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Abstract—Logging while drilling (LWD) is a drilling 
technique which obtains and transmits the logging data 
during oil/gas drilling operations. Because of the limited 
available transmission bandwidth of mud channel, how to 
improve the bandwidth utilization becomes a critical 
problem in LWD research. In this paper, by discussing the 
information entropy of real logging data, we find that the 
original encoding of logging data is inefficient. To prune the 
data redundancy effectively and to improve the bandwidth 
utilization, we propose a novel compression method on the 
basis of Differential Pulse Code Modulation (DPCM). To 
further improve the compression efficiency with less 
information loss, we introduce the adjustable compression 
parameters for different kinds of logging data. Extensive 
experiments with the real logging data show that our 
method can give enough precise results with the 
compression ratio of 50% at least. The experiment results 
also show that our algorithm has the advantages of alterable 
compressing ratio, excellent decode quality and low 
algorithm complexity. 
 
Index Terms—logging while drilling; LWD; DPCM; logging 
data encode; 

 

I.  INTRODUCTION 

Logging while drilling (LWD) is a drilling technique, 
which is used to collect and transmit the information of 
the formation during oil/gas drilling operations. Different 
kinds of information, such as density, gamma, resistively 
and press, are required to be available in real time, 
because they are important to optimize drilling process, 
well placement, guide drilling parameter selection and 
estimation of the oil/gas reserves. However, it is very 
difficult to transfer the logging data from the bottom to 
the surface, which makes LWD develop slowly. There 
are some high-speed transmission technology such as 
cable, fiber, drill string and electromagnetism, but these 
transmission technologies are not suitable for practical 
use because of some technical and economic reasons. 
Mud-pulse transmission technology, whose positive pulse 
mode has been available in commercial use, is considered 
as the most practical logging data transmission technique. 
However, it has a severe limitation that its transmission 
rate is no more than 10 bits per second (bps). The limited 
data transmission bandwidth available with current LWD 
technology (typical 4 bps) is one of the most challenging 
problems for real time applications [1]. To solve this 

problem, researchers exert every effort from different 
aspects of the LWD system. 

Most of the researches focus on increasing data 
transmission bandwidth [2-6]. They introduced new high-
speed transmission technologies (e.g. cable, fiber, drill 
string and electromagnetism) and tried to make them be 
suitable for practical use in LWD system. But the fact is 
that the demand for real-time data is growing much faster 
than the technology that can practically transfer date 
increases [1]. So, only enhancing limited transmission 
bandwidth is not enough to meet the requirement of 
drilling and we have to maximize the utilization of 
current limited data transmission bandwidth to satisfy the 
ever-growing demand for real-time data. Compression 
provides one solution about maximizing the utilization of 
limited data transmission bandwidth. Thus, researchers 
have introduced some compression techniques and 
information transmission technologies to the LWD realm. 
Different drilling sensors often provide different amounts 
of data. All kinds of logging data have to be compressed 
due to the limited bandwidth of the mud channel. 
However, most researches on logging data compression 
mainly pay attention to block data compression, such as 
image data [1], acoustic waveform data [7] and seismic 
waveform data [8]). Less work has been done on low rate 
data compression, such as gamma data, resistivity data, 
density data and temperature data, which are the basic 
and necessary measured data in LWD and must be 
transmitted in real-time mode. 

Ref. [9] proposed a lossless data compression method 
based on the characteristics of logging data, but this 
method is not suitable for practical use because it takes 
no consideration to the limitation of the low power 
consumption and the poor computing capability of 
logging data collection instruments on the bottom of the 
wells. 

In this paper, we propose a new logging data 
compression approach, which takes full consideration of 
the requirement of real-time and the limitation of the low 
power consumption and the poor calculation ability of 
drilling devices. The main work and contributions of this 
paper are as follows. Firstly, we analyze the information 
entropy of logging information and find that there is 
redundancy in the logging data, which can be compressed. 
Secondly, we proposed a novel real-time compression 
approach. In our approach the Differential Pulse Code 
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Modulation (DPCM), which is a lossy compression 
method, is used to compress the logging data. Thirdly, by 
analyzing the logging data, we find that the logging data 
from different instruments has different characteristic. 
Thus, we optimize the compression parameters for 
different logging data respectively in terms of their own 
characteristic to insure the distortion sufferable. Fourthly, 
extensive experiments are done on the basis of a great 
deal of real drilling data. Our experiments show that the 
lossy compression method can give enough precise 
results when compression ratio is 50%. The experiment 
results also show that our scheme has the advantages of 
alterable compressing ratio, excellent decode quality and 
low algorithm complexity, which indicate its potential for 
applications. Something should to be noted is that we are 
cooperating with the instrument manufacturer in 
manufacturing independent intellectual property 
instrument based on our proposal. 

