

Pivoted Table Index for Querying Product-
Property-Value Information

Hyunja Lee and Junho Shim
Dept of Computer Science

Sookmyung Women’s University
52 Hyochangwon-gil, Yongsan-gu

Seoul, 140-742, Korea
Email: {hyunjalee, jshim}@sookmyung.ac.kr

Abstract—The query for triple information on product–
attribute (property)–value is one of the most frequent queries
in e-commerce. In storing the triple (product–attribute–
value) information, a vertical schema is effective for avoiding
sparse data and schema evolution, while a conventional
horizontal schema often shows better query performance,
since the properties are queried as groups clustered by each
product. Therefore, we propose two storage schemas: a
vertical schema as a primary table structure for the triple
information in RDBMS and a pivoted table index created
from the basic vertical table as an additional index structure
for accelerating query processing. The pivoted table index is
beneficial to improving the performance of the frequent
pattern query on the group properties associated with each
product class.

Index Terms—Ontology, index, RDBMS, e-commerce,
pivoted table, vertical schema

I. INTRODUCTION

There are many studies on storage schema that manage
data effectively and process queries efficiently [1, 2, 3, 5,
6, 8, 14, 20]. In recent work, a vertical schema (also
known as a column-oriented schema and a narrow schema)

The primary author of this paper is Hyunja Lee, and the corresponding
author is Junho Shim.

has been preferred as a storage structure for web ontology
data such as OWL and RDF/S. In particular, subject-
property-object information (RDF/S) has been stored
vertically in RDBMS tables because a vertical schema is in
general advantageous for supporting multi-valued
attributes and avoiding sparse data and schema revolution
[1, 4, 16, 17, 18, 19]. For that reason, vertical schemas are
more useful for many applications in web-based domains,
including e-commerce, than are the conventional
horizontal schemas (also known as wide-type schemas and
row-oriented schemas), which have properties such as
field name and instances of the product in a row.

Fig. 1 shows an example where subject–property
(attribute)–object information of RDF/S is stored vertically
in an RDBMS table. RDBMS has been suggested for
effective and efficient management and storage of Product
Ontology, which is a conceptualization of specifying
product information in terms of classes, properties,
relationships, and constraints [9, 11, 13].

The product–attribute–value information of Product
Ontology is frequently queried and is generally a very
large amount of data. In addition, a database of product
ontology tends to expand continuously while adding more
information for new products. In order to provide more
efficient processing on a product–attribute–value type of
query, the database may be clustered by the attributes
associated with each product.

160 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.2.160-167

Figure 1. An example of storing triples of RDF(S)

These characteristics of product–attribute–value

information can lead to problems if the information is
stored in a conventional wide-view schema on RDBMS.
First, since Product Ontology has many products and each
product has many distinct attributes, if the triples are
stored in a horizontal table, a considerable number of
fields are required to represent all of the attributes. In the
meantime, the schema may require its schema evolution
and produce a number of null values for such attributes
that are not associated with certain products.

Figure 2. An example of attributes clustered by each product of Product

Ontology

In this paper, henceforth, we suggest employing a
vertical schema for querying product–attribute–value
information as a basic storage structure on RDBMS.
However, as shown in Fig. 2, properties may be clustered
according to each product and the query on the property is
often required as a property group. For example, in Fig. 2,
books may be queried on a property group containing title,
ISBN, and authors, while wines on a property group taste,
color, and origin. Then, the wide-view table is more
efficient than the vertical table in response to queries,
since each product may have many instances. It may be
beneficial to improve the performance for this frequent
query of product–attribute–value and to be able to present
the query results of property group queries without
rewriting the query.

In the long run, two schemas are needed to meet the
needs of all cases, so we suggest two storage schemas for
product–attribute–value information of Product Ontology:
a vertical schema as a basic structure for storing the triples
of Product Ontology, and the index table that is created by
pivoting the vertical table that stores the triples of Product
Ontology. The index, once built, forms a horizontal
schema (wide-view schema). Since the index table is
created for each product, each table has a manageable
number of columns in RDBMS. The pivoting algorithm
that is given in SQL can be executed to create the index
table.

