTS AND DEFINITIONS 
In this section, we define the basic elements of our 

model SEPOSTG, including data types, constraints and 
variables.  

A. Data types 
    There are seven basic data types in this model.  
    Security Labels: [CLASSES, LEVELS, CATES], 
CLASSES is for security label type which is composed 
by linear ordered levels LEVELS and patiral ordered  
categories CATES. 

Roles: [ROLES], for Role based access control. 
    Subjects: [USERS, SESSIONS, TRANS], SESSIONS 
models the process between user login and logout, 
TRANS is correspondent to transaction in DBMS. 

User Kinds:  
UKIND := SYSADM|SECADM|AUDADM|COM. 

    In order to limit the power of administrator, there are 
three kinds of administrators introduced to assume 
different duties. The duty of the system administrator is 
the routine of system management, such as user or data 
object creation/removal; the duty of the security 
administrator is the maintenane of security policy; the 
auditor is in charge of audit policy. It is required in this 
model that system administrator has no privileges to 
read/write access to the content of an object. 
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    Objects: [DATABASES], [MREALTIONS, MREAL-
IDS, MVIEW-IDS, MTUPLES, ELEMENTS], [AUXS, 
SUBORDS]. There are many kinds of objects in the 
database, including database, relation, view, tuple, 
element, auxilary object and subordinate object. 
MREALTIONS is composed of MREAL-IDS and 
MVIEW-IDS. 
    Operations and Privileges: Operation and privilege are 
tightly related but have different usages, [OPERATIONS, 
PRIVILEGES] 
    Parameter types: for element data types. [VALUES, 
BOOL, ATTRS] 

B. Constants and Mappings 
    Reserved users: { sysadmin, secadmin, audadmin }. 
There are three reserved users which cannot be removed 
at any time: system administrator, security administrator, 
auditor.  They are called as initial administrators. 

Reserved Security labels: { syshigh, syslow, trusted}.  
    operations:OPERATIONS, including CREATE 
USER, DROP USER, ACTIVATE ROLE, DEACT 
ROLE, INSERT, DELETE, UPDATE, SELECT; AUDIT 
ON, UPGRADE, DOWNGRADE, etc. The full list of the 
operations are not presented here. 
     Privileges:PRIVILEGES, including initial system 
administrator privieleges: CREATEUSER, DROPUSER, 
CREATEDB, CREATETABLE, etc.and initial secucity 
administrator privieleges: CREATEROLE, DROPROLE, 
CREATELABEL, DROPLABEL, etc.; initial auditor 
administrator privieleges: AUDIT, AUDSET, 
AUDREAD, AUDPURGE, AUDBACKUP. All initial 
administrators have privileges of: LOGIN, LOGOUT, 
ACT, DEACT, UPLABEL. 
    A constant mapping is used to describe the max 
privileges which can be granted to a user or an 
administrator: 
adm_ perms :{sysadmin,secadmin,audadmin,com}

(PRIVILEGES )all→℘ ×
 

Different types of objects have different owner 
privileges, which are defined by: 
owner_privs :{database, real, view,

tuple,element,aux,subords} PRVILEGES℘a
 

    All privileges have one of the three privilege types. For 
example, Log in , Log out, etc. belong to ‘read’ type; 
create, drop etc. belong to ‘write’ type; and SELECT, 
INSERT tuples belong to multilevel operation type ‘mop’: 
priv_type : PRIVILEGES {read, write, mop}a .  
     All users have the minimum privies as:  
     public_perms={ LOGOUT, ACTROLE, 
BEGINTRANS, ENDTRANS } 

The mapping ‘op-privs’ is used to model the 
privileges that an operation should hold. It is required that 
every access request must have the object privilege as 
well as the object data container’s privilege. For example, 
to create a relation r in database db one must have the 
privileges of CREATEREAL and LOGON db; to select 
the tuple in relation r one must have the privileges of 
SELECT r, ACCESS r and LOGON db. 

    There are five attribute predicates introduced below. 
The first predicate ateq is defined as:  for any tuple t: 
MTUPLES, if the number i:N attribute’s value is equal to  
v: VALUES, then ateq(i,v,t) is TRUE. Similarly, atge, 
atgr, atle, atlt means greater or equal, greater, less or 
equal, less respectively.  

