
PicAChoo: A Text Analysis Tool for
Customizable Feature Selection with Dynamic

Composition of Primitive Methods

Jaeseok Myung
School of Computer Science and Engineering, Seoul National University

Email: jsmyung@europa.snu.ac.kr

Jung-Yeon Yang and Sang-goo Lee
School of Computer Science and Engineering, Seoul National University

Email: {jyyang, sglee}@europa.snu.ac.kr

Abstract—Although documents have hundreds of thousands
of unique words, only a small number of words are
significantly useful for text analysis. Thus, feature selection
has become an important issue to be addressed in various
text analysis studies. A number of techniques and
algorithms for feature selection are available, but
unfortunately, it is hard to say that a certain algorithm
overcomes the others, because feature selection results
mostly depend on the source documents. We should pick
and choose the appropriate algorithm and the best subset of
feature words whenever we need to analyze source
documents. In this paper, we present a framework named
‘PicAChoo’, which stands for ‘Pick And Choose’ that
enables customizable feature selection environments by
composing several primitive feature selection methods
without hard-coding. As indicated in the name, this
framework provides many strategies for extracting
appropriate features and allows dynamic compositions
among several feature selection methods. In addition, it tries
to give users an environment that utilizes linguistic
characteristics of textual data, namely part-of-speech,
sentence structures, and so on. Finally, we illustrate that
selected feature words can be used for various intelligent
services.

Index Terms—text analysis, feature selection, dynamic
composition, feature storing model, complex feature

I. INTRODUCTION

As the number of documents on the World Wide Web
is increasing dramatically every day, many researchers
are trying to analyze those documents in order to offer an
intelligent service. However, acquiring useful knowledge
from the huge number of unstructured documents is not
that easy. Even knowing which part of the document is
important is difficult, because a document consists of so
many individual words. Thus, in many cases of text
analysis we usually define or extract a few important
feature words to be used for our specific applications. For
example, some applications utilize feature words for text
classification[1][2], and others summarize users’ opinions
according to product features[3][4]. There have been
numerous approaches for selecting useful feature words,

and feature selection is the first and most significant task
that should be considered.

Manual feature selection is the first option we can
consider for identifying important feature words. In this
approach, we are able to recognize only a few limited
words but do so very accurately by actually reading real
documents. However, it is a really time-consuming task,
and we might miss some important features due to human
error. Furthermore, sometimes we need to do feature
selection once and again according to source documents,
because the words contained in each document must be
different from each other. Consequently, manual feature
selection promises reliable feature words, but it is
difficult to take care of all documents by hand.

Automatic feature selection[5] aims to reduce manual
efforts effectively, and many researchers have intensively
studied several aspects of the technique. Especially, a
number of statistical approaches based on reasonable
heuristics have been introduced so far. Some
representative examples are document frequency,
information gain, mutual information, and so on. These
methods automatically estimate the importance of each
feature word so that we can see which features are more
important than others. The number of automatic feature
selection methods is huge, and those methods actually
work nicely. However, it seems that there are still some
sophisticated tasks that require valuable manual work by
researchers. As different features can be important in
different source documents, we may need to choose
different feature words for different documents. When
going through this process, deciding an appropriate
selection algorithm can be a serious problem. In addition,
we need to check selected features in order to confirm
their quality. In other words, we should ‘Pick And
Choose’ the proper algorithm and a set of feature words
by examining numerous candidates that would be able to
show different benefits.

 Implementing many different selection methods by
hard-coding is very difficult and time-consuming. To
remedy this problem, we looked for a supporting tool that
helps us apply several selection methods in runtime.
There have been a number of tools available for general

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 179

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.2.179-186

text analysis, but feature selection needs more
sophisticated assistance. For example, tf-idf is one of the
most popular methods for feature selection. Almost all
existing tools support the method naively. However, we
need to think of the method as actually a composition of
term frequency and inverted document frequency.
Traditional tools deal with the tf-idf method as an atomic
unit, and they have focused on complete analyzing tasks
and high-level mining tasks such as clustering,
classification, etc. We believe if we define some
primitive methods and provide an environment allowing
dynamic composition of primitive methods, we will be
able to pick and choose appropriate features in a more
sophisticated way.