The rest of this paper is organized as follows: Section 2
discusses related work. Section 3 illustrates the schema for
storing product–attribute–value information and shows the
pivoted table index for accelerating query performance.
Section 4 evaluates the performance of our index, and
Section 5 provides the conclusion.

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 161

© 2010 ACADEMY PUBLISHER

II. RELATED WORK

In this section, we survey the previous works that
discuss vertical schemas and schema conversion using a
pivot function.

A. Vertical Schema
Agrawal et al. presented the vertical three-column

scheme (object id–property–value) for representing e-
commerce data that is rapidly evolving and sparsely
populated [2]. The authors provided transformation
algebra and techniques for implementing the scheme non-
intrusively on top of a SQL database system based on
Schema SQL, which is an extension to SQL that enables
multi-database interoperability [15]. Their work is one of
the pioneer works relating the vertical schema to a storage
scheme for managing the e-commerce data.

Abadi et al. proposed the vertical portioning schema,
which is created by rewriting the three-way vertical
schema and has as many column tables as the number of
unique properties in the data [1]. In [20], Willinson
suggested an alternative storage scheme in the form of a
property table comprised of one column containing a
subject statement plus one or more columns containing
property values for that subject in Jena. Jena uses a
vertical schema for triples. Property tables augment but do
not replace the triple storage, which is used for statements
containing a predicate that has no property table. All the
object values for a given property are stored in either a
property table or triple storage, but never both.

Liu et al. proposed an indexing mechanism called the
XML Table Index, which is more efficient than the path
and value index approach for property groups of queries.
The key idea behind building the XML Table Index is to
pivot a group of property data into multiple columns in a
relational table instead of storing each of the properties in
a separate row, as is typically done in schema-agnostic
solutions [14].

In the biomedical domain, heterogeneous data is
managed with vertical schemas in RDBMS by schema
transformation with pivoting [6, 18].

B. Schema Conversion using Pivoting
Cunningham et al. presented the pivoted table built by

implementing the operation inside the RDBMS with pivot
and unpivot operations included explicitly in the query
language [7], rather than by post-processing the operation
outside of query processing. The idea of employing the
query language to build a pivoted table is adapted in our
work.

There are some references in the algorithm for
transforming vertical to horizontal or horizontal to vertical

[2, 3, 15, 18]. Among these, Valentin et al. described three
alternative algorithms for performing a pivoting table:
using full outer joins, using left outer joins, and using hash
tables and memory to perform the equivalent of multiple
joins [18].

Broekstra et al. addressed two approaches, the left outer
join and the pivot function, for vertical-to-horizontal
translation and presented a comparison of the respective
table sizes of each schema over the number of possible
attributes [3].

III. LOGICLAL SCHEMA FOR PRODUCT INFORMATION

Products

Attributes

ClassificationSchemes

UOMs

Relationships

Member

MappedTo

PropertyOf

Synonym Isa

UseUOM

ConvertedTo

 Figure 3. An example of a logical schema in RDBMS from the Product

Ontology model

162 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

In this section, we briefly describe a Product Ontology
model and its logical schema in RDBMS for storing
Product Ontology, including product–attribute–value
information. Fig. 3 shows an example that illustrates how
to store a Product Ontology in a relational database
schema.

Product Ontology’s key concepts are products,
classification schemes, attributes, and UOMs, and it
includes various relationships among those concepts [9, 10,
11, 12]. The products, the most important concept, are the
goods or services. The classification schemes and the
attributes are used for the classifications and descriptions
of products, respectively. The UOM is short for the unit of
measurement, and it may be associated with the attributes.

Product Ontology includes the relationship between
product class and a set of properties associated with each
product on the conceptual level of the Product Ontology
(i.e., class level), as well as relationships among the
instances of product class and each of the sets of
properties on the instance level of the Product Ontology.