: N VALUES MTUPLES BOOLEAN
: N VALUES MTUPLES BOOLEAN
: N VALUES MTUPLES BOOLEAN

ateq
atge
atgr

× ×
× ×
× ×

a

a

a

 

    The ‘obj’ preditcate means that when o1:OBJECTS 
equals o2:OBJECTS then obj(o1, o2) is true.  

: OBJECTS OBJECTS BOOLEANobj × a  
: OBJECTS BOOLEANall a  

C. Variables 
The variables may be changed by operations, and are 

the indispensable part of the state of the system. 
The state variables related to subject include user set, 

session set and transaction set. 
_ : USERS

: SESSIONS
: TRANS

user exists
session_exists
trans_exists

℘
℘

℘
 

The types of user are introduced to manage the 
difference between administrators and common users. 
Different kinds of users have different privileges.  

_ : USERS UKINDuser kind a  
    One session is correspondent to one user’s login, and 
one transaction is correspondent to one session, and one 
session can only access to one database. So we have: 

: SESSIONS USERS
: TRANS SESSIONS

session_user
trans_session

a

a
 

: SESSIONS DATABASESsession_database a  
Object related state variables include database set, 

relation set, real relation set, view set, tuple set, etc. 
_ : DATABASES

: MRELATIONS
: MREAL- IDS

database exists
relation_exists
real_exists

℘
℘

℘
 

    The data objects in DBMS are related in a tree 
structure, and parent node is called as the container of 
child node. Database is at the root of the tree, and is the 
largest container. Element is at the leaf and is not 
container. 

: MREAL- IDS DATABASES
: MVIEW- IDS DATABASES

: MVIEW- IDS MREAL- IDS

real_database
view_database
view_reals ℘

a

a

a

 

    Role based access control policy is an important part of 
this model. The state variables for role based access 
control include roles set, role containing mapping 
(role_co), role supervising mapping (role_su), role and 
permission mapping, user role mapping, session and 
activated roles mapping, static separation of duty, 
dynamic separation of duty, and the preconditions of role 
activation. All of them are listed below respectively. 
Particularly, role_co and role_su are improvement of role 
hierarchy. role_co is the same as the traditional role 
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hierarchy, but role_su is used to model the supervisor 
role which has only the management privileges of its 
subordinate roles.   

_ : ROLES
_ : ROLES ROLES
_ : ROLES ROLES

role exists
role co
role su

℘
℘
℘

a

a

 

: ROLES
(PRIVILEGES (ATTRS (VALUES)))

: USERS
(PRIVILEGES (ATTRS (VALUES))))

role_perms

rbac_user_perms
℘ ×℘ ×℘

℘ ×℘ ×℘

a

a
 

: USERS ROLES
: SESSIONS ROLES

user_roles
session_roles

℘
℘

a

a
 

_ : (( ROLES) N)
_ : (( ROLES) N)
_ : (ROLES ROLES)

role ssd
role dsd
role pre

℘ ℘ ×
℘ ℘ ×
℘ ×℘

 

    The state variables for discretionary access control 
(DAC) are as follows. dac_uer_perms means that a user’s 
permission set of (Privilege, object predicate, parameters 
list). 
OBJECTS:=DATABASES MRELATIONS

MTUPLES ELEMENTS AUXS SUBORDS
:OBJECTS USERS

:USERS
(PRIVILEGES (ATTRS (VALUES)))

object_owner
dac_user_perms

℘ ×℘ ×℘

U

U U U U

a

a

 

    The variables for mandatory access control (MAC) 
include security labels set etc. Note that a security label 
c:CLASSES is composed of level and category which  
reflectes the class_level_cate mapping. 

_ : CLASSES
_ : LEVELS

_ : CATES
_ _ : CLASSE SLEVELS CATES

class exists
level exists
cate exists
class level cate

℘
℘
℘

×a

 

In the security labels set class_exists there is a partial 
order dom (which is called as ‘dominate’ relation), and in 
level set level_exists there is a total order dom1, and in 
cate_exists there is a partial order dom2. 