In this paper, we propose a tool that reduces manual
efforts for feature selection, and we focus on a specific
feature selection stage enabling customizable feature
selection. To do that, we defined and implemented some
primitive and composite methods. The rest of this paper
is organized as follows. In section 2, we introduce the
background and related work. Section 3 stresses our
objectives in terms of designing a tool, and section 4
gives a detailed explanation of the implementation. In
section 5, we examine cases in which the system was
applied, and we draw a conclusion in section 6.

II. RELATED WORK

Theoretically, the origin of feature selection is
dimensionality reduction, which is a preprocessing step
of data mining. The objective of dimensionality reduction
is reducing the number of target source documents as
well as keeping the level of achievement of the data
mining task. In other words, the result derived from
reduced source documents should be similar to the result
from original documents. In fact, the preprocessing task
can be categorized into feature selection and extraction.
The difference between the two is that feature selection
identifies important feature words from entire source
documents, but feature extraction represents a document
as a vector of feature words. In other words, feature
selection prepares features to be used for learning a
model, and feature extraction actually uses the model in
order to classify documents. In this paper, we deal with
feature selection, and we believe it helps people to
acquire better understanding of their data by telling them
which features are important and how they are related to
each other.

Generally, feature selection for textual data goes
through the following stages:

Preprocessing: First of all, we should tokenize a
document into individual words. At the same time, we
may be able to attach additional information to the words.
Many NLP (natural language processing) techniques can
be used for gathering this information. In addition, during
this stage, we generate candidate feature words that
would be evaluated later. Most researchers have
determined nouns or noun phrases as candidate
features[6][7].

Scoring: By using statistics of the candidate features,
we are able to determine the importance of each

candidate feature. A number of measures have already
been examined so far[8], but we still have a chance to
apply our brand-new heuristics and statistical analysis.
For example, we have considered a document as a bag-
of-words model that doesn’t think of the sequence of
words, but there can be another document model from
computational linguistics[9].

Filtering: Candidate features get corresponding scores
after the scoring stage. Then, we can ignore some
ineligible candidates below the threshold. We are allowed
to finalize feature words manually.

Since feature selection is a complex task that has to
deal with a huge number of data, some supporting tools
have already been developed. Especially, there are
several tools available for free on the Internet for text
analysis. RapidMiner[10] (formerly YALE) is an open-
source data mining solution that is widely used by
researchers. The modular operator concept of the solution
allows the design of complex nested operator chains for a
number of learning problems. It was implemented in Java
language, and about 400 operators are available with a
convenient graphical user interface. GATE[11] stands for
a General Architecture for Text Engineering. It includes
many algorithms for NLP (natural language processing),
and tries to divide overall processes into database schema,
user interface, and algorithms. The separation of system
architecture has brought reusability to individual
algorithms. GATE was also implemented in Java
language with a graphical user interface. Weka[12] is a
Java software package including a collection of machine
learning algorithms for data mining tasks. Weka contains
tools for data preprocessing, classification, regression,
clustering, visualization, and feature selection. It can be
used in different ways such as application programming
interface, command line, and graphical user interface.

Unfortunately, many earlier tools tried to support an
entire data mining processes, which means there is a
limitation to design a new type of method with existing
tools. In other words, to the best of our knowledge, the
earlier tools only support to apply existing feature
selection methods rather than to create a new method. In
addition, most previous tools consider textual data as a
meaningless literal; namely, it remains to be seen how to
apply the characteristics of textual data. For this reason,
PicAChoo concentrates on a specific feature selection
area, and enables dynamic composition of several
selection methods. Moreover, PicAChoo applies both
several NLP tools and statistical analysis tools in order to
deal with textual data characteristics.

