
The Formal Model of DBMS Enforcing Multiple
Security Polices

Yongzhong He, Zhen Han

School of Computer, Beijing Jiaotong University, China
State Key Lab of CAS, Beijing, China, Oakland University, Michigan, USA

Email: {yzhhe, zhan}@bjtu.edu.cn

Huirong Fu, Guangzhi Qu
Department of CSE, Oakland University, Michigan, USA

Email: {fu, gqu}@oakland.edu

Abstract— The formal security policy model and security
analysis is necessary to help Database Management System
(DBMS) to attain a higher assurance level. In this paper we
develop a formal security model for a DBMS enforcing
multiple security policies including mandatory multilevel
security policy, discretionary access control policy and role
based access control policy. A novel composition scheme of
policies is introduced. And the security properties are
comprehensively and accurately specified in terms of about
17 state invariants and state transition constraints.
Furthermore, the security of the model is proved with the
Z/EVES theorem prover.

Index Terms—-multiple security policies; formal language;
security invariant; theorem proving

I. INTRODUCTION
Formal modeling plays a key role in building trusted

software systems, such as trusted OS, DBMS or other
applications. Various security evaluation standards and
criteria, including Common Criteria [1], TCSEC [2] of
US, GB17859 [3] of China, require that formal model and
security analysis be presented to be evaluated at higher
assurance level.

The SeaView [4] model is one of the earliest
influential security models for multilevel secure database
based on Bell LaPadula model (BLP) [5]. It is verified in
[6]. Recently [7] extended the object structure of the
SeaView Model and, modeled the security policy in
formal language and proved the security with the help of
Coq proof assistant. But role based access control
(RBAC) [8] is not supported in these models. A powerful
and flexible authorization mechanism was proposed in [9]
to enforce any different security polices in DBMS.
However, due to efficiency consideration, this
mechanism is never adopted in practical DBMS. A design
framework of database system supporting BLP, DAC
(Discretionary Access Control) and RBAC policies was
proposed in [10] while the formal security model is not

presented. Because many commercial DBMSs are
supporting these policies, there is an emerging demand
for a formal and accurate security model of DBMS
supporting all the previous security policies.

In this paper, a formal security policy model (named as
SEPOSTG, for Secure PostgreSQL) of DBMS supporting
multiple security policies is proposed, based on which we
enhanced the open source DBMS PostgreSQL [11] to
enforce multiple security policies and aimed to boost its
security level to TCSEC B2.

Our main contributions in this paper are threefold: 1)
Multiple security policies including BLP, DAC, and
RBAC are modeled. Especially, a novel composition
scheme of multiple policies is proposed. 2) We present 15
state invariants and 2 state transitions in this paper, most
of them are either new or improved compared to those in
the literature, to model the security properties after
analyzing the security policies thoroughly and
comprehensively. 3) The model is expressed in formal
language Z [12], and can be proved automatically with
the help of the theorem prover Z/EVES.

As the security model for fine-grained entities such as
tuples, attributes, elements in a tuples is well defined in
other works, we do not consider those entities in this
paper so as to greatly facilitate the security proof of our
model. Furthermore, our model can be easily integrated
with the other security models consisting of fine-grained
entities because of its modular design.

The organization of this paper is as follows. In Section
2, the policy composition scheme of multiple policies is
discussed. In Sections 3, 4, 5, the basic definition of
entities and principals, security requirement termed as
invariants and constraints, and operation rules are
presented sequentially. The security analysis of the model
is described in Section 6.

II. POLICIES COMPOSITION
In the SEPOSTG model, three typical security policies,

namely BLP, DAC, and RBAC, will be enforced. Among
the policies, multilevel BLP is required by the standards
for higher assurance level. From management point of
view, the management privileges are assigned to a few
managers in RBAC such that management privileges are

Manuscript received January 1, 2009; revised June 1, 2009; accepted
July 20, 2009.

514 JOURNAL OF SOFTWARE, VOL. 5, NO. 5, MAY 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.5.514-521

centralized and strictly protected, while every owner has
the management privileges with regarding to his own data
in DAC such that the management privileges is
distributed and flexible. Although RBAC can simulate
DAC or BLP model, the efficience is damaged.
Therefore, our model supports both of them. The problem
is the choice of policies composition scheme so as to
make the model consistent, expressive, and effective. As
to an access request, the access control decision made by
the SEPOST model depends on the composition of
decisions by BLP, DAC and RBAC respectively. We
introduce a decision function to model the access control
decision made by the composed policies.

