
Software Prepromotion for Non-Uniform
Cache Architecture

Junjie Wu

National laboratory for parallel and distributed processing, Changsha, China
Email: junjie.ben@gmail.com

Xiaohui Pan

National laboratory for parallel and distributed processing, Changsha, China
Email: xiaohuipan@hotmail.com

Xuejun Yang
National laboratory for parallel and distributed processing, Changsha, China

Email: xjyang@nudt.edu.cn

Abstract—As a solution to growing global wire delay, non-
uniform cache architecture (NUCA) has already been a
trend in large cache designs. The access time of NUCA is
determined by the distance between the cache bank
containing the required data and the processor. Thus, one of
the important NUCA researches focuses on how to place
data to be used into cache banks close to the processor. This
paper proposes software prepromotion technique, which
prepromote data using prepromotion instructions as similar
as software prefetching does. Besides the basic software
prepromotion, this paper also proposes smart multihop

software prepromotion (SMSP), very long software

prepromotion (VLSP) and their combination technique.
SMSP intelligently chooses cache banks which the
prepromoted data most ideally suit to being moved into.
And VLSP prepromote multiple data using one instruction.
Finally, we evaluate our approaches by testing 7 kernel
benchmarks on a full-system simulator. The basic software
prepromotion gets an average improvement of 2.6893% in
IPC. The SMSP improves IPC by 7.0928% averagely. And
the VLSP gets an IPC improvement of 7.2194% averagely.
Lastly, after combining the SMSP and VLSP, the average
improvement in IPC achieves 11.8650%.

Index Terms—NUCA, software prepromotion, smart
multihop software prepromotion, very long software
prepromotion, prefetching

I. INTRODUCTION

The speed gap between processors and memories has
always been the performance bottleneck of computer
systems. Cache is one of the key technologies for
alleviating the memory wall problem. Thus, researches on
caches have always been very concerned. Along with the
development of microelectronics technology, more and
more transistors can be integrated on one chip.
Researchers begin to study caches with large capacity on
chips. When the capacity of caches becomes larger and
larger, the delay of global wires on chips increases higher

and higher. If we still use the traditional cache
architecture, the access time of the whole cache has to
accommodate itself to the delay of the farthest cache bank.
Hence, a kind of Non-Uniform Cache Architecture
(NUCA) is proposed to bridge the large cache capacity
and the low access latency [1]. The access time of NUCA
may be one of many different values according the
distance between the processor and the accessed cache
bank. When the processor accesses a near cache bank, the
access latency is low. And when the processor accesses a
far one, the time is long. The arising of NUCA brings

large cache designs new energy.
There are many cache banks physically distributed in

NUCA. And these banks are connected through an on-
chip interconnection network. When a memory access
instruction is executed, the access package routes in the
interconnection network. Thus, if the data accessed stay
in a bank far from the processor, the package will work
through many lines and routers. Thus, one of the key
problems is how to make the accessed data closer to the
processor. Kim et al. proposed the promotion technique,
which can moves data to the banks near processors [1].
When a data is hit, the promotion mechanism is triggered

R R R R

R R R R

R R R R

R R R R

B00

B10

B01 B02

B11 B12

B20 B21 B22

B03

B13

B23

B33B30 B31 B32

CPU

Figure 1. An example of NUCA

JOURNAL OF SOFTWARE, VOL. 5, NO. 1, JANUARY 2009 11

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.1.11-19

and the data accessed is moved one step to the processor.
When the same data is accessed next time, the access
latency is reduced. However, the promoted data may not
be accessed in the future. This problem results from the
lagging of promotion behind accessing.

To solve the lagging problem, this paper proposes
software prepromotion for non-uniform cache
architecture. The prepromoted target is the data which
may be accessed in the near future, while the promoted
one is the data which was accessed recently.
Prepromotion is similar to prefetching. A prefetching
operation moves a data to a memory hierarchy closer to
the processor, while a prepromotion one moves it to a
cache bank near the processor. Different from hardware
ones in [2, 3], software prepromotion is a technique in
which programmers or compilers add prepromotion
instructions in the program explicitly. Since programmers
and compilers can get more program information through
static analyzing than hardware, the software
prepromotion often acts more precisely than the hardware
one.

The main contributions of this paper include:
1. Software prepromotion for non-uniform cache

architecture is proposed. To our knowledge, this
is the first work that proposes and studies the
software prepromotion.