Product–attribute–value is key information of Product
Ontology and is very frequently queried, that is, the table
containing the triple information is frequently accessed.
Therefore, in order to query and manage the queries, it is
important to design a proper schema for storing triples. We
suggest two storage schemas for product–attribute–value:

- a vertical schema as a basic table structure for triples
- a pivoted table index for frequent pattern queries

A. Vertical Schema for Product-Property-Value

The idea of having a vertical schema for the product–
property–value information is to having separate vertical
tables for storing each piece of information, herein product,
property of the product, and value of the property, rather
than having a merged horizontal table for storing the
triples. In a vertical schema, as in any relational schema,
the tables are associated through the keys and foreign keys.

Fig. 4 shows a part of an exemplary RDB schema for
the triples. The ProductClass table and the ProductInstance
table contain information on the product class and all the
instances of all the product classes, respectively. The
Attributes table includes all the attributes lists. The
PropertyOf table stores the relationships between the
product classes and their associated properties, while the
IPropertyOf table stores the relationships among all the
instances of all the product classes and each of the
associated properties of the instances. We adopt the two-
column schema and the three-column schema for the

information of product class–attribute and the information
of instance (of product)–attribute–value in the Product
Ontology, respectively.

Figure 4. An example of a logical schema for product–attribute–value of

product information

The detailed logical schema for the triples is as follows:

ProductClass (Cid, Cname)

ProductINstance (Cid, Pid, Pname)

PropertyOf (Cid, Rid, Range)

IPropertyOf (Pid, Aid,Value)

Attributes (Aid, Aname)

This vertical schema may have several benefits,
including:

- In most cases, good query performance

- Freedom from schema evolution

- Non-null values

- Freedom from limitations in the number of
columns manageable by RDBMS

- Better performance over value-centered schema
by required access to only one table.

B. Creating the Pivoted Table Index

In this subsection, we show how a pivoted table index
can be created from the basic vertical schema containing
product–attribute–value information.

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 163

© 2010 ACADEMY PUBLISHER

Figure 5. Transformation from a vertical schema to a pivoted property

table index

Although the vertical schema is efficient for querying
the triples in most case, the horizontal schema may be
more advantageous than the vertical schema in terms of
supporting the queries on property groups. In the e-
commerce area, a query on a certain property group rather
than a single property may be frequently found in general.
For example, as in Fig. 2, when users want to find a book,
they often give search values to a group of properties:
author, book title, and publisher. Similarly, users often
give their favorite colors, tastes, and origination values
when they search for wines.

This is why we need the pivoted table index in addition
to the vertical schema. The index tables are created from
the vertical schema (i.e., the IPropertyOf table) of every
product class. Therefore, the number of index tables is the
same as the number of product classes.

Fig. 5 illustrates how the pivoted property index tables
can be created from the vertical schema of product–
property–value triples. For example, in Fig. 5, product
class C1 has three individual products, i.e., product
instances, pi1, pi2, and pi3. This information is stored in
the ProductInstance table. In the IPropertyOf table, you
can find that the product pi1 contains the properties att1,
att2, att3 of which the values are vi1, vi4, and vi7,

respectively. Other products pi2 and pi3 have vi2, vi5, vi8
and vi3, vi6, vi9 for att1, att2, and att3 properties. Then, a
pivoted property table IDX_C1 is created for the C1
product class to contain all the product–property–value
information of any product belonging to the C1 products.

This pivoted property index has several benefits,
including:

- better performance for frequent pattern queries
on property groups of specific product classes

- ease of reporting in the query result

- ease of query writing

In Fig. 6, we present the SQL code for transforming
from a vertical schema to a wide-type schema by using the
pivot function. The pivoted table index can be created by
SQL in the query processor (i.e., in the MS-SQL2003
version later, the pivot function enables in SQL code).