The rest of this paper is organized as follows. Section 
II analyzes the information entropy of real logging data 
and proposes the DPCM-based compression method. 
Section III performs extensive experiments on the basis 
of a great deal of logging data from five real drilling 
wells. Finally, Section IV summarizes this paper with a 
conclusion. 

II.  LOGGING DATA COMPRESSION 

A.  LWD data Information Entropy Analysis 
According to information theory, information source 

X  composed of  ia ( 1,..., )i N= has information 
entropy ( )H X , 

 2
0

( ) ( ) log ( )
N

i
i

iH X p a p
=

= −∑ a                          (1) 

( )ip a  is the probability of .ia ( )H X actually 
indicates the minimal code length without information 
loss under lossless data compression. 

This paper analyzes the gamma data and the 
resistivity data. The similar analyzing approach can be 
applied to other logging data, such as density, neutron, 
acoustic, NMR and pressure. The experiments in Section 
III will be performed on several kinds of logging data, 
including the gamma, the resistivity, the density, the 
neutron and the temperature data, which are the common 
measured data in drilling work. 

The electromagnetic wave resistivity sensor (EWR) 
measures two kinds of resistivity data called SHALLOW 
and DEEP. The dual gamma ray sensor measures gamma 
data called DGR. These three kinds of data are 
represented with 8bits respectively. The existing LWD 
system does not compress the data by source compression 
techniques. We calculate the information entropy of the 
three kinds of data in terms of Equation (2):  

0

( ) ( ) / ( )
N

i i
j

p a c a c a
=

= ∑

Where, 255N = and  is the count of the times that 

 appears. Taking the values of  into Formula (1), 
we obtain the information entropy of the three kinds of 
data as shown in Table Ⅰ. 

( )ic a

ia ( )ip a

TABLE  I.        INFORMATION ENTROPY OF LOGGING  DATA 

Well ID No. 1 No. 2 No. 3 No. 4 No. 5

Drilling Time(hour) 24 48 47 22 49 
Drilling Depth 

(meter) 
927~
1893

368~ 
1385 

254~ 
1891 

1348~
1909

380~
1363

DGR Data Quantity (bit) 14696 41712 39200 16376 44280
Information Entropy

of DGR 4.56 4.77 4.815 4.68 4.7 

EWR Data Quantity 
(bit) 29184 82080 75680 31728 86848

Information Entropy
of DEEP 6.18 6.24 6.65 6.01 6.18 

Information Entropy
of SHALLOW 5.92 6.07 6.31 5.86 6.03 

Table I shows the information entropy of logging data 
which come from five different drilling wells. We adopte 
weighted calculation on data quantity to get the statistical 
information entropy. The information entropy of DGR is 
about 4.73 bits, the information entropy of DEEP is about 
6.29 bits, and the information entropy of SHALLOW is 
about 6.01 bits. The results show that the information 
entropy of each data of the three kinds of drilling 
measures is less than 8 bits. That is to say, there is 
redundancy in these logging data, which can be 
compressed by some compression algorithms. 

The existing compression algorithms can be divided 
into two classes, the lossless compression algorithms and 
the lossy compression algorithms. The former can 
recover data without information loss and the latter 
recovers the compressed data with partial information 
loss. However, the latter often has higher compression 
ratio and lower computational complexity than the former. 

On one hand, the gamma and resistivity data which 
are required to be transmitted real-timely and the workers 
just use them to do qualitative analysis to guide the 
operation of drilling on the spot, so the real-time 
performance of the data is much more important than 
their accuracy. That is to say, a certain data distortion 
does not have bad influence on data analysis. On the 
other hand, due to the power limitation of the sensors on 
the bottom of the wells, low computational complexities 
of the lossy compression algorithms have to be taken into 
consideration. Consequently, we select the lossy 
compression algorithms to enhance the real-time 
performance of drilling data. In this case, the length of 
the compressed data will be shorter than the information 
entropies shown in Table I.  