Suppose that, for a complete model, in one state of the
system, for any access request to the model, the access
control decision would be {YES, NO, UNDEFINED}.
Then, we can build 38=6561 decision functions for
composed policies from BLP, DAC and RBAC.
According to the analysis of each decision function, most
of them are impractical. Apparently, BLP is a mandatory
policy that every access request should respect. However,
the composition of RBAC and DAC with ‘OR’ relation is
not suitable, because it will result in unnecessarily
replicated authorizations. Based on the evaluation
standards and the above observation, one may choose the
composition as the following function:

()RD RBAC DAC BLP= ∨ ∧
The connotation of this function is, all access requests

must meet BLP policy, and meet either RBAC or DAC.
Table 1 illustrates the composition when all policies
involved are complete (without UNDEFINED decision).
If the decision of any component policy is UNDEFINED
with respect to an access request, then the decision of the
composed policy is UNDEFINED.

Table 1 Policies Composition

RBAC
decision

DAC
decision

BLP
decision

SEPOSTG
decision

YES YES YES YES
YES YES NO NO
YES NO YES YES
YES NO NO NO
NO YES YES YES
NO YES NO NO
NO NO YES NO
NO NO NO NO

However, the above straightforward composition is not

satisfactory in practice. As we know, RBAC is more
suitable for organizational policy, while DAC is more
suitable for personal policy. Consequently, with
regarding to the decision function RD, one may use DAC
policy to corrupt the RBAC policy. The attack is as
follows. The standard RBAC can not explicitly express
negative authorization (which means to deny one role the
privilege of access to one object) so that it is assumed by
default that if there is no authorization for an access

request then the request is denied. However, one subject
which is assumed by the organizational policy
administrator to be denied access to one object in RBAC
may be granted access privilege in DAC by another
subject. In this way, the effect of the RBAC policy
becomes unexpected. One approach to this problem is to
add negative privilege explicitly to RBAC policy, but the
constraints of the approach is that it will add significant
burden to the system administrator because there are huge
volumes of data in DBMS generally.

We take another approach to the problem. The objects
are classified into two categories based on the owner of
the object. The owners of objects are: system
administrator, and others. RBAC policy are applicable to
the objects owned by system administrator, DAC policy
are applicable to objects owned by other owners. The
owner of an object can be changed by the security
administrator so that we can change the policy on an
object by changing its owner. When a user is removed
from the system, the owner of objects owned by this user
is changed to be the system administrator. Furthermore,
for all privilege with no specific objects (e.g. system
privileges), it is subject to RBAC policy.

Hence, the decision function of policy composition
in our model SEPOSTG is formalized as:

() ()
_ (()) SYSADM

()

() ()

BLP o RBAC o
if user kind owner o

RD o
o nil

BLP o DAC o otherwise

∧⎧
⎪ =⎪= ⎨ ∨ =⎪
⎪ ∧⎩

Remark: user_kind(), owner() and SYSADM will be
defined in the following section.

III. BASIC ELEMENTS AND DEFINITIONS
In this section, we define the basic elements of our

model SEPOSTG, including data types, constraints and
variables.

A. Data types
 There are seven basic data types in this model.
 Security Labels: [CLASSES, LEVELS, CATES],
CLASSES is for security label type which is composed
by linear ordered levels LEVELS and patiral ordered
categories CATES.

Roles: [ROLES], for Role based access control.
 Subjects: [USERS, SESSIONS, TRANS], SESSIONS
models the process between user login and logout,
TRANS is correspondent to transaction in DBMS.

User Kinds:
UKIND := SYSADM|SECADM|AUDADM|COM.

 In order to limit the power of administrator, there are
three kinds of administrators introduced to assume
different duties. The duty of the system administrator is
the routine of system management, such as user or data
object creation/removal; the duty of the security
administrator is the maintenane of security policy; the
auditor is in charge of audit policy. It is required in this
model that system administrator has no privileges to
read/write access to the content of an object.

JOURNAL OF SOFTWARE, VOL. 5, NO. 5, MAY 2010 515

© 2010 ACADEMY PUBLISHER

 Objects: [DATABASES], [MREALTIONS, MREAL-
IDS, MVIEW-IDS, MTUPLES, ELEMENTS], [AUXS,
SUBORDS]. There are many kinds of objects in the
database, including database, relation, view, tuple,
element, auxilary object and subordinate object.
MREALTIONS is composed of MREAL-IDS and
MVIEW-IDS.
 Operations and Privileges: Operation and privilege are
tightly related but have different usages, [OPERATIONS,
PRIVILEGES]
 Parameter types: for element data types. [VALUES,
BOOL, ATTRS]

B. Constants and Mappings
 Reserved users: { sysadmin, secadmin, audadmin }.
There are three reserved users which cannot be removed
at any time: system administrator, security administrator,
auditor. They are called as initial administrators.