SELECT *
FROM
(SELECT * into IDX_"Cname" FROM IPropertyOf ipr
 WHERE exists (SELECT ipr.pid

FROM ProductInstance ip, Products pd
WHERE ipr.pid=ip.pid and and

ip.cid=pd.pid and pd.cname=
‘Cname’)) as so

 pivot (max(so.value) for so.Aid in ([Attribute List])) as
p

Figure 6. SQL code for transforming to a horizontal schema

We assume that the value of each instance’s attribute

has a single value. In Fig. 6, the ‘Cname’ is the product
class name and IDX_"Cname" becomes the name of the
pivoted index table. [Attribute List] becomes the column
list of the pivoted index table (i.e., when implementation
of the attribute list is obtained from the PropertyOf table).
The pivot function is used with an aggregation function
such as max or min (e.g., in Fig. 8, the max is used, and
we assume that the null value is the smallest of all the
values). Each aggregation function produces the value for
each matching attribute, and null otherwise.

164 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

IV. PERFORMANCE EVALUATION

We performed the experimental evaluation to see the
performance of our suggested index and the pivoted table
index.

Fig. 7 illustrates the comparison of query performance
between a horizontal schema and a vertical schema in
RDBMS. The experiment is conducted to show the
different performance levels from using a vertical schema
and a horizontal schema in querying product–attribute–
value information. We measured the CPU elapsed time to
see the query performance.

Horizontal table vs Vertical table

0.0

500.0

1000.0

1500.0

2000.0

Horizaontal table Vertical table

schema

a
vg

.q
u
e
ry

 t
im

e
(m

s)
)))

)

Figure 7. Comparison query performance between an H-table and a V-

table

Fig. 8 shows that the triples are stored in a vertical table
and a horizontal table, respectively. As shown in the figure,
there are a lot of null values and sparse data in a
conventional wide-view table since each product has
distinct attributes.

In order to perform this experiment, we used MS-
SQL2005 as RDBMS and Java 1.4v as a programming
language. Our experimental platform was Windows XP
running on a 2.4 GHz Intel Pentium 4 machine with 2 GB
ram.

The following query patterns are used in the experiment.

- Retrieve all properties of a certain product.
- Retrieve properties of a certain product instance.

For the experiment, we use our synthetic data set, which
has the following characteristics:

- Number of classes: 100
- Number of product instances: 60 per class

- Number of attributes: 8 per class

The attributes of each product class are different—there
are no shared attributes among the products; in the vertical
table, there are 48,000 rows and 3 columns, while the
horizontal table has 6000 rows and 800 columns.
Generally, the number of attributes (properties) of all the
products is more than 5000 and the number of attributes of
each product varies from around 8~25.

Figure 8. Snapshots of a vertical schema and a horizontal schema on

storing triples, respectively

Current commercial RDBMS, such as Oracle9i and MS-
SQL2005, can allow up to 1024 columns, so not all
instances of all products can be stored in one horizontal
table in RDBMS. Therefore, we limit our synthetic data set
to 100 product classes and 8 attributes per product class. In

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 165

© 2010 ACADEMY PUBLISHER

total, then, the number of columns is 800, which does not
exceed the maximum number of columns (1024 columns)
allowed by RDBMS such as Oracle9i and MS-SQL.

As shown in Fig. 7, the query performance in the
vertical schema is better than that in the horizontal schema.

The second experiment illustrates the query
performance of our pivoted table index. This experimental
platform was Windows XP running on a 2.4 GHz Intel
Pentium 4 machine with 2 GB ram. We used MS-
SQL2005 as RDBMS and java 1.4v as a programming
language.

