
Software Prepromotion for Non-Uniform  
Cache Architecture 

 

 
Junjie Wu 

National laboratory for parallel and distributed processing, Changsha, China 
Email: junjie.ben@gmail.com  

 
Xiaohui Pan 

National laboratory for parallel and distributed processing, Changsha, China 
Email: xiaohuipan@hotmail.com 

 

Xuejun Yang 
National laboratory for parallel and distributed processing, Changsha, China 

Email: xjyang@nudt.edu.cn 
 

 

 
Abstract—As a solution to growing global wire delay, non-
uniform cache architecture (NUCA) has already been a 
trend in large cache designs. The access time of NUCA is 
determined by the distance between the cache bank 
containing the required data and the processor. Thus, one of 
the important NUCA researches focuses on how to place 
data to be used into cache banks close to the processor. This 
paper proposes software prepromotion technique, which 
prepromote data using prepromotion instructions as similar 
as software prefetching does. Besides the basic software 
prepromotion, this paper also proposes smart multihop 

software prepromotion (SMSP), very long software 

prepromotion (VLSP) and their combination technique. 
SMSP intelligently chooses cache banks which the 
prepromoted data most ideally suit to being moved into. 
And VLSP prepromote multiple data using one instruction. 
Finally, we evaluate our approaches by testing 7 kernel 
benchmarks on a full-system simulator. The basic software 
prepromotion gets an average improvement of 2.6893% in 
IPC. The SMSP improves IPC by 7.0928% averagely. And 
the VLSP gets an IPC improvement of 7.2194% averagely. 
Lastly, after combining the SMSP and VLSP, the average 
improvement in IPC achieves 11.8650%. 
 

Index Terms—NUCA, software prepromotion, smart 
multihop software prepromotion, very long software 
prepromotion, prefetching 
 

I.  INTRODUCTION 

The speed gap between processors and memories has 
always been the performance bottleneck of computer 
systems. Cache is one of the key technologies for 
alleviating the memory wall problem. Thus, researches on 
caches have always been very concerned. Along with the 
development of microelectronics technology, more and 
more transistors can be integrated on one chip. 
Researchers begin to study caches with large capacity on 
chips. When the capacity of caches becomes larger and 
larger, the delay of global wires on chips increases higher 

and higher. If we still use the traditional cache 
architecture, the access time of the whole cache has to 
accommodate itself to the delay of the farthest cache bank. 
Hence, a kind of Non-Uniform Cache Architecture 
(NUCA) is proposed to bridge the large cache capacity 
and the low access latency [1]. The access time of NUCA 
may be one of many different values according the 
distance between the processor and the accessed cache 
bank. When the processor accesses a near cache bank, the 
access latency is low. And when the processor accesses a 
far one, the time is long. The arising of NUCA brings 

large cache designs new energy. 
There are many cache banks physically distributed in 

NUCA. And these banks are connected through an on-
chip interconnection network. When a memory access 
instruction is executed, the access package routes in the 
interconnection network. Thus, if the data accessed stay 
in a bank far from the processor, the package will work 
through many lines and routers. Thus, one of the key 
problems is how to make the accessed data closer to the 
processor. Kim et al. proposed the promotion technique, 
which can moves data to the banks near processors [1]. 
When a data is hit, the promotion mechanism is triggered 
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Figure 1.  An example of NUCA 
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and the data accessed is moved one step to the processor. 
When the same data is accessed next time, the access 
latency is reduced. However, the promoted data may not 
be accessed in the future. This problem results from the 
lagging of promotion behind accessing. 

To solve the lagging problem, this paper proposes 
software prepromotion for non-uniform cache 
architecture. The prepromoted target is the data which 
may be accessed in the near future, while the promoted 
one is the data which was accessed recently. 
Prepromotion is similar to prefetching. A prefetching 
operation moves a data to a memory hierarchy closer to 
the processor, while a prepromotion one moves it to a 
cache bank near the processor. Different from hardware 
ones in [2, 3], software prepromotion is a technique in 
which programmers or compilers add prepromotion 
instructions in the program explicitly. Since programmers 
and compilers can get more program information through 
static analyzing than hardware, the software 
prepromotion often acts more precisely than the hardware 
one. 

The main contributions of this paper include: 
1. Software prepromotion for non-uniform cache 

architecture is proposed. To our knowledge, this 
is the first work that proposes and studies the 
software prepromotion. 