Reserved Security labels: { syshigh, syslow, trusted}.
 operations:OPERATIONS, including CREATE
USER, DROP USER, ACTIVATE ROLE, DEACT
ROLE, INSERT, DELETE, UPDATE, SELECT; AUDIT
ON, UPGRADE, DOWNGRADE, etc. The full list of the
operations are not presented here.
 Privileges:PRIVILEGES, including initial system
administrator privieleges: CREATEUSER, DROPUSER,
CREATEDB, CREATETABLE, etc.and initial secucity
administrator privieleges: CREATEROLE, DROPROLE,
CREATELABEL, DROPLABEL, etc.; initial auditor
administrator privieleges: AUDIT, AUDSET,
AUDREAD, AUDPURGE, AUDBACKUP. All initial
administrators have privileges of: LOGIN, LOGOUT,
ACT, DEACT, UPLABEL.
 A constant mapping is used to describe the max
privileges which can be granted to a user or an
administrator:
adm_ perms :{sysadmin,secadmin,audadmin,com}

(PRIVILEGES)all→℘ ×

Different types of objects have different owner
privileges, which are defined by:
owner_privs :{database, real, view,

tuple,element,aux,subords} PRVILEGES℘a

 All privileges have one of the three privilege types. For
example, Log in , Log out, etc. belong to ‘read’ type;
create, drop etc. belong to ‘write’ type; and SELECT,
INSERT tuples belong to multilevel operation type ‘mop’:
priv_type : PRIVILEGES {read, write, mop}a .
 All users have the minimum privies as:
 public_perms={ LOGOUT, ACTROLE,
BEGINTRANS, ENDTRANS }

The mapping ‘op-privs’ is used to model the
privileges that an operation should hold. It is required that
every access request must have the object privilege as
well as the object data container’s privilege. For example,
to create a relation r in database db one must have the
privileges of CREATEREAL and LOGON db; to select
the tuple in relation r one must have the privileges of
SELECT r, ACCESS r and LOGON db.

 There are five attribute predicates introduced below.
The first predicate ateq is defined as: for any tuple t:
MTUPLES, if the number i:N attribute’s value is equal to
v: VALUES, then ateq(i,v,t) is TRUE. Similarly, atge,
atgr, atle, atlt means greater or equal, greater, less or
equal, less respectively.

: N VALUES MTUPLES BOOLEAN
: N VALUES MTUPLES BOOLEAN
: N VALUES MTUPLES BOOLEAN

ateq
atge
atgr

× ×
× ×
× ×

a

a

a

 The ‘obj’ preditcate means that when o1:OBJECTS
equals o2:OBJECTS then obj(o1, o2) is true.

: OBJECTS OBJECTS BOOLEANobj × a
: OBJECTS BOOLEANall a

C. Variables
The variables may be changed by operations, and are

the indispensable part of the state of the system.
The state variables related to subject include user set,

session set and transaction set.
_ : USERS

: SESSIONS
: TRANS

user exists
session_exists
trans_exists

℘
℘

℘

The types of user are introduced to manage the
difference between administrators and common users.
Different kinds of users have different privileges.

_ : USERS UKINDuser kind a
 One session is correspondent to one user’s login, and
one transaction is correspondent to one session, and one
session can only access to one database. So we have:

: SESSIONS USERS
: TRANS SESSIONS

session_user
trans_session

a

a

: SESSIONS DATABASESsession_database a
Object related state variables include database set,

relation set, real relation set, view set, tuple set, etc.
_ : DATABASES

: MRELATIONS
: MREAL- IDS

database exists
relation_exists
real_exists

℘
℘

℘

 The data objects in DBMS are related in a tree
structure, and parent node is called as the container of
child node. Database is at the root of the tree, and is the
largest container. Element is at the leaf and is not
container.

: MREAL- IDS DATABASES
: MVIEW- IDS DATABASES

: MVIEW- IDS MREAL- IDS

real_database
view_database
view_reals ℘

a

a

a

 Role based access control policy is an important part of
this model. The state variables for role based access
control include roles set, role containing mapping
(role_co), role supervising mapping (role_su), role and
permission mapping, user role mapping, session and
activated roles mapping, static separation of duty,
dynamic separation of duty, and the preconditions of role
activation. All of them are listed below respectively.
Particularly, role_co and role_su are improvement of role
hierarchy. role_co is the same as the traditional role

516 JOURNAL OF SOFTWARE, VOL. 5, NO. 5, MAY 2010

© 2010 ACADEMY PUBLISHER

hierarchy, but role_su is used to model the supervisor
role which has only the management privileges of its
subordinate roles.