2. We propose smart multihop software
prepromotion, which can improve the
prepromotion performance according to the
characteristics of NUCA.

3. Very long software prepromotion is proposed for
reducing prepromotion instructions and saving
bandwidth utilization of interconnection networks.

The rest of this paper is organized as follows. Section 2
proposes basic software prepromotion. Section 3
introduces multihop software prepromotion, and then
proposes smart multihop software prepromotion. Section
4 studies very long software prepromotion. Section 5 and
section 6 evaluate all the software prepromotion proposed
in this paper. Finally, section 7 illustrates related work
and we conclude in section 8.

II. BASIC SOFTWARE PREPROMOTION

Fig. 1 shows an example of NUCA. In this example,
cache is consists of 16 banks, which corresponds with 16-
way set-associativity. Each way in a set locates one cache
bank. All banks are connected by an interconnection

network. When the processor issues a memory access
instruction, the memory request package spreads in the
network. If some bank has the data requested, it will send

back the acknowledge package after receiving the
requested one. Thus, the distance between the processor
and the cache bank that contains requested data
determines the access time of NUCA.

To distinguish between prepromotion and promotion,

we study the loop in Fig. 2. In this loop, all elements of
array a will be accessed sequentially. We assume that the
array a has been loaded in the cache before this loop.
When the loop runs at the iteration with i=7, the
processor issues the memory reference instruction
accessing a[7], which is staying in the bank shown in Fig.
3a. If the promotion mechanism is adopted, the element
a[7] will be moved into another bank as shown in Fig. 3b.

for (i=0; i<N; i++) {

 sum += a[i];

}

Figure 2. A loop segment

R R R R

R R R R

R R R R

R R R R

a[7]

a[8]

CPU

(a)

R R R R

R R R R

R R R R

R R R R

a[7]

a[8]

CPU

(b)

R R R R

R R R R

R R R R

R R R R

a[7]

a[8]

CPU

(c)

Figure 3. Promotion and prepromotion
(a) Before promotion and prepromotion

(b) When the i=7 iteration is over with promotion
(c) When the i=7 iteration is over with prepromotion

This work is supported in part by the National Natural Science
Foundation of China under Grant No. 60621003 and No. 60873014, and
the National High-Tech Research and Development Plan of China
("863" plan) under Grant No. 2007AA12Z147. The corresponding
author: Junjie Wu. Email: junjie.ben@gmail.com

12 JOURNAL OF SOFTWARE, VOL. 5, NO. 1, JANUARY 2009

© 2010 ACADEMY PUBLISHER

If we adopt prepromotion mechanism, the element a[8]
may be promote as well in this iteration running. In
conclusion, the target element of promotion is the hit data,
while the target one of prepromotion is the data to be

accessed in the near
future.

Prepromotion is
similar to
prefetching, and both
them are in non-
blocking modes.
That is to say, a

prepromotion
instruction has not to
wait the completion
of the prepromotion
operation. This kind
of non-blocking way
allows the
parallelism between
computing and
memory accessing,
so it can hide the
delay of memory
accessing effectively.
Since a cache is
constituted by cache

lines, the granularity of prepromotion is cache line. The
unrolled loop in Fig. 4b shows the prepromotion code
taking cache line into account. However, the element a[0]
will not be prepromoted and the prepromotion in the last
iteration will be wasteful in Fig. 4b. To solve these
problems, we can use software pipeline to generate the
code as shown in Fig. 4c, where all elements of the array
a will prepromoted.

Although prepromotion is similar to prefetching, it
faces its own problems because of its different platform
from prefetching. One problem is about the prepromotion
destination. There are many banks in a non-uniform
cache, and anyone of them can be the destination of a
prepromoted data. Thus, we studies multihop software
prepromotion in section 3. The other problem is how to
use the interconnection network of NUCA in a high
efficient way. In section 4, we propose very long
prepromotion, which not only saves the bandwidth of the
interconnection network but also reduces the
prepromotion instructions in programs.

III. SMART MULTIHOP SOFTWARE PREPROMOTION

In a NUCA, a prepromoted data can be moved into one
of multiple banks, while the basic software prepromotion
only prepromote the data in one step. In this section, we

propose multihop software
prepromotion. Multihop software
prepromotion can prepromote a
data into the bank far from the
source bank in a given distance.
Hence, we add the hop field in
the prepromotion instruction as
illustrated in Fig. 5.

