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Abstract—Although documents have hundreds of thousands 
of unique words, only a small number of words are 
significantly useful for text analysis. Thus, feature selection 
has become an important issue to be addressed in various 
text analysis studies. A number of techniques and 
algorithms for feature selection are available, but 
unfortunately, it is hard to say that a certain algorithm 
overcomes the others, because feature selection results 
mostly depend on the source documents. We should pick 
and choose the appropriate algorithm and the best subset of 
feature words whenever we need to analyze source 
documents. In this paper, we present a framework named 
‘PicAChoo’, which stands for ‘Pick And Choose’ that 
enables customizable feature selection environments by 
composing several primitive feature selection methods 
without hard-coding. As indicated in the name, this 
framework provides many strategies for extracting 
appropriate features and allows dynamic compositions 
among several feature selection methods. In addition, it tries 
to give users an environment that utilizes linguistic 
characteristics of textual data, namely part-of-speech, 
sentence structures, and so on. Finally, we illustrate that 
selected feature words can be used for various intelligent 
services. 
 
Index Terms—text analysis, feature selection, dynamic 
composition, feature storing model, complex feature 
 

I.  INTRODUCTION 

As the number of documents on the World Wide Web 
is increasing dramatically every day, many researchers 
are trying to analyze those documents in order to offer an 
intelligent service. However, acquiring useful knowledge 
from the huge number of unstructured documents is not 
that easy. Even knowing which part of the document is 
important is difficult, because a document consists of so 
many individual words. Thus, in many cases of text 
analysis we usually define or extract a few important 
feature words to be used for our specific applications. For 
example, some applications utilize feature words for text 
classification[1][2], and others summarize users’ opinions 
according to product features[3][4]. There have been 
numerous approaches for selecting useful feature words, 

and feature selection is the first and most significant task 
that should be considered. 

Manual feature selection is the first option we can 
consider for identifying important feature words. In this 
approach, we are able to recognize only a few limited 
words but do so very accurately by actually reading real 
documents. However, it is a really time-consuming task, 
and we might miss some important features due to human 
error. Furthermore, sometimes we need to do feature 
selection once and again according to source documents, 
because the words contained in each document must be 
different from each other. Consequently, manual feature 
selection promises reliable feature words, but it is 
difficult to take care of all documents by hand.  

Automatic feature selection[5] aims to reduce manual 
efforts effectively, and many researchers have intensively 
studied several aspects of the technique. Especially, a 
number of statistical approaches based on reasonable 
heuristics have been introduced so far. Some 
representative examples are document frequency, 
information gain, mutual information, and so on. These 
methods automatically estimate the importance of each 
feature word so that we can see which features are more 
important than others. The number of automatic feature 
selection methods is huge, and those methods actually 
work nicely. However, it seems that there are still some 
sophisticated tasks that require valuable manual work by 
researchers. As different features can be important in 
different source documents, we may need to choose 
different feature words for different documents. When 
going through this process, deciding an appropriate 
selection algorithm can be a serious problem. In addition, 
we need to check selected features in order to confirm 
their quality. In other words, we should ‘Pick And 
Choose’ the proper algorithm and a set of feature words 
by examining numerous candidates that would be able to 
show different benefits. 

 Implementing many different selection methods by 
hard-coding is very difficult and time-consuming. To 
remedy this problem, we looked for a supporting tool that 
helps us apply several selection methods in runtime. 
There have been a number of tools available for general 
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text analysis, but feature selection needs more 
sophisticated assistance. For example, tf-idf is one of the 
most popular methods for feature selection. Almost all 
existing tools support the method naively. However, we 
need to think of the method as actually a composition of 
term frequency and inverted document frequency. 
Traditional tools deal with the tf-idf method as an atomic 
unit, and they have focused on complete analyzing tasks 
and high-level mining tasks such as clustering, 
classification, etc. We believe if we define some 
primitive methods and provide an environment allowing 
dynamic composition of primitive methods, we will be 
able to pick and choose appropriate features in a more 
sophisticated way. 