III. DESIGN GOALS

As we have mentioned, our system has two major
design goals; the first is supporting dynamic composition
among primitive methods, and the second is utilizing
textual data characteristics. Basically, feature selection is
a source-dependent and purpose-dependent task. To
obtain the appropriate feature, we need to select proper
algorithms according to our purpose and application
domain. Consider a situation in which you want to select
features by using an existing selection method, such as

180 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

TABLE I. PROCESSING STEPS OF PICACHOO SYSTEM

Processing Step Applied Technologies Description

Preprocessing
NLP Techniques

Stemming, Tagging, Parsing
It takes a huge number of documents as input, and generates candidate features

indicating word sequences of nouns

Scoring
Term Weighting Methods

with Statistics

With given candidate features, it determines significance for each candidate feature.
A (candidate feature, score) pair is called as a scored feature. A scored feature set

consists of scored features

Customizing
Composition with Logical and

Arithmetical Operators
It takes two or more scored feature sets as input, and compounds features with logical

and arithmetical operators. Finally, it yields a composite scored feature set

Filtering Threshold & Manual Filtering
It reduces scored features by applying threshold values dynamically, and users may

finalize selected features with manual filtering

information gain; it is a very simple task, because most of
the existing tools can make you have the features.
However, what if you want to make some changes to the
information gain method? What if you want to create a
brand-new method? What if you want to compose those
methods? In this situation, you have to make your own
tool from scratch. We concentrated on providing an
environment in which you can apply several feature
selection methods without hard-coding. To achieve this
objective, we prepared four types of primitive methods
that make a feature set, and we suggested two types of
composite methods to compose several feature sets.

One of the most important things we have to consider
is that text is not just literal but also a semantically
significant unit including linguistic characteristics. In text
analysis, we have taken advantage of many NLP
techniques to obtain linguistic characteristics from raw
texts. For instance, we have used part-of-speech tagger,
stemmer, parser, and so on. Nevertheless, in the field of
feature selection, most conventional tools still consider
words just as a meaningless sequence of characters, and
only consider whether the specific word appears in the
document or not. In contrast, we attempt to utilize some
linguistic characteristics for feature selection. We applied
not only traditional NLP techniques but also some
statistics such as co-occurrence relationships between
feature words and sequential patterns in a sentence. In
addition, we also considered context words that describe
the context of the selected feature words. Generally, a
word cannot be meaningful enough without other
information. For example, in product review sentences,
‘size’ can be a good feature word, but we cannot
understand what customers tried to say. ‘Big,’ ‘small,’
‘good,’ ‘bad,’ or some other words will be able to
describe the feature word, and make the feature word
useful.

It should be noted that we need a special storing model
to enable the above design goals. For example, in order to
utilize these textual data characteristics, we should
exploit a more complex document model than the
conventional bag-of-words model[13]. In the bag-of-
words model, a text is represented as an unordered
collection of words. On the other hand, our model
considers additional metadata for individual words, such
as part-of-speech, the position in the document, the

stemming form, and so on. Furthermore, we need to
support many types of statistical feature selection
methods. In other words, all of our primitive and
composite methods have to be based on a certain feature
storing model. For this reason, the storing model must
contain additional information to be used for feature
selection methods. The statistical information can be
redundant, but it reduces the need for processing entire
documents every time. Finally, we designed a feature
storing model, and it will be discussed later.

IV. PICK AND CHOOSE IN ACTION

In this section, we describe the processing steps of the
system. In particular, the implementation of each stage
will be illustrated with detailed examples.

A. Processing Steps

The overall processing steps of our system are simply
expressed in Table I. There are four processing steps:
namely, preprocessing, scoring, customizing, and filtering.
Three steps are the same as in the conventional feature
selection tasks, but the customizing step is what we have
introduced in this paper. In section 2, we have already
seen what preprocessing, scoring, and filtering do, and
briefly, the customizing step merges several feature sets
by using pre-defined composite methods.