There are two aspects to be
considered. One is how to handle
the useful data in the destination
bank. In Fig. 6a, the data d1 will
be prepromoted into the bank
containing d2. The simplest way
is to evict the data d2 out of the
cache as shown in Fig. 6b. We
call this method replacement

strategy. If the evicted data is still
to be used in the near future, the
replacement strategy will lead to
cache miss. The second strategy
is to degrade the data in one step.
In this way, all the valid data
between the source one and the
destination one should be

for (i=0; i<N; i++) {

 prepromote(&a[i+1]);

 sum += a[i];

}

for (i=0; i<N; i+=4) {

 prepromote(&a[i+4]);

 sum += a[i];

 sum += a[i+1];

 sum += a[i+2];

 sum += a[i+3];

}

prepromote(&a[0]);

for (i=0; i<N-4; i+=4) {

 prepromote(&a[i+4]);

 sum += a[i];

 sum += a[i+1];

 sum += a[i+2];

 sum += a[i+3];

}

for (; i<N; i++) {

 sum += a[i];

}

Figure 4. Software prepromotion
examples

Prepromote(addr, hop)

(a)
address hopopcode
(b)

Figure 5. Multihop software prepromotion instruction
(a) Assembly code (b) Instruction format

R R R R

R R R R

R R R R

R R R R

d2 d3 d4 d1

CPU

R R R R

R R R R

R R R R

R R R R

d1 d3 d4

CPU

(a) (b)

R R R R

R R R R

R R R R

R R R R

d1 d2 d3 d4

CPU

R R R R

R R R R

R R R R

R R R R

d1 d3 d4 d2

CPU

(c) (d)

Figure 6. Three different strategies for multihop prepromotion
(a) The bank containing d1 is to be prepromote to the bank containing d2

(b) After prepromotion with the replacement strategy
(c) After prepromotion with the degradation strategy
(d) After prepromotion with the exchanging strategy

Prepromote(addr, stride, num)

(a)

address strideopcode num

(b)

Figure 7. VLSP instruction
(a) Assembly code

(b) Instruction format

JOURNAL OF SOFTWARE, VOL. 5, NO. 1, JANUARY 2009 13

© 2010 ACADEMY PUBLISHER

degraded in one step as shown in Fig. 6c. We name it
degradation strategy. The degradation strategy often
brings up too much data moving, which will consume
much bandwidth of the interconnection network. Another
compromising method is exchanging strategy. The
exchanging strategy only exchanges the data in source
bank and destination one, and does not move data in other
banks. Thus, the exchanging strategy not only prevents
data from being evicted out of cache, but also saves the
network bandwidth.

The other problem is how to choose the prepromotion

hop. Generally, the nearer bank to the processor is the
most frequent accessed data moved into; the lower is the
access time. However, because the bank closer to the
processor often contains more frequent accessed data, the
large hop prepromotion may make the useful data far
from the processor. This is the so-called pollution
problem. On the other hand, there may be no banks far
from the source bank in the given distance. And even if
the destination bank exists, there may be two or more

banks with the same distance. The choosing of the
destination bank will directly affect the prepromotion
performance. To deal with this problem, we propose
smart multihop software prepromotion (SMSP). When a
SMSP package walks in the interconnection network, it
records the information of banks in its path. The banks in
its path are just those between the source bank and the
processor. Thus, the destination bank will be one of them.
We choose the destination in these candidate banks
according to different priority level. The first is the banks
containing no valid data. And if there are two or more
banks satisfying this condition, we choose the closest
bank to the processor as the destination of prepromotion.
The second is the banks containing clean data. A clean
data is often read by the processor. The higher memory
hierarchies may contain the copy of this clean data. So,
clean data is accessed with lower probability than dirty
data. If there are two or more clean ones in the path, we
choose the bank farthest from the processor. If there is
neither empty room nor clean data, the SMSP will
prepromote the data in only one step.

IV. VERY LONG SOFTWARE PREPROMOTION

Similar with software prefetching, software
prepromotion has to add many prepromotion instructions
in programs. If these instructions are too excessive, not
only will the execution time of whole program be
affected, but also will too much cost come arise. The cost
includes bandwidth increasing, package conflict, power
consumption raising, etc. To reduce the cost brought by
too much software instructions, we propose very long

software prepromotion (VLSP).
The basic idea of VLSP is completing prepromotion of

multiple data with one prepromotion instruction. On one
hand, the coming of routers in NUCA’s interconnection
networks brings more functions than the traditional cache.
On the other hand, cache banks are distributed in NUCA,
so many banks can be accessed simultaneously. VLSP
makes full use of these features of NUCA to prepromote
multiple data with one instruction.