In models supporting multilevel access control (BLP), 
all subjects and objects should be properly marked with 
security labels. The security label of a session initialed by 
a trusted user can be dynamically updated. As changing 
session security label will lead to start a new service 
process, we require that the security label of a transaction 
cannot be changed during its lifetime. 
    The subject to security label mapping is: 

 
: USERS CLASSES

: SESSIONS CLASSES
: TRANS CLASSES

user_class
session_class
trans_class

a

a

a

 

      The object to security label mapping is: 

: DATABASES CLASSES
: MREAL- IDS CLASSES
: MVIEW- IDS CLASSES

database_class
real_class
view_class

a

a

a

 

    For easy reference in the model, we define an 
integrated object to security label mapping, and an object 
to type mapping:  

:object_class database_class real_class
view_class tuple_class element_class
aux_class subord_class

= U

U U U

U U

 

: OBJECTS
{database, real, view, tuple,element,aux,subords}

object_type a
 

    Lastly, we define two key variables of the model: 
current access permission state variable and current 
administration permission variable. The first variable 
models the non-administration (not the GRANT 
privileges) permissions of a transaction’ access request, 
and is computed legally based on RBAC policy, DAC 
policy and BLP policy. Another variable, current 
administration permission variable, is concerned with the 
permissions related to GRANT privileges.  

: TRANS PRIVILEGES OBJECTS
: TRANS PRIVILEGES OBJECTS

cur_perms
cur_adm_perms

×
×

a

a
 

IV. INVARIANTS  AND CONSTRAINTS 
The key part of the DBMS security policy model is the 

definitions of security which are formalized as state 
invariants or/and state transition constraints. State 
transition constraints are enforced in every access request 
which will cause a state transition, while state invariants 
should be kept for every state which is reachable for any 
access requests from any initial state. Based on the 
evaluations standards (GB17859, TCSEC and CC), the 
characteristics of the component policies, and the DBMS 
application requirements, there are 14 state invariants and 
2 state transition constraints identified in SEPOSTG, 
most of them are not reported before in the literature.  

It is required that all reserved security labels (syshigh, 
syslow, trusted) are always members of class_exists; all 
security labels except trusted are dominated by syshigh 
and dominate syslow. Suppose that class_level_cate(c1) = 
(a1,b1), class_level_cate (c2) = (a2,b2), then c1 dom c iff  a1 
dom1 a2, b1 dom2 b2 . Let  fst (a,b)=a, snd(a,b)=b, formally 
we have Security Labeling Invariant:  
{syshigh,syslow, trusted}

: CLASSES trusted
syshigh syslow

class_exists
c c class_exists c

dom c c dom

∈
∀ • ∈ ∧ ≠
⇒ ∧

 

1 2 1 2 1 2

1 1

2

1 2

2

, : CLASSES ,
( _ _ ( ))

( _ _ ( ))
( _ _ ( ))
( _ _ ( ))

c c c c class_exists c dom c
fst class level cate c dom

fst class level cate c
snd class level cate c dom
snd class level cate c

∀ • ∈ ∧
⇒

∧

 

There is an invariant to model the security labeling of 
subject including session, transaction and user. It is 
required that the security label of all sessions and 
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transactions is not ‘trusted’; and for untrusted users, the 
security label of session is dominated by user’s security 
label who opens the session, and for all users, the security 
label of transaction is dominated by session’s security 
label. Formally we have Subject Security Label 
Invariant:  

: SESSIONS, : TRANS ( ) trusted
( ) trusted

( ( ))
( )

_ ( ) trusted
( ( ))

( )

s tr session_class s
trans_class tr
session_class trans_session tr
dom trans_class tr
session user s

user_class session_user s
dom session_class s

∀ • ≠
∧ ≠
∧

∧ ≠
⇒

 

Another invariant is to model the security labeling of 
objects in the hierarchy. It is required that the security 
label of all objects cannot be ‘trusted’, and the security 
label of an object dominates the security label of its 
parent in the hierarchy. For simplicity, we here only give 
the invariant for relation and database objects, invariants 
for other types of objects can be constructed similarly. 
Formally Object Security Label Invariant is:  