B.  Distribution Probability Analysis 
To implement the lossy compression algorithm 

effectively with less information loss as possible as we 
can, in this subsection, we discuss the probabilities 
distribution of the three kinds of logging data. Fig. 1 
shows the distribution probabilities of DGR, DEEP and 
SHALLOW. From Fig. 1(a), we can see that the DEEP 
data is distributed in two intervals, 50~64 and 106~175, 

j                                    (2) 
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and from Fig. 1(b) we can see that the SHALLOW data is 
distributed in two intervals, 40~64 and 106~160. Fig. 1(c) 
shows the DGR data is distributed in 25~55. The reason 
that different kind of measures distributing in different 
intervals is that the geological characteristics bring on 
logging data’s distribution. That is to say, the same kinds 
of logging data which are collected from different drilling 
wells in the same area by the same kind of sensors have 
the similar distribution. Hence, we can use this 
conclusion to keep the accuracy of our compressing 
approach. 

Fig. 1(d), (e) and (f) show the first difference of the 
three kinds of data respectively. The results show that all 
the first differences of the data are distributed in -5~+5, 
which means that data change mildly. Fig. 1(d) and (e) 
indicate that the same kind of data have the similar first 
difference distribution. Fig. 1(d), (e) and (f) also show 
that different kinds of data have different first difference 
distribution. Thus, we use different quantization rules and 
codebook data to reduce the information loss caused by 
quantization error of different logging data  

0 100 200
0

0.010

0.021

0.031

DEEP data value

p.
d.

0 100 200
0

0.010

0.021

0.031

SHALLOW data value

p.
d.

0 50 100
0

0.020

0.041

0.061

DGR data value

p.
d.

-50 0 50
0

0.042

0.085

0.127

DEEP first difference

p.
d.

-50 0 50
0

0.042

0.085

0.127

SHALLOW first difference

p.
d.

-50 0 50
0

0.041

0.082

0.122

DGR first difference

p.
d.

(a) (b) (c)

(d) (e) (f)

 
Figure 1.  Original data and first difference distribution 

Fig. 2 shows the normalized correlation coefficient of 
DGR, DEEP and SHALLOW. From Fig. 2, all the first-
order correlation coefficients of the three kinds of data 
are higher than 0.98, which mean the logging data have 
very strong correlation and they belong to the information 
source with memory. 
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Figure 2.  Normalized correlation coefficient 

Fig. 1 and Fig. 2 indicate that the logging data have 
characters of centralized distribution, mild change and 
strong correlation. The good compression performance 
can be obtained if we select a lossy compression 
algorithm which is suitable for the logging data. 

C.  DPCM-based Compressing Method 
As the logging data have strong correlation mentioned 

above and DPCM is a compression technique which 
compass data by reducing the correlation among the data, 
we choose DPCM to perform logging data compression. 

Considering the requirements of low complexity, 
good generality, good maneuverability and low 
information distortion, we use the first order linear 
prediction DPCM to compress the logging data. 

The steps of our method are as follows: 

• 1.Use a predictive function to estimate next data 
on the basis of existing data;  

• 2.Quantify the estimation error between the 
estimated value and real value;  

• 3.Encode the estimation error on the basis of  the 
codebook 

DPCM can narrow value range by encoding estimate 
error value rather than real data value.  

For an input sample NX  at time instant , only data N

JX  at times J N≤  are used in the encoding process to 

predict ˆ
NX  as the estimated value at time . N Ne  is the 

estimation error and . Quantizer quantify ˆ
N Ne X X= − N

Ne  and then get its quantified value Ne′ . N N Nq e e′= − , 
where Nq is the quantization error caused by the 
quantizer. The receiver decodes the code and gets its 
output NY  in terms of ˆ

N NY X e′N= + . So DPCM error     

. ˆ
N N N N N N N Nd X Y X X e e e q′ ′= − = − − = − = N

The DPCM error is equal to the quantization error and 
is independent of the receiver. Using the optimal 
predictive function and quantizer mentioned above, 
which can be obtained by training set under the condition 
of minimum mean square error criterion, to compress 
data can reduce data distortion effectively. In this paper, 
we select training set with the real logging data which has 
the distribution similar to encoding data to get the optimal 
predictive function and quantizer. The training set which 
has the distribution similar to encoding data is easy to be 
obtained because exploitation workers often have to drill 
a large number of wells in the same area to find oil/gas in 
general. The experiments in this paper use logging data 
which come from five different drilling wells in the same 
area. 

III.     EXPERIMENTS 
In order to validate the effectiveness of our method, 

we implement extensive experiments via using DPCM to 
encode five real drilling well logging data. The logging 
data include the DGR data and the EWR data (DEEP & 
SHALLOW). The drilling depth of the five wells is about 
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254~1909 meters and the total drilling time is about 190 
hours. Moreover, the amount of the total logging data we 
use is 461,784 bits. 