_ : ROLES
_ : ROLES ROLES
_ : ROLES ROLES

role exists
role co
role su

℘
℘
℘

a

a

: ROLES
(PRIVILEGES (ATTRS (VALUES)))

: USERS
(PRIVILEGES (ATTRS (VALUES))))

role_perms

rbac_user_perms
℘ ×℘ ×℘

℘ ×℘ ×℘

a

a

: USERS ROLES
: SESSIONS ROLES

user_roles
session_roles

℘
℘

a

a

_ : ((ROLES) N)
_ : ((ROLES) N)
_ : (ROLES ROLES)

role ssd
role dsd
role pre

℘ ℘ ×
℘ ℘ ×
℘ ×℘

 The state variables for discretionary access control
(DAC) are as follows. dac_uer_perms means that a user’s
permission set of (Privilege, object predicate, parameters
list).
OBJECTS:=DATABASES MRELATIONS

MTUPLES ELEMENTS AUXS SUBORDS
:OBJECTS USERS

:USERS
(PRIVILEGES (ATTRS (VALUES)))

object_owner
dac_user_perms

℘ ×℘ ×℘

U

U U U U

a

a

 The variables for mandatory access control (MAC)
include security labels set etc. Note that a security label
c:CLASSES is composed of level and category which
reflectes the class_level_cate mapping.

_ : CLASSES
_ : LEVELS

_ : CATES
_ _ : CLASSE SLEVELS CATES

class exists
level exists
cate exists
class level cate

℘
℘
℘

×a

In the security labels set class_exists there is a partial
order dom (which is called as ‘dominate’ relation), and in
level set level_exists there is a total order dom1, and in
cate_exists there is a partial order dom2.

In models supporting multilevel access control (BLP),
all subjects and objects should be properly marked with
security labels. The security label of a session initialed by
a trusted user can be dynamically updated. As changing
session security label will lead to start a new service
process, we require that the security label of a transaction
cannot be changed during its lifetime.
 The subject to security label mapping is:

: USERS CLASSES

: SESSIONS CLASSES
: TRANS CLASSES

user_class
session_class
trans_class

a

a

a

 The object to security label mapping is:

: DATABASES CLASSES
: MREAL- IDS CLASSES
: MVIEW- IDS CLASSES

database_class
real_class
view_class

a

a

a

 For easy reference in the model, we define an
integrated object to security label mapping, and an object
to type mapping:

:object_class database_class real_class
view_class tuple_class element_class
aux_class subord_class

= U

U U U

U U

: OBJECTS
{database, real, view, tuple,element,aux,subords}

object_type a

 Lastly, we define two key variables of the model:
current access permission state variable and current
administration permission variable. The first variable
models the non-administration (not the GRANT
privileges) permissions of a transaction’ access request,
and is computed legally based on RBAC policy, DAC
policy and BLP policy. Another variable, current
administration permission variable, is concerned with the
permissions related to GRANT privileges.

: TRANS PRIVILEGES OBJECTS
: TRANS PRIVILEGES OBJECTS

cur_perms
cur_adm_perms

×
×

a

a

IV. INVARIANTS AND CONSTRAINTS
The key part of the DBMS security policy model is the

definitions of security which are formalized as state
invariants or/and state transition constraints. State
transition constraints are enforced in every access request
which will cause a state transition, while state invariants
should be kept for every state which is reachable for any
access requests from any initial state. Based on the
evaluations standards (GB17859, TCSEC and CC), the
characteristics of the component policies, and the DBMS
application requirements, there are 14 state invariants and
2 state transition constraints identified in SEPOSTG,
most of them are not reported before in the literature.

It is required that all reserved security labels (syshigh,
syslow, trusted) are always members of class_exists; all
security labels except trusted are dominated by syshigh
and dominate syslow. Suppose that class_level_cate(c1) =
(a1,b1), class_level_cate (c2) = (a2,b2), then c1 dom c iff a1
dom1 a2, b1 dom2 b2 . Let fst (a,b)=a, snd(a,b)=b, formally
we have Security Labeling Invariant:
{syshigh,syslow, trusted}

: CLASSES trusted
syshigh syslow

class_exists
c c class_exists c

dom c c dom

∈
∀ • ∈ ∧ ≠
⇒ ∧

1 2 1 2 1 2

1 1

2

1 2

2

, : CLASSES ,
(_ _ ())

(_ _ ())
(_ _ ())
(_ _ ())

c c c c class_exists c dom c
fst class level cate c dom

fst class level cate c
snd class level cate c dom
snd class level cate c

∀ • ∈ ∧
⇒

∧

There is an invariant to model the security labeling of
subject including session, transaction and user. It is
required that the security label of all sessions and

JOURNAL OF SOFTWARE, VOL. 5, NO. 5, MAY 2010 517

© 2010 ACADEMY PUBLISHER

transactions is not ‘trusted’; and for untrusted users, the
security label of session is dominated by user’s security
label who opens the session, and for all users, the security
label of transaction is dominated by session’s security
label. Formally we have Subject Security Label
Invariant:

: SESSIONS, : TRANS () trusted
() trusted

(())
()

_ () trusted
(())

()

s tr session_class s
trans_class tr
session_class trans_session tr
dom trans_class tr
session user s

user_class session_user s
dom session_class s

∀ • ≠
∧ ≠
∧

∧ ≠
⇒

Another invariant is to model the security labeling of
objects in the hierarchy. It is required that the security
label of all objects cannot be ‘trusted’, and the security
label of an object dominates the security label of its
parent in the hierarchy. For simplicity, we here only give
the invariant for relation and database objects, invariants
for other types of objects can be constructed similarly.
Formally Object Security Label Invariant is:

: DATABASES, : MREAL- IDS
() trusted

() trusted ()
(())

d r
database_class d
real_class r real_class r
dom database_class real_database r

∀
• ≠
∧ ≠ ∧

There are three reserved administrators in the system.
Each administrator is able to upgrade common user to be
the same kind of administrator as itself, and/or grants the
self privileges to the users. Therefore formally we have
Initial Administrator Invariant:
{sysadmin,secadmin,audadmin}

(sysadmin) SYSADM
(secadmin) SECADM
(audadmin) AUDADM

user_exists
user_kind
user_kind
user_kind

∈
∧ =
∧ =
∧ =

(sysadmin) adm_perms(sysadmin)
(secadmin) adm_perms(secsadmin)
(audadmin) adm_perms(audadmin)

rbac_user_perms
rbac_user_perms
rbac_user_perms

∧ =
∧ =
∧ =

One kind of administrator cannot have the distinct
management privileges of the other kind. Suppose
user_eperms includes all permissions derived from all
component policies, im⊆ is slightly different from
normal set operation ⊆ . It is defined as: if every
permission (p,f(o))in A is in B or is derivable from B then

imA B⊆ . Formally Administrator Separation of Duty
Invariant:

: USERS
() SYSADM

() adm_perms(sysadmin)
() SECADM

() adm_perms(secadmin)

im

im

u
user_kind u
user_eperms u
user_kind u
user_eperms u

∀
• = ⇒

⊆
∧ = ⇒

⊆

() AUDADM
() adm_perms(audadmin)

() COM
() adm_perms(com)

im

im

user_kind u
user_eperms u
user_kind u
user_eperms u

∧ = ⇒
⊆

∧ = ⇒
⊆

 The owner of an object has all the privileges including
management privileges with respect to the object.
Formally Ownership privileges Invariant:

: OBJECTS
: owner_privs(_ ())

(,) (())

o
p object type o

p o rbac_user_perms object_owner o

∀
•∀
• ⊆

All users by default have the common privileges
which are termed as Public privileges. Formally User
Public Privileges Invariant:

: USERS
public_perms ()

u
rbac_user_perms u

∀
• ∈

 The static separation of duty SSD is defined differently
from SSD in RBAC. In our model, the SSD:= ({r1,
r2,…rn },t) means that one user cannot have privileges
(including inheritance) of t roles from {r1, r2,…rn}.
Formally Static Separation of Duty:

()

: USERS,(,) : (ROLES) N, : ROLES
(,)

((()) (()

()
())

#

r rt

r user_roles u

u rs t rt
rs t role_ssd rt rs

role_eperms r rbac_user_perms u

dac_user_perms u
role_eperms r

rt t

∈

∈

∀ ℘ × ℘
• ∈ ∧ ⊆

∧ ⊆

⇒ <

U

U

U

U

Remarks: role_eperms(r) is all permissions of role r
including derived permissions, and it can be further
defined with role_perm and role_co,role_su.
 In our model, the DSD:= ({r1, r2,…rn },t) means that
one session cannot have privileges (including inheritance)
of t roles from {r1, r2,…rn}. Formally Dynamic
Separation of Duty:

()

: SESSIONS,(,) : (ROLES) N, : ROLES
(,)

((())

((())
(())

())

#

r rt

r session_roles s

s rs t rt
rs t role_dsd rt rs

role_eperms r

rbac_user_perms session_user u
dac_user_perms session_user u

role_eperms r

rt t

∈

∈

∀ ℘ × ℘
• ∈ ∧ ⊆

∧ ⊆

⇒ <

U

U

U

U

 If the owner of an object is system administrator or the
object is nil, then there exists a privilege with respect to
this object in the current access permission state variable,
iff the correspondent transaction is authorized with the
privilege from RBAC policy. Formally Role Security
Invariant:

518 JOURNAL OF SOFTWARE, VOL. 5, NO. 5, MAY 2010

© 2010 ACADEMY PUBLISHER

: PRIVILEGES, : OBJECTS, : TRANS
(,) () (

(()) SYSADM)
: (ATTRS (VALUES))

((,) (,))
((,)

p o tr
p o cur_perms tr o nil

user_kind object_owner o
d

a vs d a vs o
p d

∀
• ∈ ∧ = ∨

=
⇒ ∃ ℘ ×℘
• ∀ ∈ •
∧ ∈

(()))

((()))
(,)

())
r session_roles trans_session tr

rbac_user_perms session_user trans_session tr
p d

role_eperms r
∈

∨ ∈

U

 If the owner type of an object (not as a nil object) is not
system administrator, then there exists a privilege with
respect to this object in the current access permission
state variable, iff the correspondent user is authorized the
privilege from DAC policy. Formally Role Security
Invariant:

: PRIVILEGES, : OBJECTS, : TRANS
(,) ()

(()) SYSADM
: (ATTRS (VALUES))
((,) (,))
(,)

((()))

p o tr
p o cur_perms tr o nil

user_kind object_owner o
d

a vs d a vs o
p d

dac_user_perms session_user trans_session tr

∀
• ∈ ∧ <>

∧ <>
⇒ ∃ ℘ ×℘

• ∀ ∈ •
∧ ∈

 There exists a ‘read’ privilege with respect to an object
in the current access permission state variable, iff security
label of the correspondent transaction dominates the
security label of the object. Formally Simple Security
Invariant:

: PRIVILEGES, : OBJECTS,
: (ATTRS (VALUES)), : TRANS

(,) () () {read,mop}
() ()

p o
d tr

p o cur_perms tr priv_type p
trans_class tr dom object_class o

∀
℘ ×℘
• ∈ ∧ ∈
⇒

 There exists a ‘write’ privilege with respect to an
object in the current access permission state variable, iff
security label of the correspondent transaction is
dominated by the security label of the object. Formally *-
Security Invariant:

: PRIVILEGES, : OBJECTS, : TRANS
(,) () () write

() ()

p o tr
p o cur_perms tr priv_type p

object_class o trans_class tr

∀
• ∈ ∧ =
⇒ =

 All administrators and object owner have the grant
privileges with respect to the privileges specific to them.
Formally Management Privilege Invariant:

: USERS {sysadmin,secadmin,audamin}
_ _ () (PRADM,)

()
: PRIVILEGES, : OBJECTS

_ (_ ())
(PRADM,(,))

(())

u u
pe rbac user perms u pe
user_admin_perms u

pr o
pr object priv object type o

pr o
user_admin_perms object_owner o

∀ • ∈
⇒∀ ∈ •
∈

∀
• ∈
⇒
∈

 ALL administrators and object owner have the grant
privileges with respect to the privileges specific to them.
Formally Management Privilege Invariant:

: USERS {sysadmin,secadmin,audamin}
_ _ () (PRADM,)

()
(())

u u
pe rbac user perms u pe
user_admin_perms u

user_admin_perms object_owner o

∀ • ∈
⇒∀ ∈ •
∈
∈

: PRIVILEGES, : OBJECTS
_ (_ ())

(PRADM,(,))

pr o
pr object priv object type o

pr o

∀
• ∈
⇒

 Lastly, we have two state transition constraints with
respect to role activation and administrator role
assignment.
 DBMS-CONST-01 (Role Activation Constraint) A
role is activated iff the corresponding user is assigned to
the role and all prerequisite roles are present in the
previous state. Formally:

: ROLES, : SESSIONS
'() () { }

(())
: ROLES (,)

()

r s
session_roles s session_roles s r

r user_roles session_user s
rs r rs role_pre

rs session_user s

∀
• =
⇒ ∈ ∧
∃ ℘ • ∈

∧ ⊆

U

 DBMS-CONST-02 (Administrator Constraint)
When a user is upgraded to an administrator, it will not
be downgraded. Formally:

: USERS ()
{SYSADM,SECADM,AUDADM}

'
() '()

u user_kind u

u user_exists
user_kind u user_kind u

∀ • ∈

∧ ∈
⇒ =

V. OPERATION RULES
 The operation rules are the mechanism of the model to
enforce security policies. There are six types of
operations: subject creation/deletion, data object
create/deletion, security policy management, audit
management and authorization, and public operations.
Our model is modular such that newly added operations
can be proved independently without affecting the
security of previous operations. In this paper, we do not
list all the operation rules due to space limitation.
However the model is self contained and the correctness
of the presented model is not affected.
 There are object predicates in authorization of this
model, so that it cannot directly decide whether an object
is authorized. For notation, if there is a permission (p,f)
in the authorization of user u in rbac_user_perms(u) and
dac_user_perms(u) such that f(o)=true, then the user is
authorized implicitly with (p,o). Similarly, a role
activated in a session may be authorized implicitly with
(p,o). No matter implicitly or explicitly, the subject is
called as authorized. Next, some typical and important
operation rules are presented. Others may be similarly
constructed.

1. CREATE USER

JOURNAL OF SOFTWARE, VOL. 5, NO. 5, MAY 2010 519

© 2010 ACADEMY PUBLISHER

This operation creates a user account in the system.
Input is: requesting transaction tr?, and user name u?.
Checking if : 1) CREATEUSER is in current

permission cur_perms(tr); or the user
session_user(trans_session(tr)) who initializes the
transaction tr? is authorized with CREATEUSER, or the
activated roles in session trans_session(tr) are authorized
with CREATEUSER. 2) u? does not belong to
user_exists.