As each stage has different input and output formats,
many technologies are applied to the formats. For
example, the preprocessing step takes a huge number of
documents to be analyzed, and makes some candidate
features as a result. Since we generate candidate features
as sequences of nouns that appear in documents, we need
to tokenize documents and have to attach part-of-speech
information to each word. In the case of the scoring stage,
we use several methods to estimate the importance of
each candidate feature. We define a primitive method as a
method that can calculate the corresponding score for
each candidate feature. A number of traditional selection
methods can be adopted as primitive methods by
following this definition. Especially, statistics based on
the occurrence of each feature can be used for the scoring
stage. In terms of the customizing stage, we receive
scored features and adjust their scores. Different
primitive methods make different feature scores, and we
can compose those scores by using logical and

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 181

© 2010 ACADEMY PUBLISHER

arithmetical operators. To enable the composition, the
customizing stage uses the same formats as the input and
output. The composition of the scores can be seen as a
composition of primitive methods. In the tf-idf example
we mentioned, idf can be seen as (1/df). Therefore, we
can create a complex feature selection method by going
through the customizing stage. Finally, the filtering stage
applies the threshold value dynamically in order to hide
ineligible features, and we can manually finalize selected
features to be used for intelligent user applications.

B. Document Preprocessing

In the preprocessing phase, the system receives a
number of documents and extracts some useful data from
those documents. Raw text could be analyzed by various
NLP techniques, and the analysis is usually performed by
the preprocessor. The preprocessor tokenizes documents
by using some useful tools[14][15], and simultaneously,
it enriches each word with additional information, such as
part-of-speech, a stemmed form of the word, document
ID, including the word, a sentence number, position of
the word in the sentence, and so on. At the same time, the
preprocessor also extracts and stores candidate features.
We identify candidate features by using part-of-speech
information and length options defined by the user. For
instance, suppose the user selects an option that the
maximum length of candidate feature is 2. We can obtain
all sequences of the forms ‘noun’ and ‘noun noun.’ In
addition, we store statistical information about candidate
features as well as tokenized documents. The positions of
occurrence for each candidate are preserved for the
purpose of primitive methods.

As a result, to store and to utilize all above information,
we have designed a feature storing model. It contains
tokenized documents, candidate features, and occurrence
data. In particular, the physical schema of the feature
storing model is introduced in the appendix. Although we
briefly discuss the feature storing model, the model plays
the most important role in the system. The feature storing
model enables many kinds of analysis queries in runtime.
This is a simple, but very general and flexible model for
designing various types of feature selection methods with.
Moreover, because the storing model is fixed, we can
make any type of selection method based on the model.
Finally, a separation between the preprocessing and
selection methods is achieved because of the fixed model.
Even if we want to change NLP tools, we do not have to
change the existing selection methods because the storing
model will not be changed.

C. Scoring Candidate Features

The scoring step follows the preprocessing step. A
primitive method receives candidate features as an
argument, and returns scored features. Basically, we
suggested three kinds of primitive methods: namely,
frequency based, co-occurrence based, and pattern based.
In addition, there is a plug-in method that supports
external implementation. The overall methods and
options are represented in Table II.

Primitive methods have two responsibilities. The first
one is a selection of candidate features to build a subset

TABLE II. FEATURE SELECTION METHODS IN PICACHOO

Category Method Options

Primitive

Frequency-based
Frequently used (TF)

Widely used (DF)
Threshold

Co-occurrence
Fixed-size window
(left, right, both)