: DATABASES, : MREAL- IDS
( ) trusted

( ) trusted ( )
( ( ))

d r
database_class d
real_class r real_class r
dom database_class real_database r

∀
• ≠
∧ ≠ ∧

 

There are three reserved administrators in the system. 
Each administrator is able to upgrade common user to be 
the same kind of administrator as itself, and/or grants the 
self privileges to the users. Therefore formally we have 
Initial Administrator Invariant:  
{sysadmin,secadmin,audadmin}

(sysadmin) SYSADM
(secadmin) SECADM
(audadmin) AUDADM

user_exists
user_kind
user_kind
user_kind

∈
∧ =
∧ =
∧ =

 

(sysadmin) adm_perms(sysadmin)
(secadmin) adm_perms(secsadmin)
(audadmin) adm_perms(audadmin)

rbac_user_perms
rbac_user_perms
rbac_user_perms

∧ =
∧ =
∧ =

 

One kind of administrator cannot have the distinct 
management privileges of the other kind. Suppose 
user_eperms includes all permissions derived from all 
component policies, im⊆  is slightly different from 
normal set operation ⊆ . It is defined as: if every 
permission (p,f(o))in A is in B or is derivable from B then 

imA B⊆ . Formally Administrator Separation of Duty 
Invariant:  

: USERS
( ) SYSADM

( ) adm_perms(sysadmin)
( ) SECADM

( ) adm_perms(secadmin)

im

im

u
user_kind u
user_eperms u
user_kind u
user_eperms u

∀
• = ⇒

⊆
∧ = ⇒

⊆

 

( ) AUDADM
( ) adm_perms(audadmin)

( ) COM
( ) adm_perms(com)

im

im

user_kind u
user_eperms u
user_kind u
user_eperms u

∧ = ⇒
⊆

∧ = ⇒
⊆

 

    The owner of an object has all the privileges including 
management privileges with respect to the object. 
Formally Ownership privileges Invariant:  

: OBJECTS
: owner_privs( _ ( ))

( , ) ( ( ))

o
p object type o

p o rbac_user_perms object_owner o

∀
•∀
• ⊆

 

All users by default have the common privileges 
which are termed as Public privileges. Formally User 
Public Privileges Invariant:  

: USERS
public_perms ( )

u
rbac_user_perms u

∀
• ∈

 

    The static separation of duty SSD is defined differently 
from SSD in RBAC. In our model, the SSD:= ({r1, 
r2,…rn },t) means that one user cannot have privileges 
(including inheritance) of t roles from {r1, r2,…rn}. 
Formally Static Separation of Duty:  

( )

: USERS,( , ) : ( ROLES) N, : ROLES
( , )

(( ( )) ( ( )

( )
( ))

#

r rt

r user_roles u

u rs t rt
rs t role_ssd rt rs

role_eperms r rbac_user_perms u

dac_user_perms u
role_eperms r

rt t

∈

∈

∀ ℘ × ℘
• ∈ ∧ ⊆

∧ ⊆

⇒ <

U

U

U

U

    

Remarks: role_eperms(r) is all permissions of role r 
including derived permissions, and it can be further 
defined with role_perm and role_co,role_su. 
    In our model, the DSD:= ({r1, r2,…rn },t) means that 
one session cannot have privileges (including inheritance) 
of t roles from {r1, r2,…rn}. Formally Dynamic 
Separation of Duty: 

( )

: SESSIONS,( , ) : ( ROLES) N, : ROLES
( , )

(( ( ))

( ( ( ))
( ( ))

( ))

#

r rt

r session_roles s

s rs t rt
rs t role_dsd rt rs

role_eperms r

rbac_user_perms session_user u
dac_user_perms session_user u

role_eperms r

rt t

∈

∈

∀ ℘ × ℘
• ∈ ∧ ⊆

∧ ⊆

⇒ <

U

U

U

U

 

    If the owner of an object is system administrator or the 
object is nil, then there exists a privilege with respect to 
this object in the current access permission state variable, 
iff the correspondent transaction is authorized with the 
privilege from RBAC policy. Formally Role Security 
Invariant: 
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: PRIVILEGES, : OBJECTS, : TRANS
( , ) ( ) (

( ( )) SYSADM)
: (ATTRS (VALUES))