If all condition is checked OK, then output CREATE
USER, and update state:

user_exists’ =user_exists U u?,
user_kind’= user_kindU {u?a COM}
cur_perms’= cur_perms U {tra (CREATEUSER,

u?)},
Otherwise output ERROR.

2. CREATE TABLE
This operation creates a real relation.
Input is: requesting transaction tr?, and table tb?.
The Checking conditions are similar to that of

CREATE USER.
If all conditions are checked OK, then output

CREATE TABLE, and update state:
real_exists’= real _existsU tb?
real_class’= real _classU {tb?a trans_class(tr)}
real_database’= real _database U {tb? a

session_dabase(trans_session (tr))}
cur_perms’ =

cur_permsU {tra (CREATETABLE tb?)}.

3. CREATE VIEW
This operation creates a view relation.
Input is: requesting transaction tr?, and view v?.
Checking if: 1) CREATEVIEW is in current

permission cur_perms(tr); or the user
session_user(trans_session(tr)) who initializes the
transaction tr? is authorized with CREATEVIEW, or the
activated roles in session trans_session(tr) are authorized
with CREATEVIEW. 2) for every r? in rs?, the current
perimission cur_perms(tr) has the permission of
(ACCESS r?); or for transaction tr related user
session_user(trans_session(tr)) has authorization of
(ACCESS r?), or the activated roles in session
trans_session(tr) have authorization of (ACCESS r?) 3)
v? does not belong to view_exists.

If all conditions are checked OK, then output
CREATE TABLE, and update state:

view_exists’= view _existsU vi?
view_class’= view_classU {vi?a trans_class(tr)}
view_database’= view_database U {vi? a

session_dabase(trans_session (tr))}
cur_perms’ = cur_permsU {tra (CREATEVIEW

vi?)}

4. DROP TABLE
This operation drops a real relation

Input is: requesting transaction tr?, and table tb?.
Checking if 1) the Checking condition 1) is similar

to that of CREATE USER. 2) tb? ∈ real_exists,
real_database(tb?)=session_database(trans_session (tr)).
3) trans_class(tr)=real_class(tb?).

If all conditions are checked OK, then output
CREATE TABLE, and update state:

real_exists’= real _exists \ tb?
real_class’= real _class \ {tb?a trans_class(tr)}
real_database’= real _database \

{tb?a session_dabase(trans_session (tr))}
cur_perms’ = cur_perms U {tr a (DROPTABLE

tb?)}.
And DROP all subordinated entity, view, tuples

recursively.

5. SELECT
The operation reads the tuples from relations.
Input is: requesting transaction tr?, and table tb?,

and condition cf?.
Checking if : 1) (ACCESS, tb?) is in current

permission cur_perms(tr); or the user
session_user(trans_session(tr)) who initialize the
transaction tr? is authorized with (ACCESS, tb?), or the
activated roles in session trans_session(tr) are authorized
with (ACCESS, tb?). 2) (SELECT, tb?) is in current
permission cur_perms(tr); or the user
session_user(trans_session(tr)) who initializes the
transaction tr? is authorized with (SELECT, tb?), or the
activated roles in session trans_session(tr) are authorized
with (SELECT, tb?). 3) tb? ∈view_existsU real_exists.
4) If object_type(tb?)=TABLE, then real_database(tb?)=
session_database(trans_session (tr)), if object_type (tb?)
=VIEW, then view_database(tb?)= session_database
(trans_session (tr)). 5) trans_class(tr) dom object_class
(tb?)

If Check is OK then outputs all tuples that meet cf?,
authorization predicates, and trans_class(tr) dom . Then
the new state is:

cur_perms’ = cur_perms U {tr a (ACCESS tb?),
tra (SELECT tb?)}.

6. INSERT
The operation inserts the tuple into a real relation.
Input is: requesting transaction tr?, and table tb?,

and tu?.
Checking conditions are similar to that of SELECT.

New state is:
cur_perms’ = cur_perms U {tr a (ACCESS tb?),

tra (INSERT tb?)}.
tuple_exists’=tuple_existsU { tu? }
tuple_class’=tuple_classU { tu?a trans_class(tr)}
tuple_real’=tuple_realU { tu?a tb?}
Note: The DELETE, UPDATE operation rules are

omitted due to space limitation. Because the security
model for fine-grained data such as tuples, attributes,
elements is similar to that of previous model in the
literature, our model focuses only on the security policies

520 JOURNAL OF SOFTWARE, VOL. 5, NO. 5, MAY 2010

© 2010 ACADEMY PUBLISHER

on coarse grained entities such as database, table, and
view etc. As such, the operation rules for select, delete,
update, and insert in this model are not concerned with
the details of tuples/attributes/elements.