Our synthetic data set used on the implementation had
the following characteristics:

 Number of product classes: avg. 500
 Number of attributes per product class: avg. 12

(min 8, max 20)
 The number of product instances per product

class: avg. 150 (min 90, max 180)

The vertical table (i.e., IPropertyOf table) is just one
table, while there are as many of our pivoted table indexes
as there are product classes. The number of tuples of the
vertical table affects the performance. Table 1 and Fig. 9
show that our pivoted property table index for querying
triples outperforms the vertical table. In Table 1, when
implemented with 100,000 tuples of the IPropertyOf table
stored information of product–attribute–value, our pivoted
table index outperforms the vertical table by a factor of 5,
while with 2,000,000 tuples, it outperforms the vertical
table by a factor of 48.

TABLE 1.

 AVERAGE RESPONSE TIME TO QUERYING PRODUCT–ATTRIBUTE–VALUE
INFORMATION

No. of tuples
(of IPropertyOf

table)

Average response time (ms)

Without index
(IPropertyOf table

access)

With index
(pivoted table index

table access)

100,000 326.33 60.50

500,000 918.00 60.50

1,000,000 1396.50 65.05

2,000,000 4381.50 90.00

From the result of the performance test, our index

shows better performance for querying group properties
associated with a product class.

Query performance of the Pivoted table index

0

1000

2000

3000

4000

5000

0.1million a half million 1 million 2 milions

No.tuples

a
vg

.r
e
sp

o
n
se

 t
im

e
(m

s)
)

Pivoted Table Index IPropertyOf table

Figure 9. Performance comparison of a vertical schema (IPropertyOf

table) and of a pivoted property table index for a group property query

V. CONCLUSION

We suggest a vertical schema for storing the triple
information of product–attribute–value since the schema is
beneficial to sparcity, schema evolution, performance,
multi-value support and so on. In order to improve the
performance for pattern queries for group properties of
specific product classes, we present an auxiliary pivoted
property table index created from the basic vertical table.
We performed the experimental performance evaluation to
see the performance of our proposed schema and indexing
scheme. The experiment was run in a conventional
database computing environment using the two leading
RDBMS in industry. The results show that our index is
efficient for queries on group properties associated with a
product class.

ACKNOWLEDGMENTS

This Research was supported by the Sookmyung
Women's University Research Grants 2008.

REFERENCES

[1] J. D. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach,
Scalable Semantic Web Data Management Using Vertical
Partitioning, In Proc. of 33rd International Conference on Very
Large Data Bases (VLDB 2007), ACM, 2007.
[2] R. Agrawal, A. Somani, and Y. Xu, Storage and Querying
of E-Commerce Data, In Proc. of 27th International Conference

166 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

on Very Large Data Bases (VLDB 2001), Morgan Kaufmann,
2001.
[3] J. Beckmann, A. Halverson, R. Krishnamurthy, J. Naughton,
Extending RDBMSs To Support Sparse Datasets Using An
Interpreted Attribute Storage Format, In Proc. of 22nd
International Conference on Data Engineering (ICDE 2006),
IEEE Computer Society, 2006.
[4] J. Broekstra, A. Kampman and F. v. Harmelen, Sesame:A
generic Architecture for Storing and Querying RDF and RDF
Schema, In Proc. of International Semantic Web Conference
(ISWS 2002), Springer, 2002.
[5] G. P. Copeland and S. N. Khoshafian. A decomposition
storage model. In Proc. of the 1985 ACM SIGMOD International
Conference on Management of Data, ACM, 1985.
[6] J. Corwin, A. Silberschatz, P. L. Miller, and L. Marenco.
Dynamic tables: An architecture for managing evolving,
heterogeneous biomedical data in relational database
management systems. Journal of the American Medical
Informatics Association, Vol. 14(1), 2007.
[7] C. Cunningham, C. A. Galindo-Legaria, and G. Graefe,
PIVOT and UNPIVOT: Optimization and Execution Strategies in
an RDBMS, In Proc. of 30th International Conference on Very
Large Data Bases (VLDB 2004), Morgan Kaufmann, 2004.
[8] S. Khoshafian, G. P. Copeland, T. Jagodis, H. Boral, and P.
Valduriez. A query processing strategy for the decomposed
storage model. In Proc. of the Third International Conference on
Data Engineering (ICDE 1987), IEEE Computer Society, 1987.
[9] H. Lee and J. Shim, Conceptual and Formal Ontology
Model of e-Catalogs, In Proc. of the 6th International Conference
on Electronic Commerce and Web Technologies (EC-Web
2005), Springer-Verlag, 2005.
[10] H. Lee and J. Shim, Product Ontology and OWL
Correspondence, In Proc. of the IEEE Pacific Rim International
Workshop on Electronic Commerce (IEEE-PRIWEC 2006),
IEEE Computer Society, 2006.
[11] I. Lee, S. Lee, T. Lee, S.-g. Lee, D. Kim, J. Chun, H. Lee,
and J. Shim, Practical Issues for Building a Product Ontology
System, In Proc. of the International Workshop on Data
Engineering Issues in E-Commerce (DEEC2005), IEEE Society,
2005.
[12] J. Lee and R. Goodwin, Ontology Management for Large-
Scale E-Commerce Applications, Electronic Commerce Research
and Applications, Vol. 5(1), Elsevier, 2006.
[13] T. Lee, I. Lee, S. Lee, S. Lee, D. Kim, J. Chun, H. Lee, and
J. Shim, Building an Operational Product Ontology System,
Electronic Commerce Research and Applications, Vol. 5(1),
2006.
[14] Z. H. Liu, M. Krishnaprasad, H. J. Chang, and V. Arora,
XMLTable Index – An Efficient Way of Indexing and Querying