A.  Logging Data Preprocessing 
To enhance the encoding performance, we have to 

preprocess logging data with removing singular value and 
translation transformation at first. Considering the 
limitation of low power consumption and poor computing 
capability of the drilling instruments, preprocessing 
should be simple and have low computational complexity. 

Because of the interference caused by the harsh 
drilling environment [10], sensors may get singular 
values sometimes. The singular values are useless for 
drilling work. Moreover, they often enlarge the value 
range of the correct data, which increases DPCM error 
and brings down the performances of data coding. So we 
use the 3σ criterion [11] to detect singular values and 
replace them with the average value. 3σ criterion is used 
widely in electronic measurement to remove abnormal 
data effectively. Supposing X is the average of iX , σ is 
the standard deviation. If 3iX X σ− > , then iX  is a 

singular value, replace iX with X . To reduce 
computational complexity, we use formula (3) to get σ. 

2 2
1 1

2

( )N N
ii i

N X X
N

σ = =
−

= ∑ ∑ i
            (3) 

According to formula (3), in order to obtain the 
standard deviation σ, we only have to do the extraction 
operation once, do the multiplication operation five times 
and do the addition operation three times. The 
computational complexity is constant and does not 
increase with the growing of data quantity . So the time 
complexity is .  

N
(1)O
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Figure 3.   Removing singular value 

Figure3 (a) shows the data curves before removing 
the singular values, which is the original output of sensor. 
Figure3 (b) shows the data curves that we had removed 
singular data from normal data. Comparing Figure3 (a) 
and (b), we find 3σ criterion is effective to remove 
abnormal logging data. After removing the singular 
values, the data value range reduce to 20~56 from 
18~141.  

We find that all five wells’ EWR data have no value 
between 64 and 106. The reason is that the geological 
characteristics determine the logging data’s distributing 
intervals. Fig. 4 shows the translation transformation of 
DEEP data. We move the values which are less than 64 to 
close to 106. Consequently, a narrow value range of 
logging data is obtained. The receiver recovers the data 
via the inverse transformation of the values. 
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Figure  4.  Translation transformation 

B.  Encoding Experiments 
We define the encoding distortion as d  to evaluate 

encoding performance. The encoding distortion d  is the 
ratio of the mean square deviation and the mean value of 
original data, which is formulated by Equation (4).  

2

1 1

( ) /
N N

i i
i i

d X Y
= =

= − iX∑ ∑            (4) 

Where iX  is the value of the i -th original sample 
and is the decoded value of the -th sample. iY i

Table II gives the DGR encoding distortion when 
using different order predictive function and different 
code length. The results show that the influence of 
predictive function order is less than that of the code 
length. Based on the encoding distortions of Table II, we 
choose 2 or 3 bits to encode DGR data in practical 
production. In this paper, the criteria of code length 
selection are 5%d < . Obviously, one order predictive 
function and 3-bit length are the best choice to encode the 
8-bit original DGR data. 

TABLE  II   DGR LOGGING DATA DISTORTION  

DPCM Code Length Order 
2bit 3bit 4bit 5bit 

1 0.0733 0.0332 0.0125 0.0040 
2 0.0651 0.0202 0.0062 0.0024 

Table III shows the encoding performance when using 
one order predictive function and 3 bits to encode the 8-
bit original DGR data. The first row of Table III is the 
well ID of the training data. The first column is the well 
ID of encoding data. The values of Table III are the 
values of distortion . The results show that all the 
values of d  are less than 5%. 

d
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TABLE  III.   DGR ENCODING PERFORMANCE 

Training Set Well ID Encoding  

ll
No. 1 No. 2 No. 3 No. 4 No. 5 

No. 1 0.0300 0.0373 0.0351 0.0273 0.0329

No. 2 0.0317 0.0337 0.0337 0.0288 0.0311

No. 3 0.0305 0.0334 0.0341 0.0286 0.0314

No. 4 0.0248 0.0325 0.0309 0.0239 0.0290

No. 5 0.0255 0.0332 0.0329 0.0279 0.0298

Through analyzing Table III, we find that the 
maximum of d  is 0.0373 and the minimum of d  is 
0.0239, which means different training set has a little 
influence on DGR encoding performance.  
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Figure 5.  Original DGR curve and decoding curve when d=0.0373 

Fig. 5 compares the original DGR data with the 
DPCM decoded DGR data under , which is 
the maximum of d  in Table III. Something need to be 
stressed is that d  is the maximal can be seen as the worst 
case. The result shows that the two curves have the same 
changing trend. That is to say, our method does not 
disturb LWD user’s qualitative analysis even in the worst 
case when using one order predictive function and 3 bits 
DPCM to encode the 8-bit original DGR data. 