( ( , ) ( , ))
(( , )

p o tr
p o cur_perms tr o nil

user_kind object_owner o
d

a vs d a vs o
p d

∀
• ∈ ∧ = ∨

=
⇒ ∃ ℘ ×℘
• ∀ ∈ •
∧ ∈

 

( ( )))

( ( ( )))
( , )

( ))
r session_roles trans_session tr

rbac_user_perms session_user trans_session tr
p d

role_eperms r
∈

∨ ∈

U
 

    If the owner type of an object (not as a nil object) is not 
system administrator, then there exists a privilege with 
respect to this object in the current access permission 
state variable, iff the correspondent user is authorized the 
privilege from DAC policy. Formally Role Security 
Invariant: 

: PRIVILEGES, : OBJECTS, : TRANS
( , ) ( )

( ( )) SYSADM
: (ATTRS (VALUES))
( ( , ) ( , ))
( , )

( ( ( )))

p o tr
p o cur_perms tr o nil

user_kind object_owner o
d

a vs d a vs o
p d

dac_user_perms session_user trans_session tr

∀
• ∈ ∧ <>

∧ <>
⇒ ∃ ℘ ×℘

• ∀ ∈ •
∧ ∈

 

    There exists a ‘read’ privilege with respect to an object 
in the current access permission state variable, iff security 
label of the correspondent transaction dominates the 
security label of the object. Formally Simple Security 
Invariant: 

: PRIVILEGES, : OBJECTS,
: (ATTRS (VALUES)), : TRANS

( , ) ( ) ( ) {read,mop}
( ) ( )

p o
d tr

p o cur_perms tr priv_type p
trans_class tr dom object_class o

∀
℘ ×℘
• ∈ ∧ ∈
⇒

 

    There exists a ‘write’ privilege with respect to an 
object in the current access permission state variable, iff 
security label of the correspondent transaction is 
dominated by the security label of the object. Formally *-
Security Invariant: 

: PRIVILEGES, : OBJECTS, : TRANS
( , ) ( ) ( ) write

( ) ( )

p o tr
p o cur_perms tr priv_type p

object_class o trans_class tr

∀
• ∈ ∧ =
⇒ =

 

    All administrators and object owner have the grant 
privileges with respect to the privileges specific to them. 
Formally Management Privilege Invariant: 

: USERS {sysadmin,secadmin,audamin}
_ _ ( ) (PRADM, )

( )
: PRIVILEGES, : OBJECTS

_ ( _ ( ))
(PRADM,( , ))

( ( ))

u u
pe rbac user perms u pe
user_admin_perms u

pr o
pr object priv object type o

pr o
user_admin_perms object_owner o

∀ • ∈
⇒∀ ∈ •
∈

∀
• ∈
⇒
∈

 

    ALL administrators and object owner have the grant 
privileges with respect to the privileges specific to them. 
Formally Management Privilege Invariant: 

: USERS {sysadmin,secadmin,audamin}
_ _ ( ) (PRADM, )

( )
( ( ))

u u
pe rbac user perms u pe
user_admin_perms u

user_admin_perms object_owner o

∀ • ∈
⇒∀ ∈ •
∈
∈

 

: PRIVILEGES, : OBJECTS
_ ( _ ( ))

(PRADM,( , ))

pr o
pr object priv object type o

pr o

∀
• ∈
⇒

 

    Lastly, we have two state transition constraints with 
respect to role activation and administrator role 
assignment. 
    DBMS-CONST-01 (Role Activation Constraint) A 
role is activated iff the corresponding user is assigned to 
the role and all prerequisite roles are present in the 
previous state. Formally: 

: ROLES, : SESSIONS
'( ) ( ) { }

( ( ))
: ROLES ( , )

( )

r s
session_roles s session_roles s r

r user_roles session_user s
rs r rs role_pre

rs session_user s

∀
• =
⇒ ∈ ∧
∃ ℘ • ∈

∧ ⊆

U

 

    DBMS-CONST-02 (Administrator Constraint) 
When a user is upgraded to an administrator, it will not 
be downgraded. Formally: 