In this paper, we propose a tool that reduces manual 
efforts for feature selection, and we focus on a specific 
feature selection stage enabling customizable feature 
selection. To do that, we defined and implemented some 
primitive and composite methods. The rest of this paper 
is organized as follows. In section 2, we introduce the 
background and related work. Section 3 stresses our 
objectives in terms of designing a tool, and section 4 
gives a detailed explanation of the implementation. In 
section 5, we examine cases in which the system was 
applied, and we draw a conclusion in section 6. 

II.   RELATED WORK 

Theoretically, the origin of feature selection is 
dimensionality reduction, which is a preprocessing step 
of data mining. The objective of dimensionality reduction 
is reducing the number of target source documents as 
well as keeping the level of achievement of the data 
mining task. In other words, the result derived from 
reduced source documents should be similar to the result 
from original documents. In fact, the preprocessing task 
can be categorized into feature selection and extraction. 
The difference between the two is that feature selection 
identifies important feature words from entire source 
documents, but feature extraction represents a document 
as a vector of feature words. In other words, feature 
selection prepares features to be used for learning a 
model, and feature extraction actually uses the model in 
order to classify documents. In this paper, we deal with 
feature selection, and we believe it helps people to 
acquire better understanding of their data by telling them 
which features are important and how they are related to 
each other.  

Generally, feature selection for textual data goes 
through the following stages:  

Preprocessing: First of all, we should tokenize a 
document into individual words. At the same time, we 
may be able to attach additional information to the words. 
Many NLP (natural language processing) techniques can 
be used for gathering this information. In addition, during 
this stage, we generate candidate feature words that 
would be evaluated later. Most researchers have 
determined nouns or noun phrases as candidate 
features[6][7].  

Scoring: By using statistics of the candidate features, 
we are able to determine the importance of each 

candidate feature. A number of measures have already 
been examined so far[8], but we still have a chance to 
apply our brand-new heuristics and statistical analysis. 
For example, we have considered a document as a bag-
of-words model that doesn’t think of the sequence of 
words, but there can be another document model from 
computational linguistics[9]. 

Filtering: Candidate features get corresponding scores 
after the scoring stage. Then, we can ignore some 
ineligible candidates below the threshold. We are allowed 
to finalize feature words manually. 

Since feature selection is a complex task that has to 
deal with a huge number of data, some supporting tools 
have already been developed. Especially, there are 
several tools available for free on the Internet for text 
analysis. RapidMiner[10] (formerly YALE) is an open-
source data mining solution that is widely used by 
researchers. The modular operator concept of the solution 
allows the design of complex nested operator chains for a 
number of learning problems. It was implemented in Java 
language, and about 400 operators are available with a 
convenient graphical user interface. GATE[11] stands for 
a General Architecture for Text Engineering. It includes 
many algorithms for NLP (natural language processing), 
and tries to divide overall processes into database schema, 
user interface, and algorithms. The separation of system 
architecture has brought reusability to individual 
algorithms. GATE was also implemented in Java 
language with a graphical user interface. Weka[12] is a 
Java software package including a collection of machine 
learning algorithms for data mining tasks. Weka contains 
tools for data preprocessing, classification, regression, 
clustering, visualization, and feature selection. It can be 
used in different ways such as application programming 
interface, command line, and graphical user interface. 

Unfortunately, many earlier tools tried to support an 
entire data mining processes, which means there is a 
limitation to design a new type of method with existing 
tools. In other words, to the best of our knowledge, the 
earlier tools only support to apply existing feature 
selection methods rather than to create a new method. In 
addition, most previous tools consider textual data as a 
meaningless literal; namely, it remains to be seen how to 
apply the characteristics of textual data. For this reason, 
PicAChoo concentrates on a specific feature selection 
area, and enables dynamic composition of several 
selection methods. Moreover, PicAChoo applies both 
several NLP tools and statistical analysis tools in order to 
deal with textual data characteristics. 