Sentence

Pattern-based
Sequential patterns

(pos|literal)
Plug-in Anything

Composite
Logical And, Or

Arithmetical + - * / ^ %

of features. The second role is to decide the importance of
the selected features. In other words, a specific algorithm
is not important if it can make a feature set, including
features and corresponding scores. We already developed
some primitive built-in functions, as you can see in Table
II. The first type of primitive methods is a frequency-
based method. It concerns how many times the word
appears (term frequency) and how many documents
contain the word (document frequency). The threshold
value is given for selecting features according to their
appearance scores. The second type of primitive method
is a co-occurrence-based method. It concerns whether
there is an appropriate word within a given range or not.
The range can be a sentence or a fixed size window
around a candidate feature. The occurrence condition can
be described by using part-of-speech tags or string literals.
Every option is dynamic so that we can create results at
runtime. The third one is a pattern-based method. Some
features obeying the pattern rules are selected to build a
subset of features. Users can define a sequential pattern in
order to build a feature set. The pattern rule consists of a
candidate feature, part-of-speech tags, and string literals.
For example, ‘<DT> <feature> of’ means the part-of-
speech tag of the former word is ‘DT(a determiner),’ and
the literal of the latter word is ‘of.’ Fig. 1 shows the
pattern rules definitions. The last type of primitive
method is the plug-in method. As we know, the plug-in
architecture is one of the most popular design principles
for software development. It enables us to make a new
type of selection method by following some simple
guidelines. Basically, the input and output of the plug-in
methods are a set of scored features. However, we also
provide a method having a connection to the feature
storing model.

It can be used for generating and executing a new SQL
query. A considerable point of primitive methods is that
PicAChoo dynamically generates an SQL query
according to the user options. It is a good point we can

Figure 1. A Graphical Representation for Sequential Patterns

182 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

TABLE III. CONVERTING FROM "<DT> <FEATURE> 'OF'" TO SQL QUERY

select feature_id, f_stem, count(*) from (
 (// a sub-part for the <DT> tag
 select feature_id, f_stem, document_id, sentence_no from (
 select fo.feature_id, fo.stemmed_form as f_stem, fo.len, fo.document_id, fo.sentence_no, fo.word_no, td.stemmed_word as w_stem,
td.part_of_speech from (
 select f.feature_id, f.stemmed_form, f.len, o.document_id, o.sentence_no, o.word_no
 from [CF] f, [OC] o
 where f.feature_id=o.feature_id
) fo, [TD] td // position of the <DT> tag
 where (fo.document_id=td.document_id and fo.sentence_no=td.sentence_no) and ((fo.word_no-1) = td.word_no)
) where pard_of_speech=q'#DT#' group by feature_id, f_stem, document_id, sentence_no
)
 intersect
 (
 select feature_id, f_stem, document_id, sentence_no from (
 select fo.feature_id, fo.stemmed_form as f_stem, fo.len, fo.document_id, fo.sentence_no, fo.word_no, td.stemmed_word as w_stem,
td.part_of_speech from (
 select f.feature_id, f.stemmed_form, f.len, o.document_id, o.sentence_no, o.word_no
 from [CF] f, [OC] o
 where f.feature_id=o.feature_id
) fo, [TD] td // position of the <DT> tag
 where (fo.document_id=td.document_id and fo.sentence_no=td.sentence_no) and ((fo.word_no+(fo.len)+0) = td.word_no)
) where w_stem=q'#of#' group by feature_id, f_stem, document_id, sentence_no
)
) group by fid, f_stem order by count(*) desc

get by fixing the feature storing model. Table III
illustrates an example of the translation from a pattern-
based method to the corresponding SQL query based on
the feature storing model, which is introduced in the
appendix. [CF] indicates a candidate feature table of the
feature storing model, and [OC] refers an occurrence
table, and so on. The translation of the other types can be
achieved in similar ways.

D. Customizing Scored Feature by Dynamic Composition

Applying primitive methods makes a set of scored
features including candidate features and corresponding
scores. Every primitive method has the same output
format, and the composition result also has the same
output format, which is made up of features and scores,
so we can apply composite methods repeatedly.