We extend the format of the basic software
prepromotion instruction to implement VLSP. As
illustrated in Fig. 7. Stride field and num field are added
in VLSP instruction. An instruction Prepromote(addr,
stride, num) simultaneously promote data which
addresses are addr, addr+stride, addr+2stride, …,
addr+(num-1)stride.

Fig. 8 shows the code when we use VLSP in the
program shown in Fig. 2 and Fig. 4. Here, we use one

prepromote(&a[0], 1, 2);

for (i=0; i<N-8; i+=8) {

 prepromote(&a[i+8], 1, 2);

 sum += a[i];

 sum += a[i+1];

 sum += a[i+2];

 sum += a[i+3];

 sum += a[i+4];

 sum += a[i+5];

 sum += a[i+6];

 sum += a[i+7];

}

for (; i<N; i++) {

 sum += a[i];

}
Figure 8. An example of VLSP

address stridepackage head PP bit vectornum
Figure 9. Interconnection network package for VLSP

R R R R

R R R R

R R R R

R R R R

a[2]

a[0] a[1]

a[3]

CPU

0000

0
0
1
0

1010

1
1

1
0

1111
Figure 10. An VLSP package transmits

in the interconnection network
(PP bit vector in this VLSP is underlined in the figure)

TABLE I. EXPERIMENTAL CONFIGURATION

Processor UltraSPARC-III, in-order
L1 I-Cache 32KB, 64B block size, 4-way set-

associative
L1 D-Cache 32KB, 64B block size, 4-way set-

associative
L2 (NUCA) 8MB, 64B block size, 16-way set-

associative
OS Solaris 10

14 JOURNAL OF SOFTWARE, VOL. 5, NO. 1, JANUARY 2009

© 2010 ACADEMY PUBLISHER

prepromotion instruction to prepromote two cache lines,
which can contain 8 elements of the array a. Thus, the
loop is unrolled 8 times to match the VLSP operations. It
is obvious that the number of prepromotion instructions
in VLSP is reduced to the half.

If we want to prepromote n data items using the basic
prepromotion instruction, we need issue n instructions.
To complete the prepromotion, each instruction will
produce request package. However, if we use the VLSP
instruction, only one instruction is needed and only one
package will be produced in the interconnection network.
The package format is shown in Fig. 9. The PP bit vector
in Fig. 9 denotes which data has been prepromoted. When
the prepromotion package passes some bank, the router

beside this bank is in charge of computing the data
addresses to be prepromoted and issuing the
corresponding operations to this bank. If a bank contains
the data requested for prepromotion, the router sets the
corresponding bit of the PP bit vector in the package to 1.
Once all the bits of the PP bit vector are set to 1, the
package will not be transmitted again. Fig. 10 shows an
example in which a VLSP package transmits in the
interconnection network. It is obvious that the VLSP can
reduce the number of prepromotion packages efficiently
under the help of routers. Meanwhile, because all banks
are distributed, those prepromotion operations can be
completed simultaneously.

In actual, SMSP and VLSP can be combined. We test
the combination in the experiment. As seen in section 6,
the combination of SMSP and VLSP achieves the best
performance.

V. EVALUATION METHODOLOGY

To evaluate the software prepromotion proposed in this
paper, we test seven kernel benchmarks in a full-system
simulator, Simics [4]. The Table I lists the experimental
configuration. The target of prepromotion is a L2 NUCA
cache. It is 16-way set-associative. And we derive its

NUCA parameter using CACTI 6.0 [5] as illustrated in
Table II. There are 16 cache banks in it, and they are
organized as 4 rows and 4 columns. Each way in a set
locates in its own cache bank. The prepromotion
operations act between two cache banks, which belong to
the same set. Thus, prepromotion does not affect the
correctness of the program running.

Table III shows the benchmarks used in our
experiment. Iccg, es, dp and lre are all loops from the
Livermore benchmark [6]. Table III lists the numbers of
instructions and L2 cache accesses. All benchmarks are
compiled by GCC 4.2 with -O3 optimizing option.