III.   DESIGN GOALS 

As we have mentioned, our system has two major 
design goals; the first is supporting dynamic composition 
among primitive methods, and the second is utilizing 
textual data characteristics. Basically, feature selection is 
a source-dependent and purpose-dependent task. To 
obtain the appropriate feature, we need to select proper 
algorithms according to our purpose and application 
domain. Consider a situation in which you want to select 
features by using an existing selection method, such as 
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TABLE I.  PROCESSING STEPS OF PICACHOO SYSTEM 

Processing Step Applied Technologies Description 

Preprocessing 
NLP Techniques 

Stemming, Tagging, Parsing 
It takes a huge number of documents as input, and generates candidate features 

indicating word sequences of nouns 

Scoring 
Term Weighting Methods 

with Statistics 

With given candidate features, it determines significance for each candidate feature. 
A (candidate feature, score) pair is called as a scored feature. A scored feature set 

consists of scored features 

Customizing 
Composition with Logical and 

Arithmetical Operators 
It takes two or more scored feature sets as input, and compounds features with logical 

and arithmetical operators. Finally, it yields a composite scored feature set  

Filtering Threshold & Manual Filtering 
It reduces scored features by applying threshold values dynamically, and users may 

finalize selected features with manual filtering   

 
information gain; it is a very simple task, because most of 
the existing tools can make you have the features. 
However, what if you want to make some changes to the 
information gain method? What if you want to create a 
brand-new method? What if you want to compose those 
methods? In this situation, you have to make your own 
tool from scratch. We concentrated on providing an 
environment in which you can apply several feature 
selection methods without hard-coding. To achieve this 
objective, we prepared four types of primitive methods 
that make a feature set, and we suggested two types of 
composite methods to compose several feature sets. 

One of the most important things we have to consider 
is that text is not just literal but also a semantically 
significant unit including linguistic characteristics. In text 
analysis, we have taken advantage of many NLP 
techniques to obtain linguistic characteristics from raw 
texts. For instance, we have used part-of-speech tagger, 
stemmer, parser, and so on. Nevertheless, in the field of 
feature selection, most conventional tools still consider 
words just as a meaningless sequence of characters, and 
only consider whether the specific word appears in the 
document or not. In contrast, we attempt to utilize some 
linguistic characteristics for feature selection. We applied 
not only traditional NLP techniques but also some 
statistics such as co-occurrence relationships between 
feature words and sequential patterns in a sentence. In 
addition, we also considered context words that describe 
the context of the selected feature words. Generally, a 
word cannot be meaningful enough without other 
information. For example, in product review sentences, 
‘size’ can be a good feature word, but we cannot 
understand what customers tried to say. ‘Big,’ ‘small,’ 
‘good,’ ‘bad,’ or some other words will be able to 
describe the feature word, and make the feature word 
useful.  

It should be noted that we need a special storing model 
to enable the above design goals. For example, in order to 
utilize these textual data characteristics, we should 
exploit a more complex document model than the 
conventional bag-of-words model[13]. In the bag-of-
words model, a text is represented as an unordered 
collection of words. On the other hand, our model 
considers additional metadata for individual words, such 
as part-of-speech, the position in the document, the 

stemming form, and so on. Furthermore, we need to 
support many types of statistical feature selection 
methods. In other words, all of our primitive and 
composite methods have to be based on a certain feature 
storing model. For this reason, the storing model must 
contain additional information to be used for feature 
selection methods. The statistical information can be 
redundant, but it reduces the need for processing entire 
documents every time. Finally, we designed a feature 
storing model, and it will be discussed later. 

IV.   PICK AND CHOOSE IN ACTION 

In this section, we describe the processing steps of the 
system. In particular, the implementation of each stage 
will be illustrated with detailed examples.  

A.  Processing Steps 

The overall processing steps of our system are simply 
expressed in Table I. There are four processing steps: 
namely, preprocessing, scoring, customizing, and filtering. 
Three steps are the same as in the conventional feature 
selection tasks, but the customizing step is what we have 
introduced in this paper. In section 2, we have already 
seen what preprocessing, scoring, and filtering do, and 
briefly, the customizing step merges several feature sets 
by using pre-defined composite methods. 