: USERS ( )
{SYSADM,SECADM,AUDADM}

'
( ) '( )

u user_kind u

u user_exists
user_kind u user_kind u

∀ • ∈

∧ ∈
⇒ =

  

V. OPERATION RULES  
    The operation rules are the mechanism of the model to 
enforce security policies. There are six types of 
operations: subject creation/deletion, data object 
create/deletion, security policy management, audit 
management and authorization, and public operations. 
Our model is modular such that newly added operations 
can be proved independently without affecting the 
security of previous operations. In this paper, we do not 
list all the operation rules due to space limitation. 
However the model is self contained and the correctness 
of the presented model is not affected. 
    There are object predicates in authorization of this 
model, so that it cannot directly decide whether an object 
is authorized.  For notation, if there is a permission (p,f) 
in the authorization of user u in rbac_user_perms(u) and 
dac_user_perms(u) such that f(o)=true, then the user is 
authorized implicitly with (p,o). Similarly, a role 
activated in a session may be authorized implicitly with 
(p,o). No matter implicitly or explicitly, the subject is 
called as authorized. Next, some typical and important 
operation rules are presented. Others may be similarly 
constructed. 

1. CREATE USER 
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This operation creates a user account in the system. 
Input is: requesting transaction tr?, and user name u?. 
Checking if : 1) CREATEUSER is in current 

permission cur_perms(tr); or the user 
session_user(trans_session(tr)) who initializes the 
transaction tr? is authorized with CREATEUSER, or the 
activated roles in session trans_session(tr) are authorized 
with CREATEUSER. 2) u? does not belong to 
user_exists. 

If all condition is checked OK, then output CREATE 
USER, and update state: 

user_exists’ =user_exists U u?,  
user_kind’= user_kindU {u?a COM} 
cur_perms’= cur_perms U {tra (CREATEUSER, 

u?)}, 
Otherwise output ERROR. 
 
2. CREATE TABLE 
This operation creates a real relation.  
Input is: requesting transaction tr?, and table tb?. 
The Checking conditions are similar to that of 

CREATE USER. 
If all conditions are checked OK, then output 

CREATE TABLE, and update state: 
real_exists’= real _existsU tb? 
real_class’= real _classU {tb?a trans_class(tr)} 
real_database’= real _database U  {tb? a  

session_dabase(trans_session (tr))} 
cur_perms’ = 

cur_permsU {tra (CREATETABLE tb?)}. 
 

3. CREATE VIEW 
This operation creates a view relation.  
Input is: requesting transaction tr?, and view v?. 
Checking if: 1) CREATEVIEW is in current 

permission cur_perms(tr); or the user 
session_user(trans_session(tr)) who initializes the 
transaction tr? is authorized with CREATEVIEW, or the 
activated roles in session trans_session(tr) are authorized 
with CREATEVIEW. 2) for every r? in rs?, the current 
perimission cur_perms(tr) has the permission of 
(ACCESS r?); or for transaction tr related user 
session_user(trans_session(tr)) has authorization of 
(ACCESS r?), or  the activated roles in session 
trans_session(tr) have authorization of (ACCESS r?) 3) 
v? does not belong to view_exists. 

If all conditions are checked OK, then output 
CREATE TABLE, and update state: 

view_exists’= view _existsU vi? 
view_class’= view_classU {vi?a trans_class(tr)} 
view_database’= view_database U  {vi? a  

session_dabase(trans_session (tr))} 
cur_perms’ = cur_permsU {tra (CREATEVIEW 

vi?)} 
 

4. DROP TABLE 
This operation drops a real relation 

Input is: requesting transaction tr?, and table tb?. 
Checking if 1) the Checking condition 1) is similar 

to that of CREATE USER. 2) tb? ∈ real_exists, 
real_database(tb?)=session_database(trans_session (tr)). 
3) trans_class(tr)=real_class(tb?).  

If all conditions are checked OK, then output 
CREATE TABLE, and update state: 

real_exists’= real _exists \ tb? 
real_class’= real _class \ {tb?a trans_class(tr)} 
real_database’= real _database \ 

{tb?a session_dabase(trans_session (tr))} 
cur_perms’ = cur_perms U {tr a (DROPTABLE 

tb?)}.  
And DROP all subordinated entity, view, tuples 

recursively.   
 