0.0373d =

TABLE  IV.   EWR LOGGING DATA DISTORTION  

DPCM Code Length 
Type Order 

2bit 3bit 4bit 5bit 

1 0.3081 0.0851 0.0274 0.0126
DEEP 

2 0.2714 0.0798 0.0285 0.0120

1 0.3114 0.1079 0.0314 0.0159
SHALLOW 

2 0.2698 0.0727 0.0243 0.0099

Table IV shows the EWR encoding distortion when 
using different order predictive function and different 
code length. We can see that the influence of predictive 
function order is less than that of the code length as same 
as DGR data encoding. According to the values of d  
showed in Table IV, we can select 3 or 4 bits to encode 
the EWR data, i.e., the DEEP data and the SHALLOW 
data, in practical production. In this paper, we select the 
one order predictive function and 4 bits to encode 8-bit 
original DEEP/SHALLOW data. 

TABLE  V.  DEEP ENCODING PERFORMANCE 

Training Set Well ID Encoding 

Well ID No. 1 No. 2 No. 3 No. 4 No. 5 

No. 1 0.0470 0.0253 0.0333 0.0323 0.0267

No. 2 0.0726 0.0374 0.0554 0.0487 0.0412

No. 3 0.0848 0.0393 0.0451 0.0448 0.0364

No. 4 0.0903 0.0327 0.0446 0.0444 0.0394

No. 5 0.0368 0.0274 0.0399 0.0323 0.0275

Table V shows the encoding performance when using 
one order predictive function and 4 bits DPCM to encode 
the DEEP data. The first row of Table V is the well ID of 
the training data. The first column is the well ID of 
encoding data. The values of Table V are the values of 
distortion .The maximum of d  is 0.0903 and the 
minimum of d  is 0.0253. Compare with Table III, we 
can state that different training data has greater influence 
on the encoding performance of the DEEP data than on 
the DGR data encoding performance. Moreover, the 
smaller the training set is (for example, the amount of 
data of well 1 is 29184 bits), the worse the encoding 
performance is (the maximum of d  is 0.0903), and the 
bigger the training set is (for example, the amount of data 
of well 5 is 86848 bits), the better the encoding 
performance is (the maximum of d  is 0.0412). So we 
select large training set, such as the well 2 and well 5, to 
compute the DEEP data encoding parameter in practical 
production. In this case,  is less than 5%. 
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Figure 6.  Original DEEP curve and decoding curve when d=0.0903 

Fig. 6 compares the original DEEP data with the 
DPCM decoded DEEP data under , which is 
the maximum of d  in Table V. The result shows that the 
two curves have the same changing trend. That is to say, 
our method does not disturb LWD user’s qualitative 
analysis in the worst case when using one order 
predictive function and 4 bits DPCM to encode the 8-bit 
original DEEP data. 

0.0903d =

TABLE  VI.  SHALLOW ENCODING PERFORMANCE 

Training Set Well ID Encoding 

Well ID No. 1 No. 2 No. 3 No. 4 No. 5 
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No. 1 0.0206 0.0201 0.0237 0.0214 0.0203

No. 2 0.0254 0.0248 0.0314 0.0295 0.0299

No. 3 0.0291 0.0226 0.0251 0.0273 0.0260

No. 4 0.0536 0.0360 0.0390 0.0328 0.0312

No. 5 0.0226 0.0214 0.0271 0.0258 0.0252

Table VI shows the encoding performance when 
using one order predictive function and 4 bits to encode 
original 8-bit SHALLOW data. The first row of Table VI 
is the well ID of the training data. The first column is the 
well ID of encoding data. The values of Table VI are the 
values of distortion .The maximum of d  is 0.0536 and 
the minimum of d  is 0.0201. The result shows that 
different training data has a little effect on the 
SHALLOW data encoding performance as same as DGR 
data encoding. Moreover, Table VI shows most values of 

are less than 5%. From the results of the Table VI and 
the Table V, we can see that the encoding performance of 
SHALLOW data is better than that of the DEEP data. The 
reason is that the distribution of SHALLOW data is more 
centralized than that of the DEEP data as shown in Fig. 
1(a) and Fig. 1(b). 
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Figure 7.  Original SHALLOW curve and decoding curve when 

d=0.0536 

Fig. 7 compares the original SHALLOW data with the 
DPCM decoded SHALLOW data under 0.0536d = , 
which is the maximum of d  in Table VI. The result 
shows that the two curves have the same changing trend. 
Thus, our method does not disturb LWD user’s 
qualitative analysis in the worst case when using one 
order predictive function and 4 bits DPCM to encode 
original 8-bit SHALLOW data. 