As each stage has different input and output formats, 
many technologies are applied to the formats. For 
example, the preprocessing step takes a huge number of 
documents to be analyzed, and makes some candidate 
features as a result. Since we generate candidate features 
as sequences of nouns that appear in documents, we need 
to tokenize documents and have to attach part-of-speech 
information to each word. In the case of the scoring stage, 
we use several methods to estimate the importance of 
each candidate feature. We define a primitive method as a 
method that can calculate the corresponding score for 
each candidate feature. A number of traditional selection 
methods can be adopted as primitive methods by 
following this definition. Especially, statistics based on 
the occurrence of each feature can be used for the scoring 
stage. In terms of the customizing stage, we receive 
scored features and adjust their scores. Different 
primitive methods make different feature scores, and we 
can compose those scores by using logical and 
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arithmetical operators. To enable the composition, the 
customizing stage uses the same formats as the input and 
output. The composition of the scores can be seen as a 
composition of primitive methods. In the tf-idf example 
we mentioned, idf can be seen as (1/df). Therefore, we 
can create a complex feature selection method by going 
through the customizing stage. Finally, the filtering stage 
applies the threshold value dynamically in order to hide 
ineligible features, and we can manually finalize selected 
features to be used for intelligent user applications.  

B.  Document Preprocessing 

In the preprocessing phase, the system receives a 
number of documents and extracts some useful data from 
those documents. Raw text could be analyzed by various 
NLP techniques, and the analysis is usually performed by 
the preprocessor. The preprocessor tokenizes documents 
by using some useful tools[14][15], and simultaneously, 
it enriches each word with additional information, such as 
part-of-speech, a stemmed form of the word, document 
ID, including the word, a sentence number, position of 
the word in the sentence, and so on. At the same time, the 
preprocessor also extracts and stores candidate features. 
We identify candidate features by using part-of-speech 
information and length options defined by the user. For 
instance, suppose the user selects an option that the 
maximum length of candidate feature is 2. We can obtain 
all sequences of the forms ‘noun’ and ‘noun noun.’ In 
addition, we store statistical information about candidate 
features as well as tokenized documents. The positions of 
occurrence for each candidate are preserved for the 
purpose of primitive methods. 

As a result, to store and to utilize all above information, 
we have designed a feature storing model. It contains 
tokenized documents, candidate features, and occurrence 
data. In particular, the physical schema of the feature 
storing model is introduced in the appendix. Although we 
briefly discuss the feature storing model, the model plays 
the most important role in the system. The feature storing 
model enables many kinds of analysis queries in runtime. 
This is a simple, but very general and flexible model for 
designing various types of feature selection methods with. 
Moreover, because the storing model is fixed, we can 
make any type of selection method based on the model. 
Finally, a separation between the preprocessing and 
selection methods is achieved because of the fixed model. 
Even if we want to change NLP tools, we do not have to 
change the existing selection methods because the storing 
model will not be changed. 

C.  Scoring Candidate Features 

The scoring step follows the preprocessing step. A 
primitive method receives candidate features as an 
argument, and returns scored features. Basically, we 
suggested three kinds of primitive methods: namely, 
frequency based, co-occurrence based, and pattern based. 
In addition, there is a plug-in method that supports 
external implementation. The overall methods and 
options are represented in Table II. 

Primitive methods have two responsibilities. The first 
one is a selection of candidate features to build a subset  

TABLE II.  FEATURE SELECTION METHODS IN PICACHOO 

Category Method Options 

Primitive 

Frequency-based 
Frequently used (TF) 

Widely used (DF) 
Threshold 

Co-occurrence 
Fixed-size window 
(left, right, both) 