We test the performance of our approaches in detail,
and choose the system without software prepromotion as

TABLE II. L2 NUCA CACHE CONFIGURATION DERIVED BY CACTI 6.0

Layout 4 rows × 4 columns
Horizontal Wire Delay 2 cycles

Vertical Wire Delay 2 cycles
Router Delay 3 cycles

Bank Access Delay 6 cycles

TABLE III. BENCHMARKS CHARACTERISTICS

Benchmark Description # of Instructions # of L2 Access
mm Matrix multiplication 30.50M 0.44M
jac Jacobi iteration algorithm 32.79M 1.71M
lap Laplace transformation 53.15M 3.79M
iccg Incomplete Cholesky Conjugate Gradient 24.70M 0.71M
es Equation of state fragment 47.80M 0.74M
dp Difference predictors 48.78M 8.86M
lre General linear recurrence equations 44.62M 0.62M

Figure 11. IPC in the baseline

Figure 12. IPC improvement of basic software prepromotion

over baseline

JOURNAL OF SOFTWARE, VOL. 5, NO. 1, JANUARY 2009 15

© 2010 ACADEMY PUBLISHER

our baseline. Fig. 11 shows the IPC of benchmarks in the
baseline. The average of IPC is 0.4661.

VI. RESULTS AND ANALYSIS

A. Basic software prepromotion

Fig. 12 shows the improvement using basic software
prepromotion in IPC over the baseline. It is obvious that
most benchmarks except dp gets the performance
improvement. The average improvement in IPC achieves
2.6893%. Dp is the difference predictors kernel. One of
its loops accesses two arrays in column major mode.

Since each row of those loops contains 1024 elements,
multiple data accessed continuously are mapped into one

set of the cache. Thus, the
performance of dp is the lowest as
shown in Fig. 11. The basic
software prepromotion sharpens
the problems because the
prepromoted data compete more
seriously. The problem reflects
some intrinsic shortcomings in the
basic software prepromotion. The
blind prepromotion may replace
some useful data far from the
processor. On the other hand, the
adding of prepromotion
instructions may bring more cost
than the gain.

B. Multihop software

prepromotion

Compared with basic software
prepromotion, multihop
prepromotion can get better
performance. Fig. 13 shows the
IPC of benchmarks with hop = 3 in
different strategies. The
degradation management gets the
best performance in most
benchmarks except es. The average

IPC in the replacement
management is 0.4832; the one in
the degradation management is
0.4862; and that in the exchanging
management is 0.4860. The
performance of the exchanging
strategy is very close to that of the
degradation one. However, the
exchanging strategy saves lots of
bandwidth compared degradation.
Thus, the exchanging strategy is
our first choice. In the following
experiments, we choose
exchanging as the management
strategy of multihop software
prepromotion.

To study the performance
influence from different hops, we
compare the number of
prepromotion operations and
system IPC in different hops as

shown in Fig. 14. Note that the IPC does not increase
along with the increment of the hop value. This
appearance results from the decrement of prepromotion
operations. A data to be prepromoted with hop = n may
not be prepromoted because there may be no bank that is
away from the source bank at a distance of n. On the
other hand, we find that different benchmarks favor
different hop values in Fig. 14. Mm and lre favor the
prepromotion with hop = 1; joc, lap and dp gets the best
performance at hop = 2; while the performance of

Figure 13. IPC in multihop prepromotion with different strategies

Figure 14. Number of prepromotion and IPC in multihop prepromotion with different hops

16 JOURNAL OF SOFTWARE, VOL. 5, NO. 1, JANUARY 2009

© 2010 ACADEMY PUBLISHER

prepromotion with hop = 3 outperforms the other two in
iccg and es. Thus, we need an intelligent method which
can select the best hop value for different benchmarks.

The smart multihop software prepromotion is just the
best candidate for solve the above problem. Fig. 15
illustrates the IPC improvement of the basic multihop and
smart multihop over the baseline. It is obvious that the
smart multihop prepromotion achieves the best
performance. The average improvement of IPC in the
smart one is 7.0928%, while those in the basic multihop
are 2.6893%, 3.2756% and 3.2534% respectively from
hop = 1 to hop = 3. It is exciting that the smart
prepromotion gets a considerable performance
improvement in dp, which is hard to optimized using
basic software prepromotion and basic multihop software
prepromotion.

C. Very long software prepromotion

Fig. 16 shows the improvement of IPC with basic
software prepromotion and VLSP over the baseline. In
the experiments, we use one VLSP instruction to
prepromote four cache lines. By reducing instructions in
programs and packages generated in networks, the very
long software prepromotion gets better performance than
the basic one. The average of IPC improvement with
VLSP arrives at 7.2194%, while that with the basic
prepromotion is 2.6893%.