As we can see in Table II, there are two types of
composite methods: namely, logical composite methods
and arithmetical composite methods. Logical composite
methods use the ID value, which distinguishes features
from each other. This means that even if a candidate
feature is contained in several feature sets, the ID value of
the candidate feature is the same. We use the value in
order to apply some logical operators such as ‘and’ or
‘or.’ For example, we find some intersect features by
using the ‘and’ operator and merge different feature sets
with the ‘or’ operator. After that, arithmetical composite
methods are applied. The second method uses real
numbers, and we can use six basic operators (+, -, *, /,
^, %) to merge scores.

In procedural point of view, logical and arithmetical
operators cannot be separated. A logical operator
determines whether a candidate feature will be contained
into a new feature set, and an arithmetical operator
determines a corresponding score for the candidate

feature. Hence, a composite method can be evaluated by
both logical and arithmetical operators. The logical
evaluation is followed by the arithmetical evaluation.

Unfortunately, it is not enough to make all possible
expressions. For example, many feature selection
methods use sigma or logarithms that are not supported
by the system. Hence, you may need to implement a
plug-in method if you want those kinds of complex
operators. But we plan to support those operators soon.

E. Filtering Scored Features

As the last step for feature selection, we need to
finalize important feature words. The threshold can be
used for this stage, because the input of this stage is
scored features. PicAChoo allows adjustment of the
threshold value during the runtime environment so that
users pick and choose appropriate feature words. Finally,
users are able to check selected features and can manually
filter features.

F. Enriching Selected Features

An extra stage still remains that we have not
introduced yet. As we have mentioned before, enough
sense cannot be made from one word, because text is not
just a literal but also a semantically significant unit.
Consequently, the objective of this stage is enriching each
selected feature by attaching additional information to the
feature. Recently, some researchers have tried to adopt
the notion of the complex feature[16] that utilizes the
context of the feature word. However, unfortunately,
defining a complex feature is quite difficult because there
are a huge number of relationships between words. In
PicAChoo, we consider a co-occurrence relationship
between selected features and other words that describe

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 183

© 2010 ACADEMY PUBLISHER

Figure 2. Data Source and Feature Sets

the feature word. For example, suppose a feature word,
‘apple,’ the feature can be more useful if it contains
another word such as ‘red’ that is near the feature. It is
similar to the co-occurrence-based selection method,
which is a type of primitive method, but the difference is
a form of the selected feature. It means the complex
feature contains a pair of feature and context words. In
the case of the primitive method, we can gather only
feature words without contexts.

If we treat a feature as a semantic unit, we can find a
wide field in which to use the feature. On the other hand,
it is considerable that relationships between words can be
expressed in a variety of ways. For example, if we select
frequently co-occurring words as context words, the
relationship between features and context words can be
named as ‘frequently co-occurring.’ And, if we select an
adjective word in front of the selected feature, the
relationship can be named ‘describe.’ In these cases, the
meaning of the relationships must be different, and
should be treated in a different manner. There can be
numerous types of relationships according to the research
purpose, so we need to identify the semantics of the
context word, and use it in the right way.

IV. CASE STUDIES

Text analysis and feature selection have various fields
to be used, but we want to introduce some scenarios from
a practical point of view.

A. Applying TF-IDF without Hard-coding

The tf-idf method is a fundamental and representative
term weighting method, and it usually becomes the very
first method when we need to extract features from raw
text. There are two typical methods to apply tf-idf to our
research. The first one is to find a tool, including tf-idf,
and the second one is to implement it. However, the first
method has a customization problem, and the second one
has an implementation problem. This is why we need a
customizable feature selection tool.

In our system, users are supposed to register a
datasource that has documents to be analyzed. After that,

preprocessing is required to analyze source documents
and to generate candidate features. The feature storing
model represented in the appendix is used for storing
tokenized documents and candidate features. And then,
the next stage is scoring. In Fig. 2, we can see registered
datasources and a feature set created by frequency-based
selection methods. We have two feature sets by term
frequency (freq_t) and document frequency (freq_d). As
you can see in the figure, we can change options
dynamically, and we can see usages of a specific feature
word. In addition, we are allowed to manually remove a
feature word from a feature set. Finally, we can export a
feature set to an Excel or XML file. The following step is
customization that mixes freq_t and freq_d. In this stage,
we can apply the ‘and’ operator so that we can find
features that appear in both feature sets, and we are able
to calculate (freq_t * (1/freq_d)) in a runtime. Fig. 3
represents the result of the composite method. Like the
previous step, every option can be applied dynamically,
and we can manipulate our feature sets.