C.  Other Logging Data Encoding Experiments 
The similar analyzing approach can be applied to 

other logging data, such as density, neutron and 
temperature. To show the effectiveness of our methods, 
the other four kinds of logging data are experimented, 
which include the neutron logging data called NEAR and 
FAR, the density logging data called DEN and the 
temperature logging data called TEM. The four kinds of 
data above are also represented with 8bits in existing 
LWD systems, respectively. However, no source 
compression has been performed on them. In following 
tests, our method is executed on them. Table VII gives 

the encoding distortion rates about the four kinds of data 
when using one order predictive function and different 
code length. 

TABLE  VII   LOGGING DATA DISTORTION  

DPCM Code Length Type 
2bit 3bit 4bit 5bit 

DEN 0.1600 0.0548 0.0229 0.0100 
NEAR 0.1194 0.0591 0.0194 0.0172 
FAR 0.1080 0.0457 0.0172 0.0060 
TEM 0.0859 0.0196 0.0147 0.0127 

 
Based on the results of Table VII, we can select 3 or 4 

bits to encode the original data in practical production. In 
this paper, we chose one order predictive function and 3 
bits to encode the original density, neutron and 
temperature data. From Table VII, it can be observed that 
the distortion is not more than 6%. 
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Figure 8.  Original DEN curve and decoding curve when d=0.0526 

Fig. 8 compares the original density data DEN with 
the DPCM decoded DEN data under . The 
result shows that the two curves have the same changing 
trend. 

0.0526d =
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Figure 9.  Original NEAR curve and decoding curve when d= 0.0330 

Fig. 9 compares the original neutron data NEAR with 
the DPCM decoded NEAR data under . The 
result shows that the two curves have the same changing 
trend. 

0.0330d =
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Figure 10.  Original FAR curve and decoding curve when d= 0.0526 

Fig. 10 compares the original neutron data FAR with 
the DPCM decoded FAR data under . The 
result shows that the two curves have the same changing 
trend. 

0.0526d =

Fig. 9 and Fig. 10 compare the original neutron data 
with the DPCM decoded ones. From the two figures, we 
can obtain the following conclusions. Like the 
SHALLOW and DEEP, NEAR and FAR are two kinds of 
measured data come from the same sensor. Moreover, the 
encoding performance of NEAR data is better than that of 
the FAR data, which is just like that the encoding 
performance of SHALLOW is better than that of the 
DEEP data. The reason is the value range of the shallow 
formation measured data (SHALLOW and NEAR is 
smaller than that of the deep formation measured data 
(DEEP and FAR), which results in that the distribution of 
the shallow formation measured data is more centralized 
than the distribution of the deep formation measured data. 
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Figure 11.  Original TEM curve and decoding curve when d= 0.0067 

Fig. 11 compares the original temperature data TEM 
with the DPCM decoded TEM data under 0.0067d = . 
The results show that the two curves have the very 
similar changing trend, and the TEM data has the best 
encoding performance in all seven kinds of logging data. 
The reason is that the change of temperature is often very 
mild, which is very suitable for DPCM. 

D.  Summarization Of The Experiments 
In this section, we use one order predictive function 

and 3 bits to encode the original gamma, density, neutron 
and temperature data, one order predictive function and 
4bits to encode the original resistivity data. The extensive 
experiments show that our method can make the results 
precise enough ( 5%d < ) with the compression ratio of 
50%.  

IV. CONCLUSION 
In this paper, we proposed a novel real-time 

compression approach. In our approach the DPCM, 
which is a lossy compression method, is used to compress 
the most common logging data (gamma, resistivity, 
density, neutron and temperature data). To improve the 
compressing performances, we analyzed the drilling data 
and found that the logging data from different 
instruments has different characteristic. So, we optimize 
the compression parameters for different logging data 
respectively in terms of their own characteristic to insure 
the distortion sufferable. Extensive experiments are done 
on the basis of a great deal of real drilling data. Our 
experiments show that the lossy compression method can 
give enough precise results when compression ratio is 
50% 
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