5. SELECT 
The operation reads the tuples from relations.  
Input is: requesting transaction tr?, and table tb?, 

and condition cf?. 
Checking if : 1) (ACCESS, tb?) is in current 

permission cur_perms(tr); or the user 
session_user(trans_session(tr)) who initialize the 
transaction tr? is authorized with (ACCESS, tb?), or the 
activated roles in session trans_session(tr) are authorized 
with (ACCESS, tb?). 2) (SELECT, tb?) is in current 
permission cur_perms(tr); or the user 
session_user(trans_session(tr)) who initializes the 
transaction tr? is authorized with (SELECT, tb?), or the 
activated roles in session trans_session(tr) are authorized 
with (SELECT, tb?). 3) tb? ∈view_existsU real_exists. 
4) If object_type(tb?)=TABLE, then real_database(tb?)= 
session_database(trans_session (tr)), if object_type (tb?) 
=VIEW, then view_database(tb?)= session_database 
(trans_session (tr)). 5) trans_class(tr) dom object_class 
(tb?) 

If Check is OK then outputs all tuples that meet cf?, 
authorization predicates, and trans_class(tr) dom . Then 
the new state is: 

cur_perms’ = cur_perms U {tr a (ACCESS tb?), 
tra (SELECT tb?)}.  

 
6. INSERT 
The operation inserts the tuple into a real relation.  
Input is: requesting transaction tr?, and table tb?, 

and tu?.  
Checking conditions are similar to that of SELECT. 

New state is: 
cur_perms’ = cur_perms U {tr a (ACCESS tb?), 

tra (INSERT tb?)}. 
tuple_exists’=tuple_existsU { tu? } 
tuple_class’=tuple_classU { tu?a trans_class(tr)} 
tuple_real’=tuple_realU { tu?a tb?} 
Note: The DELETE, UPDATE operation rules are 

omitted due to space limitation. Because the security 
model for fine-grained data such as tuples, attributes, 
elements is similar to that of previous model in the 
literature, our model focuses only on the security policies 
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on coarse grained entities such as database, table, and 
view etc. As such, the operation rules for select, delete, 
update, and insert in this model are not concerned with 
the details of tuples/attributes/elements. 

VI. SECURITY ANALYSIS  
    The definitions of system, system security, security 
state in this paper are the same as traditional BLP model 
and not presented here.  
    Definition 7.1 (Initial state of SEPOSTG) Initially, the 
state variables are:  
      (1) Initial users related variables: including initial 
users set, user types, and user classifications: 

={sysadmin, secadmin, audadmin}
{sysadmin SYSADM,

secadmin SECADM,audadmin AUDADM}
{sysadmin trusted,audadmin

trusted,secadmin trusted}

user_exists
user_kind

user_class

=

=

a

a a

a

a a

      

(2) The initial security labels: syshigh, syslow, and 
trusted are members of class_exists, and hlevel, llevel are 
members of level_exists, and  hcate, lcate are members of 

level_exists. Formally: 
{syshigh,syslow, trusted}
{hlevel, llevel}
{hcate, lcate}

class_exists
level_exists

cate_exists

∈
∈

∈
 

(syshigh) (hlevel, hcate)
(syslow) (llevel, lcate)

class_level_cate
class_level_cate

=
=

 

1

2

syshigh syslow
hlevel llevel
hcate lcate

dom
dom

dom
 

(3) All the initial administrators are authorized with 
corresponding permissions which are reflected in 
rbac_user_perms, user_adm_perms. In concrete, system 
administrator has all system management permissions; 
security administrator has security management 
permissions; and auditor has audit management 
permissions. 

(4) Other state variables are NULL initially. 
    Theorem 7.1 The initial state of model SEPOSTG is 
secure with respect to all the state invariants of 
SEPOSTG. The operation rules of SEPOSTG are secure 
with respect to all the state invariants and state transition 
constraints of SEPOSTG. 
    This theorem can be automatically proved with the 
help of theorem prover. Actually, we have proved the 
above theorem in Z/EVES [12] with regard to most of the 
security properties. Some security properties are proved 
manually because of the limited expressiveness of 
Z/EVES. 
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