B. Summarizing Product Reviews with Selected Features

Selected features can be used for many applications.
An interesting example is text summarization. Especially,
as online shopping is

Figure 3. Customizing Stage with Composite Methods

184 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

Figure 4. An Example Using Selected Features

becoming commonplace, more and more product
information and product reviews are posted on the
Internet. Because customers cannot see and feel the
products directly, product reviews are becoming an
essential source of qualitative information. As a result,
the volume of reviews is increasing drastically, and
review summarization is becoming very important for the
Web 2.0 environment. We have conducted research about
review summarization[17], and PicAChoo was
responsible for extracting useful feature words and
corresponding opinion words. Review summarization is
not within the scope of this paper, but the important point
is identifying appropriate feature words, and PicAChoo
can be used for a number of applications.

V. CONCLUSION

Feature selection techniques let people know which
features are more important than others. Therefore, we
generally use several selection methods in order to build a
subset of relevant features that would be exploited for
classifying, clustering, summarizing, and so on. Text
analysis, especially, is a major area of feature selection,
and it needs more sophisticated operations because text
has a number of linguistic characteristics.

We presented a text analysis tool named ‘PicAChoo’
for customizable feature selection with dynamic
composition of primitive methods. Many linguistic
features and selection methods are supported by our
system dynamically. We defined primitive methods for
scoring each candidate, and to enable customization of
primitive methods, we also provided logical and
arithmetical composite methods. Every selection method
is translated into an SQL query based on the feature
storing model, and the threshold value can be used to

filter inappropriate feature words. Moreover, a set of
selected feature words can be enriched by taking a
context word that describes the context of the feature
word. As a result, we would be able to use selected
features to offer an intelligent service. Unfortunately,
there are still some problems that we have not taken care
of yet. The number of implemented plug-in methods is
very small yet, as we are at the starting point. We believe
that if we provide some important mathematical functions,
such as sigma, log, and so on, we would be able to
implement any kind of mathematical composite
expression during the runtime environment. Additionally,
we are planning to optimize the physical schema of the
feature storing model. It is one of the most important
plans, because feature selection generally deals with a
huge number of documents.

APPENDIX A THE PHYSICAL SCHEMA FOR THE FEATURE

STORING MODEL

A fixed storing model enables dynamic SQL query
generation. The physical schema is designed as Fig. 5.
The feature storing model consists of four entities:
Document, Tokenized Document, Occurrence, and
Candidate Feature. As indicated in the names, Document
and Candidate Feature store source documents and
generate candidate features. Tokenized Document
contains additional information about individual words,
and Occurrence indicates the position of each candidate
feature. Actually, the physical schema does not follow the
conceptual ER model, and it has redundant data like
Occurrence entity. However, sometimes, the redundancy
helps the statistical analysis. Probably, we would be able
to have a chance for optimizing the storing model.

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 185

© 2010 ACADEMY PUBLISHER

Figure 5. A Physical Schema for the Feature Storing Model

ACKNOWLEDGMENT

This research was supported by the MKE(The Ministry
of Knowledge Economy), Korea, under the
ITRC(Information Technology Research Center) support
program supervised by the NIPA(National IT Industry
Promotion Agency). (grant number NIPA-2009-C1090-
0902-0031)

REFERENCES

[1] David D. Lewis, Feature selection and feature extraction
for text categorization, Proceedings of the workshop on
Speech and Natural Language, February 23-26, 1992
Harriman, New York.