Sentence 

Pattern-based 
Sequential patterns 

(pos|literal) 
Plug-in Anything 

Composite 
Logical And, Or 

Arithmetical + - * / ^ % 

 
of features. The second role is to decide the importance of 
the selected features. In other words, a specific algorithm 
is not important if it can make a feature set, including 
features and corresponding scores. We already developed 
some primitive built-in functions, as you can see in Table 
II. The first type of primitive methods is a frequency-
based method. It concerns how many times the word 
appears (term frequency) and how many documents 
contain the word (document frequency). The threshold 
value is given for selecting features according to their 
appearance scores. The second type of primitive method 
is a co-occurrence-based method. It concerns whether 
there is an appropriate word within a given range or not. 
The range can be a sentence or a fixed size window 
around a candidate feature. The occurrence condition can 
be described by using part-of-speech tags or string literals. 
Every option is dynamic so that we can create results at 
runtime. The third one is a pattern-based method. Some 
features obeying the pattern rules are selected to build a 
subset of features. Users can define a sequential pattern in 
order to build a feature set. The pattern rule consists of a 
candidate feature, part-of-speech tags, and string literals. 
For example, ‘<DT> <feature> of’ means the part-of-
speech tag of the former word is ‘DT(a determiner),’ and 
the literal of the latter word is ‘of.’ Fig. 1 shows the 
pattern rules definitions. The last type of primitive 
method is the plug-in method. As we know, the plug-in 
architecture is one of the most popular design principles 
for software development. It enables us to make a new 
type of selection method by following some simple 
guidelines. Basically, the input and output of the plug-in 
methods are a set of scored features. However, we also 
provide a method having a connection to the feature 
storing model.  

It can be used for generating and executing a new SQL 
query. A considerable point of primitive methods is that 
PicAChoo dynamically generates an SQL query 
according to the user options. It is a good point we can  
 

 
 

Figure 1. A Graphical Representation for Sequential Patterns 
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TABLE III.  CONVERTING FROM "<DT> <FEATURE> 'OF'" TO SQL QUERY 

select feature_id, f_stem, count(*) from (   
 (    // a sub-part for the <DT> tag 
  select feature_id, f_stem, document_id, sentence_no from (      
   select fo.feature_id, fo.stemmed_form as f_stem, fo.len, fo.document_id, fo.sentence_no, fo.word_no, td.stemmed_word as w_stem, 
td.part_of_speech from (        
    select f.feature_id, f.stemmed_form, f.len, o.document_id, o.sentence_no, o.word_no  
    from [CF] f, [OC] o         
    where f.feature_id=o.feature_id      
   ) fo, [TD] td         // position of the <DT> tag 
   where (fo.document_id=td.document_id and fo.sentence_no=td.sentence_no) and ((fo.word_no-1) = td.word_no) 
  ) where pard_of_speech=q'#DT#' group by feature_id, f_stem, document_id, sentence_no   
 )   
 intersect   
 (     
  select feature_id, f_stem, document_id, sentence_no from ( 
   select fo.feature_id, fo.stemmed_form as f_stem, fo.len, fo.document_id, fo.sentence_no, fo.word_no, td.stemmed_word as w_stem, 
td.part_of_speech from ( 
    select f.feature_id, f.stemmed_form, f.len, o.document_id, o.sentence_no, o.word_no 
    from [CF] f, [OC] o 
    where f.feature_id=o.feature_id      
   ) fo, [TD] td         // position of the <DT> tag 
   where (fo.document_id=td.document_id and fo.sentence_no=td.sentence_no) and ((fo.word_no+(fo.len)+0) = td.word_no)    
  ) where w_stem=q'#of#' group by feature_id, f_stem, document_id, sentence_no   
 )  
) group by fid, f_stem order by count(*) desc 

 
get by fixing the feature storing model. Table III 
illustrates an example of the translation from a pattern-
based method to the corresponding SQL query based on 
the feature storing model, which is introduced in the 
appendix. [CF] indicates a candidate feature table of the 
feature storing model, and [OC] refers an occurrence 
table, and so on. The translation of the other types can be 
achieved in similar ways.  

D. Customizing Scored Feature by Dynamic Composition 

Applying primitive methods makes a set of scored 
features including candidate features and corresponding 
scores. Every primitive method has the same output 
format, and the composition result also has the same 
output format, which is made up of features and scores, 
so we can apply composite methods repeatedly. 