VI. SECURITY ANALYSIS
 The definitions of system, system security, security
state in this paper are the same as traditional BLP model
and not presented here.
 Definition 7.1 (Initial state of SEPOSTG) Initially, the
state variables are:
 (1) Initial users related variables: including initial
users set, user types, and user classifications:

={sysadmin, secadmin, audadmin}
{sysadmin SYSADM,

secadmin SECADM,audadmin AUDADM}
{sysadmin trusted,audadmin

trusted,secadmin trusted}

user_exists
user_kind

user_class

=

=

a

a a

a

a a

(2) The initial security labels: syshigh, syslow, and
trusted are members of class_exists, and hlevel, llevel are
members of level_exists, and hcate, lcate are members of

level_exists. Formally:
{syshigh,syslow, trusted}
{hlevel, llevel}
{hcate, lcate}

class_exists
level_exists

cate_exists

∈
∈

∈

(syshigh) (hlevel, hcate)
(syslow) (llevel, lcate)

class_level_cate
class_level_cate

=
=

1

2

syshigh syslow
hlevel llevel
hcate lcate

dom
dom

dom

(3) All the initial administrators are authorized with
corresponding permissions which are reflected in
rbac_user_perms, user_adm_perms. In concrete, system
administrator has all system management permissions;
security administrator has security management
permissions; and auditor has audit management
permissions.

(4) Other state variables are NULL initially.
 Theorem 7.1 The initial state of model SEPOSTG is
secure with respect to all the state invariants of
SEPOSTG. The operation rules of SEPOSTG are secure
with respect to all the state invariants and state transition
constraints of SEPOSTG.
 This theorem can be automatically proved with the
help of theorem prover. Actually, we have proved the
above theorem in Z/EVES [12] with regard to most of the
security properties. Some security properties are proved
manually because of the limited expressiveness of
Z/EVES.

ACKNOWLEDGMENT

This work was partly supported by China 973 under
Grant 2007CB307101, 863 under Grant 2007AA01Z41,
and Doctoral Program Foundation of University from
Department of Education of China under Grant

200800041052. Also, this paper is based upon work in
part supported by the National Science Foundation under
Grant 0716527, Grant 0736877, Michigan Space Grant
Consortium and Faculty Research Fellowship at Oakland
University. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
NSF, MSGC, or Oakland University.

REFERENCES
[1] Common Criteria,www.commoncriteriaportal.org
[2] Trusted Computing Security Evaluation Criteria.

csrc.nist.gov/publications/secpubs/rainbow/
[3] GB17859. www.ga.dl.gov.cn/djbh/GB17859-1999.doc
[4] Terasa F. Lunt, Dorothy E. Denning, Roger R. Schell,Mark

Heckman, and William R. Shockley, “The SeaView
Security Model,” IEEE Transactions on software
engineering vol.16.NO.6,June 1990.

[5] D. E. Bell and L. J. LaPadula, “Secure computer system:
Unified exposition and multics interpretation,” MTR-
2997,Revision 1, Mar.1976.

[6] R. A. Whitehurst and T. F. Lunt, “The SeaView
verification,”in Proc. Second Workshop Foundations of
Computer Security. Fran-conia, NH, IEEE Computer
Society Press, June 1989.

[7] Hong Zhu, et al.. Formal Specification and Verification of
an Extended Security Policy Model for Database Systems.
Proceedings of the 2008 Third Asia-Pacific Trusted
Infrastructure Technologies Conference table of contents.
pp 132-141

[8] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-
based access control models,” IEEE Computer, Vol. 29,
Issue 2, pp.38–47, 1996.

[9] Elisa Bertino, Sushi1 Jajodia, and Pierangela Samarati,
Supporting Multiple Access Control Policies in Database
Systems, Proceedings of the 1996 IEEE Symposium on
Security and Privacy,1998

[10] Min-A Jeong; Jung-Ja Kim; Yonggwan Won, A flexible
database security system using multiple access control
policies, PDCATapos;2003, LCNS, Springer Berlin /
Heidelberg.Volume , Issue , 27-29 Aug. 2003

[11] PostgreSQL, open source for DBMS, www.postgresql.org
[12] Z/EVES,www.cs.kent.ac.uk/people/staff/gsn2/zeves/

Yongzhong He received Ph.D degree from Institute of
Software, Chinese Academy of Sciences in 2006. Then he
joined Beijing Jiaotong University as an assistant professor with
School of Computer. His research interests are in computer
security and cryptographic protocols.

Zhen Han is a professor with School of Computer at Beijing
Jiaotong University. His research interests include computer
security and trusted computing.

Huirong Fu joined Oakland University as an assistant

professor in 2005. Her primary research interests are in
information assurance and security, networks, Internet data
centers, and multimedia system and services.

Guangzhi Qu joined Oakland University as an

assistant professor in 2007. His research interests include
system performance optimization and evaluation, parallel and
distributed systems, data mining, and the science of computing.

JOURNAL OF SOFTWARE, VOL. 5, NO. 5, MAY 2010 521

© 2010 ACADEMY PUBLISHER