As shown in Fig. 16, the VLSP can not prevent the
blind prepromotion as well, so dp with the VLSP does not
get the performance improvement. Thus, we integrate the
smart multihop software prepromotion and the very long
software prepromotion. As illustrated in Fig. 17, the
combination gets the better performance. The average
improvement in IPC with the combination achieves
11.8650%. And dp also obtain the considerable
performance improvement.

VII. RELATED WORK

The software prepromotion proposed in this paper
prepromote data in the non-uniform cache architecture.
We summarize the work that most closely relates to the
techniques proposed in this paper.

A. Non-uniform cache architecture

Changkyu Kim firstly proposed non-uniform cache
architecture in 2002 [1]. After that, lots of researches
emerged [7-14]. There are two kinds of NUCA, static
NUCA and dynamic NUCA. The static NUCA fixes each
data in one cache bank, while the dynamic one permits
that data stay in one of multiple banks. Thus, data can be
moved between banks in the dynamic NUCA. This is the
so-called promotion. It is used to reduce the NUCA
access time. However, promotion acts when the data is
accessed next time. Thus, promotion technique belongs to
a passive method. The prepromotion is an active
technique, which prepromote data that may be used in the
near future. Akio Kodama proposed one block ahead
(OBL) prepromotion [2], which belongs to hardware
prepromotion. To our knowledge, the software
prepromotion proposed in this paper is the first work that
studies prepromotion using software methods. Under the
help of programmer or compiler, the software
prepromotion is often saner than the hardware one, so it
can get better performance. Besides, the smart software
prepromotion and the very long software prepromotion
proposed in this paper overcome the shortcoming of the
basic software method.

B. Software prefetching

Prefetching is one of the most important techniques for
hiding the memory access latency. Prefetching is divided
into three classes: hardware prefetching [15], software
prefetching [16-18] and the combination [19]. Hardware
prefetching uses hardware to predict the future accesses
using the history information of programs. Software
prefetching inserts prefetching instructions in programs.
The software prepromotion proposed in this paper is
similar to software prefetching. Thus, some optimizing
approaches for software prefetching are also adapted to
our software prepromotion. However, because of the
different platforms of prefetching and prepromotion,
software prepromotion is different from software
prefetching. For example, the smart multihop
prepromotion and the very long software prepromotion
proposed in this paper just act for software prepromotion,
and there is no similar technique in software prefetching.

Figure 15. IPC improvement of basic multihop

and smart multihop software prepromotion

Figure 16. IPC improvement of very long software prepromotion

JOURNAL OF SOFTWARE, VOL. 5, NO. 1, JANUARY 2009 17

© 2010 ACADEMY PUBLISHER

C. Interconnection network

Interconnection network is one of the key techniques
in non-uniform cache architecture. This kind of network
is an on-chip one. The approaches in this paper need
some support of the interconnection network. However,
compared with the on-chip network used in multi-core
processor [20-24], the modified part is very little.

VIII. CONCLUSION AND FUTURE WORK

Non-uniform cache architecture has always been the
trend of the future cache design. This paper has proposed
the concept of software prepromotion and studied
software prepromotion in detail. Besides the basic
software prepromotion, smart multihop one has been
proposed to match the particular of NUCA. And very
long software prepromotion has also been studied for
reducing the number of prepromotion instructions and
improving the utilization of network bandwidth. Finally,
we have tested seven kernel benchmarks to evaluate our
approaches. The smart multihop software prepromotion
improves IPC by 7.0928% averagely. And the very long
software prepromotion gets the IPC improvement of
7.2194% averagely. After combining smart multihop and
very long software prepromotion, the improvement in
IPC achieves 11.8650% averagely. Similar with software
prefetching, software prepromotion lets programmers or
compilers to insert prepromotion instructions in programs.
How to do the work using compilers automatically is the
challenge. This and the optimizing methods for software
prepromotion are our future work.

ACKNOWLEDGMENT

This work was supported in part by the National
Natural Science Foundation of China under Grant No.
60621003 and No. 60873014, and the National High-
Tech Research and Development Plan of China ("863"
plan) under Grant No. 2007AA12Z147.

REFERENCE

[1] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-
uniform cache structure for wire-delay dominated on-chip
caches,” in ASPLOS-X: Proceedings of the 10th
international conference on Architectural support for
programming languages and operating systems. New York,
NY, USA: ACM, 2002, pp. 211–222.