[2] Wenqian Shang et al., 2007, A novel feature selection
algorithm for text categorization, Expert Systems with
Applications: An International Journal, 1-5

[3] Ding X., Liu B. and Yu P., 2008, A holistic lexicon-based
approach to opinion mining, ACM WSDM conference

[4] Christopher Scaffidi et al., Red Opal: product-feature
scoring from reviews, ACM Conference on Electronic
Commerce 2007, pp. 182-191

[5] Rada F. Mihalcea, Word sense disambiguation with pattern
learning and automatic feature selection, Natural Language
Engineering, v.8 n.4, pp. 343-358, December 2002

[6] Archak, N., Ghose, A., Ipeirotis, P. G., Show me the
money! Deriving the pricing power of product features by
mining consumer reviews, In Proceedings of the Twelveth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2007, pp.56-65

[7] Liu, B., Hu, M., Cheng, J., Opinion observer: Analyzing
and comparing opinions on the Web, In Proceedings of the
14th International World Wide Web Conference (WWW
2005), pp. 342-351

[8] Yiming Yang, Jan O. Pedersen, 1997, A Comparative
Study on Feature Selection in Text Categorization,
Proceedings of the 14th International Conference on
Machine Learning, pp. 412-420

[9] Morris, J., G. Hirst, 1991, Lexical cohesion computed by
thesaural relations as an indicator of the structure of text.
Computational Linguistics, 17(1), pp. 21-48

[10] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin
Scholz, and Timm Euler, 2006, YALE: rapid prototyping
for complex data mining tasks, In proceedings of the 12th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 935-940

[11] Hamish Cunningham, Yorick Wilks, Robert J. Gaizauskas,
1996, GATE: a General Architecture for Text Engineering,

In Proceedings of the 16th conference on Computational
linguistics, vol 2, pp. 1057-1060

[12] Ian H. Witten et al, 1999, Weka: Practical Machine
Learning Tools and Techniques with Java Implementations,
Proceedings of ICONIP/ANZIIS/ANNES’99 Workshop on
Emerging Knowledge Engineering and Connectionist-
Based Information Systems, 192-196

[13] C. Boulis and M. Ostendorf, Text classification by
augmenting the bag-of-words representation with
redundancy-compensated bigram, Workshop on Feature
Selection in Data Mining, in conjunction with SIAM
conference on Data Mining, 2005

[14] The Stanford Natural Language Processing Group,
Stanford Log-linear Part-Of-Speech Tagger

[15] Martin Porter, The Porter Stemming Algorithm
[16] William W. Cohen, Yoram Singer, 1999, Context-sensitive

learning methods for text categorization, ACM
Transactions on Information Systems, vol. 17, issue 2, pp.
141-173.

[17] Jung-Yeon Yang, Jaeseok Myung, Sang-goo Lee, A
Holistic Approach to Product Review Summarization,
2009, Proceedings of International Workshop on Software
Technologies for Future Dependable Distributed Systems

Jaeseok Myung received his Bachelor degree in Computer

Science from SungKyunKwan University at Suwon, Korea, in
2007. Currently, he is working on his joint doctoral degree in
Computer Science from Seoul National University. His research
interests include opinion mining, and e-Business technology.

Jung-Yeon Yang received his Bachelor degree in Computer

Science and Engineering from ChungNam University at
Daejeon, Korea, in 2002. Currently, he is a candidate for the
degree of Ph.D. of Computer Science and Engineering in Seoul
National University. His research interests include opinion
mining, semantic technology, and e-Business technology.

Sang-goo Lee received the B.S. degree in Computer Science

from Seoul National University at Seoul, Korea, in 1985. He
also received the M.S. and Ph.D. in Computer Science from
Northwestern University at Evanston, Illinois, USA, in 1987
and 1990, respectively. He is currently a professor in School of
Computer Science and Engineering at Seoul National
University, Seoul, Korea. He has been the director of Center for
e-Business Technology at Seoul National University, since 2001.
His current research interests include e-Business technology,
database systems, product information management, and
Ontology.

186 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