As we can see in Table II, there are two types of 
composite methods: namely, logical composite methods 
and arithmetical composite methods. Logical composite 
methods use the ID value, which distinguishes features 
from each other. This means that even if a candidate 
feature is contained in several feature sets, the ID value of 
the candidate feature is the same. We use the value in 
order to apply some logical operators such as ‘and’ or 
‘or.’ For example, we find some intersect features by 
using the ‘and’ operator and merge different feature sets 
with the ‘or’ operator. After that, arithmetical composite 
methods are applied. The second method uses real 
numbers, and we can use six basic operators (+, -, *, /, 
^, %) to merge scores.  

In procedural point of view, logical and arithmetical 
operators cannot be separated. A logical operator 
determines whether a candidate feature will be contained 
into a new feature set, and an arithmetical operator 
determines a corresponding score for the candidate 

feature. Hence, a composite method can be evaluated by 
both logical and arithmetical operators. The logical 
evaluation is followed by the arithmetical evaluation. 

Unfortunately, it is not enough to make all possible 
expressions. For example, many feature selection 
methods use sigma or logarithms that are not supported 
by the system. Hence, you may need to implement a 
plug-in method if you want those kinds of complex 
operators. But we plan to support those operators soon. 

E. Filtering Scored Features 

As the last step for feature selection, we need to 
finalize important feature words. The threshold can be 
used for this stage, because the input of this stage is 
scored features. PicAChoo allows adjustment of the 
threshold value during the runtime environment so that 
users pick and choose appropriate feature words. Finally, 
users are able to check selected features and can manually 
filter features.  

F. Enriching Selected Features 

An extra stage still remains that we have not 
introduced yet. As we have mentioned before, enough 
sense cannot be made from one word, because text is not 
just a literal but also a semantically significant unit. 
Consequently, the objective of this stage is enriching each 
selected feature by attaching additional information to the 
feature. Recently, some researchers have tried to adopt 
the notion of the complex feature[16] that utilizes the 
context of the feature word. However, unfortunately, 
defining a complex feature is quite difficult because there 
are a huge number of relationships between words. In 
PicAChoo, we consider a co-occurrence relationship 
between selected features and other words that describe  
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Figure 2. Data Source and Feature Sets 

 
the feature word. For example, suppose a feature word, 
‘apple,’ the feature can be more useful if it contains 
another word such as ‘red’ that is near the feature. It is 
similar to the co-occurrence-based selection method, 
which is a type of primitive method, but the difference is 
a form of the selected feature. It means the complex 
feature contains a pair of feature and context words. In 
the case of the primitive method, we can gather only 
feature words without contexts. 

If we treat a feature as a semantic unit, we can find a 
wide field in which to use the feature. On the other hand, 
it is considerable that relationships between words can be 
expressed in a variety of ways. For example, if we select 
frequently co-occurring words as context words, the 
relationship between features and context words can be 
named as ‘frequently co-occurring.’ And, if we select an 
adjective word in front of the selected feature, the 
relationship can be named ‘describe.’ In these cases, the 
meaning of the relationships must be different, and 
should be treated in a different manner. There can be 
numerous types of relationships according to the research 
purpose, so we need to identify the semantics of the 
context word, and use it in the right way. 

IV.   CASE STUDIES 

Text analysis and feature selection have various fields 
to be used, but we want to introduce some scenarios from 
a practical point of view.  

A.  Applying TF-IDF without Hard-coding 

The tf-idf method is a fundamental and representative 
term weighting method, and it usually becomes the very 
first method when we need to extract features from raw 
text. There are two typical methods to apply tf-idf to our 
research. The first one is to find a tool, including tf-idf, 
and the second one is to implement it. However, the first 
method has a customization problem, and the second one 
has an implementation problem. This is why we need a 
customizable feature selection tool. 