[2] Kodama, T. Sato. “A non-uniform cache architecture on
networks-on-chip: A fully associative approach with pre-
promotion,” in ISIC ’04:10th International Symposium on

Integrated Circuits, Devices and Systems, 2004, CD-ROM.
[3] J. Wu, X. Yang. “Pre-promotion with Arbitrary Strides in

Non-Uniform Caches,” Electronic Journal of China,
unpublished.

[4] P. S. Magnusson, M. Christensson, J. Eskilson, D.
Forsgren, G. H. llberg, J. H¨ogberg, F. Larsson, A.
Moestedt, and B. Werner, “Simics: A full system

simulation platform,” Computer, vol. 35, no. 2, pp. 50–58,
2002.

[5] N.Muralimanohar, R. Balasubramonian, and N. Jouppi,
“Optimizing nuca organizations and wiring alternatives for

large caches with cacti 6.0,” in MICRO ’07: Proceedings
of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 3–14.

[6] F. H. McMahon. “Livermore fortran kernels: A computer
test of numerical performance range,” Technical Report
UCRL-53745, Lawrence Livermore National Laboratory,
Livermore, CA, December 1986.

[7] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Distance

associativity for high-performance energy-efficient non-
uniform cache architectures,” in MICRO 36: Proceedings
of the 36th annual IEEE/ACM International Symposium
on Microarchitecture. Washington, DC, USA: IEEE
Computer Society, 2003, p. 55.

[8] B. M. Beckmann and D. A. Wood, “Managing wire delay

in large chip-multiprocessor caches,” in MICRO 37:
Proceedings of the 37th annual IEEE/ACM International
Symposium on Microarchitecture. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 319–330.

[9] Z. Chishti, M. D. Powell, and T. N. Vijaykumar,
“Optimizing replication, communication, and capacity

allocation in cmps,” in ISCA ’05: Proceedings of the 32nd
annual international symposium on Computer Architecture.
Washington, DC, USA: IEEE Computer Society, 2005, pp.
357–368.

[10] Bardine, P. Foglia, G. Gabrielli, C. A. Prete, and P.
Stenstr¨om, “Improving power efficiency of d-nuca
caches,” SIGARCH Comput. Archit. News, vol. 35, no. 4,
pp. 53–58, 2007.

[11] Bardine, P. Foglia, G. Gabrielli, and C. A. Prete, “Analysis

of static and dynamic energy consumption in nuca caches:
initial results,” in MEDEA ’07: Proceedings of the 2007

workshop on MEmory performance. New York, NY, USA:
ACM, 2007, pp. 105–112.

[12] Bardine, M. Comparetti, P. Foglia, G. Gabrielli, C. A.
Prete, and P. Stenstr¨om, “Leveraging data promotion for

low power d-nuca caches,” in DSD ’08: Proceedings of the

2008 11th EUROMICRO Conference on Digital System
Design Architectures, Methods and Tools. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 307–316.

[13] J. Merino, V. Puente, P. Prieto, and J. ´ Angel Gregorio,
“Sp-nuca: a cost effective dynamic non-uniform cache
architecture,” SIGARCH Comput. Archit. News, vol. 36,
no. 2, pp. 64–71, 2008.

[14] M. Kandemir, F. Li, M. J. Irwin, and S. W. Son, “A novel

migration-based nuca design for chip multiprocessors,” in

SC ’08: Proceedings of the 2008 ACM/IEEE conference

Figure 17. IPC improvement of the combination
between smart multihop prepromotion and VLSP

18 JOURNAL OF SOFTWARE, VOL. 5, NO. 1, JANUARY 2009

© 2010 ACADEMY PUBLISHER

on Supercomputing. Piscataway, NJ, USA: IEEE Press,
2008, pp. 1–12.

[15] J.-L. Baer and T.-F. Chen, “Effective hardware-based data
prefetching for high-performance processors,” IEEE Trans.
Comput., vol. 44, no. 5, pp. 609–623, 1995.

[16] D. Bernstein, D. Cohen, and A. Freund, “Compiler

techniques for data prefetching on the powerpc,” in

PACT ’95: Proceedings of the IFIP WG10.3 working
conference on Parallel architectures and compilation
techniques. Manchester, UK, UK: IFIP Working Group on
Algol, 1995, pp. 19–26.