XML Property Data, In Proc. of the 23rd International
Conference on Data Engineering (ICDE2007), IEEE Computer
Society, 2007.
[15] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. On
Efficiently Implementing SchemaSQL on a SQL Database, In
Proc. of 25th International Conference on Very Large Data Bases
(VLDB 1999), Morgan Kaufmann, 1999.
[16] B. McBirds, Jena:A semantic web toolkit, IEEE Internet
Computing, Vol. 6(6), IEEE Computer Society, 2002.
[17] Z. Pan and J. Heflin, DLDB: Extending Relational
Databases to Support Semantic Web Queries, In Proc. of
International Workshop on Practical and Scalable Semantic Web
Systems, 2003.
[18] D. Valentin, P. Nadkarni, and C. Brandt, Pivoting
approaches for bulk extraction of Entity-Attribute-Value data,
Comp Meth Programs Biomed, Vol. 82(1), 2006.
[19] R. Volz, D. Oberle, S. Staab, and B. Motik, KAON
SERVER - A Semantic Web Management System, In Proc. of
the 12th International World Wide Web Conference (WWW
2003), ACM, 2003.
[20] K. Wilkinson. Jena property table implementation. In Proc.
of the 2nd International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS 2006), 2006.
[21] K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds,
Efficient RDF Storage and Retrieval in Jena2, In Proc. of the
International Workshop on Semantic Web and Databases
(SWDB 2003), 2003.

Hyunja Lee received her B.S., M.S., and Ph.D. degrees in
Computer Science from Sookmyung Women’s University at
Seoul, Korea, in 1996, 2004, and 2009 respectively. This work
was performed when she was a Ph.D. student at Sookmyung
Women’s University. Her research interests include database, e-
commerce, semantic web, ontology and any other web
technology.

She is currently a POST-DOC at Université de Bourgogne,
Dijon, France.

Junho Shim received his B.S. and M.S. degrees from Seoul

National University at Seoul, Korea, in 1994 and the Ph.D.
degree in Computer Science from Northwestern University at
Evanston, Illinois, USA, in 1998. His research interests include
database systems, data warehousing, product information, and e-
commerce.

He is currently a PROFESSOR at Department of Computer
Science in Sookmyung Women’s University, Seoul, Korea.
Previously he worked at Computer Associates International, New
York, USA, and held assistant professor position with Drexel
University, Pennsylvania, USA.

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 167

© 2010 ACADEMY PUBLISHER