In our system, users are supposed to register a 
datasource that has documents to be analyzed. After that, 

preprocessing is required to analyze source documents 
and to generate candidate features. The feature storing 
model represented in the appendix is used for storing 
tokenized documents and candidate features. And then, 
the next stage is scoring. In Fig. 2, we can see registered 
datasources and a feature set created by frequency-based 
selection methods. We have two feature sets by term 
frequency (freq_t) and document frequency (freq_d). As 
you can see in the figure, we can change options 
dynamically, and we can see usages of a specific feature 
word. In addition, we are allowed to manually remove a 
feature word from a feature set. Finally, we can export a 
feature set to an Excel or XML file. The following step is 
customization that mixes freq_t and freq_d. In this stage, 
we can apply the ‘and’ operator so that we can find 
features that appear in both feature sets, and we are able 
to calculate (freq_t * (1/freq_d)) in a runtime. Fig. 3 
represents the result of the composite method. Like the 
previous step, every option can be applied dynamically, 
and we can manipulate our feature sets. 

B. Summarizing Product Reviews with Selected Features 

Selected features can be used for many applications. 
An interesting example is text summarization. Especially, 
as online shopping is  
 

 
Figure 3. Customizing Stage with Composite Methods 
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Figure 4. An Example Using Selected Features 

 
becoming commonplace, more and more product 
information and product reviews are posted on the 
Internet. Because customers cannot see and feel the 
products directly, product reviews are becoming an 
essential source of qualitative information. As a result, 
the volume of reviews is increasing drastically, and 
review summarization is becoming very important for the 
Web 2.0 environment. We have conducted research about 
review summarization[17], and PicAChoo was 
responsible for extracting useful feature words and 
corresponding opinion words. Review summarization is 
not within the scope of this paper, but the important point 
is identifying appropriate feature words, and PicAChoo 
can be used for a number of applications. 

V.  CONCLUSION 

Feature selection techniques let people know which 
features are more important than others. Therefore, we 
generally use several selection methods in order to build a 
subset of relevant features that would be exploited for 
classifying, clustering, summarizing, and so on. Text 
analysis, especially, is a major area of feature selection, 
and it needs more sophisticated operations because text 
has a number of linguistic characteristics. 

We presented a text analysis tool named ‘PicAChoo’ 
for customizable feature selection with dynamic 
composition of primitive methods. Many linguistic 
features and selection methods are supported by our 
system dynamically. We defined primitive methods for 
scoring each candidate, and to enable customization of 
primitive methods, we also provided logical and 
arithmetical composite methods. Every selection method 
is translated into an SQL query based on the feature 
storing model, and the threshold value can be used to 

filter inappropriate feature words. Moreover, a set of 
selected feature words can be enriched by taking a 
context word that describes the context of the feature 
word. As a result, we would be able to use selected 
features to offer an intelligent service. Unfortunately, 
there are still some problems that we have not taken care 
of yet. The number of implemented plug-in methods is 
very small yet, as we are at the starting point. We believe 
that if we provide some important mathematical functions, 
such as sigma, log, and so on, we would be able to 
implement any kind of mathematical composite 
expression during the runtime environment. Additionally, 
we are planning to optimize the physical schema of the 
feature storing model. It is one of the most important 
plans, because feature selection generally deals with a 
huge number of documents. 

APPENDIX A  THE PHYSICAL SCHEMA FOR THE FEATURE 

STORING MODEL 

A fixed storing model enables dynamic SQL query 
generation. The physical schema is designed as Fig. 5. 
The feature storing model consists of four entities: 
Document, Tokenized Document, Occurrence, and 
Candidate Feature. As indicated in the names, Document 
and Candidate Feature store source documents and 
generate candidate features. Tokenized Document 
contains additional information about individual words, 
and Occurrence indicates the position of each candidate 
feature. Actually, the physical schema does not follow the 
conceptual ER model, and it has redundant data like 
Occurrence entity. However, sometimes, the redundancy 
helps the statistical analysis. Probably, we would be able 
to have a chance for optimizing the storing model. 
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Figure 5. A Physical Schema for the Feature Storing Model 
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