[17] V. Santhanam, E. H. Gornish, and W.-C. Hsu, “Data
prefetching on the hp pa-8000,” SIGARCH Comput.
Archit. News, vol. 25, no. 2, pp. 264–273, 1997.

[18] K. C. Yeager, “The mips r10000 superscalar

microprocessor,” IEEE Micro, vol. 16, no. 2, pp. 28–40,
1996.

[19] E. H. Gornish and A. Veidenbaum, “An integrated

hardware/software data prefetching scheme for shared-
memory multiprocessors,” Int. J. Parallel Program., vol. 27,
no. 1, pp. 35–70, 1999.

[20] N. Eisley, L.-S. Peh, and L. Shang, “In-network cache
coherence,” in MICRO 39: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture.
Washington, DC, USA: IEEE Computer Society, 2006, pp.
321–332.

[21] D. Park, R. Das, C. Nicopoulos, J. Kim, N. Vijaykrishnan,
R. Iyer, and C. R. Das, “Design of a dynamic priority-
based fast path architecture for on-chip interconnects,” in

HOTI ’07: Proceedings of the 15th Annual IEEE

Symposium on High-Performance Interconnects.
Washington, DC, USA: IEEE Computer Society, 2007, pp.
15–20.

[22] W. J. Dally, “Interconnect-centric computing,” in

HPCA ’07: Proceedings of the 2007 IEEE 13th
International Symposium on High Performance Computer
Architecture. Washington, DC, USA: IEEE Computer
Society, 2007, p. 1.

[23] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E.
Smith, “Configurable isolation: building high availability

systems with commodity multi-core processors,” in

ISCA ’07: Proceedings of the 34th annual international

symposium on Computer architecture. New York, NY,
USA: ACM, 2007, pp. 470–481.

[24] D. Tutsch and M. Malek, “Comparison of network-on-chip
topologies for multicore systems considering multicast and
local traffic,” in Simutools ’09: Proceedings of the 2nd

International Conference on Simulation Tools and
Techniques. ICST, Brussels, Belgium, Belgium: ICST
(Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2009, pp. 1–9.

Junjie Wu, Anhui, China, 1981. He is a Ph.D. degree
candidate in computer science and technology from National
University of Defense Technology, Changsha Hunan, China.
And he received his master degree in computer science and
technology from the same university.

He studied processor architecture, compilation technique,
quantum computer architecture and volume holographic storage.
And his current research interests focus on cache studies. He
has published many papers in the top Chinese and international
journals and conferences in computer science. Now, he is
studying at the National Laboratory for Parallel and Distributed
processing in National University of Defense Technology for
his Ph.D. degree.

Mr. Wu is a student member of IEEE, ACM and China
Computer Federation. He has been invited to publish a paper in
the Journal of Computer Research and Development when it has
started publication for 50 years.

Xiaohui Pan, Shanxi, China, 1977. She is an assistant
professor of National University of Defense Technology,
Changsha Hunan, China. And she received her master degree in
computer science and technology from the same university.

She studied virtual reality, computer graphics and computer
emulation. And her current research interests focus on computer
architecture and computer application. She has taught for years,
and now she is still teaching in National University of Defense
Technology.

Ms. Pan is a member of China Computer Federation. She has
published many papers in computer science and computer
educations.

Xuejun Yang, Shandong, China, 1963. He is a professor and
doctoral supervisor of National University of Defense
Technology, Changsha, Hunan, China. He received his Ph.D.
degree in computer science and technology from National
University of Defense Technology.

He studied parallel computer architecture, parallel
compilation technology, parallel operating system, etc. And his
current research interests focus on cache studies, stream
processing, fault tolerant, and nano-computing. He has
published over one hundred papers in the top international
journals and conferences including IEEE Trans. on Parallel and
Distributed Systems, Journal of Supercomputing, ISCA, PACT,
PPoPP, ICDCS, etc.

Prof. Yang is a senior member of IEEE, ACM and China
Computer Federation. He is the governor of China Computer
Federation. He is the top young experts of computer profession
in China. He is granted by the Innovative Research Group
Foundation of the National Natural Science Foundation of
China. He has been invited to give a keynote speech in China
National Computer Conference (CNCC’08). And he is also
invited to give a keynote speech in ISPA’09.

JOURNAL OF SOFTWARE, VOL. 5, NO. 1, JANUARY 2009 19

© 2010 ACADEMY PUBLISHER