2. We propose smart multihop software 
prepromotion, which can improve the 
prepromotion performance according to the 
characteristics of NUCA. 

3. Very long software prepromotion is proposed for 
reducing prepromotion instructions and saving 
bandwidth utilization of interconnection networks. 

The rest of this paper is organized as follows. Section 2 
proposes basic software prepromotion. Section 3 
introduces multihop software prepromotion, and then 
proposes smart multihop software prepromotion. Section 
4 studies very long software prepromotion. Section 5 and 
section 6 evaluate all the software prepromotion proposed 
in this paper. Finally, section 7 illustrates related work 
and we conclude in section 8. 

II.  BASIC SOFTWARE PREPROMOTION 

Fig. 1 shows an example of NUCA. In this example, 
cache is consists of 16 banks, which corresponds with 16-
way set-associativity. Each way in a set locates one cache 
bank. All banks are connected by an interconnection 

network. When the processor issues a memory access 
instruction, the memory request package spreads in the 
network. If some bank has the data requested, it will send 

back the acknowledge package after receiving the 
requested one. Thus, the distance between the processor 
and the cache bank that contains requested data 
determines the access time of NUCA. 

 
 
To distinguish between prepromotion and promotion, 

we study the loop in Fig. 2. In this loop, all elements of 
array a will be accessed sequentially. We assume that the 
array a has been loaded in the cache before this loop. 
When the loop runs at the iteration with i=7, the 
processor issues the memory reference instruction 
accessing a[7], which is staying in the bank shown in Fig. 
3a. If the promotion mechanism is adopted, the element 
a[7] will be moved into another bank as shown in Fig. 3b. 

for (i=0; i<N; i++) {

    sum += a[i];

}
 

Figure 2.  A loop segment 
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Figure 3.  Promotion and prepromotion 
(a) Before promotion and prepromotion 

(b) When the i=7 iteration is over with promotion 
(c) When the i=7 iteration is over with prepromotion 
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If we adopt prepromotion mechanism, the element a[8] 
may be promote as well in this iteration running. In 
conclusion, the target element of promotion is the hit data, 
while the target one of prepromotion is the data to be 

accessed in the near 
future. 

Prepromotion is 
similar to 
prefetching, and both 
them are in non-
blocking modes. 
That is to say, a 

prepromotion 
instruction has not to 
wait the completion 
of the prepromotion 
operation. This kind 
of non-blocking way 
allows the 
parallelism between 
computing and 
memory accessing, 
so it can hide the 
delay of memory 
accessing effectively. 
Since a cache is 
constituted by cache 

lines, the granularity of prepromotion is cache line. The 
unrolled loop in Fig. 4b shows the prepromotion code 
taking cache line into account. However, the element a[0] 
will not be prepromoted and the prepromotion in the last 
iteration will be wasteful in Fig. 4b. To solve these 
problems, we can use software pipeline to generate the 
code as shown in Fig. 4c, where all elements of the array 
a will prepromoted. 

Although prepromotion is similar to prefetching, it 
faces its own problems because of its different platform 
from prefetching. One problem is about the prepromotion 
destination. There are many banks in a non-uniform 
cache, and anyone of them can be the destination of a 
prepromoted data. Thus, we studies multihop software 
prepromotion in section 3. The other problem is how to 
use the interconnection network of NUCA in a high 
efficient way. In section 4, we propose very long 
prepromotion, which not only saves the bandwidth of the 
interconnection network but also reduces the 
prepromotion instructions in programs. 

III.  SMART MULTIHOP SOFTWARE PREPROMOTION 

In a NUCA, a prepromoted data can be moved into one 
of multiple banks, while the basic software prepromotion 
only prepromote the data in one step. In this section, we 

propose multihop software 
prepromotion. Multihop software 
prepromotion can prepromote a 
data into the bank far from the 
source bank in a given distance. 
Hence, we add the hop field in 
the prepromotion instruction as 
illustrated in Fig. 5. 

There are two aspects to be 
considered. One is how to handle 
the useful data in the destination 
bank. In Fig. 6a, the data d1 will 
be prepromoted into the bank 
containing d2. The simplest way 
is to evict the data d2 out of the 
cache as shown in Fig. 6b. We 
call this method replacement 

strategy. If the evicted data is still 
to be used in the near future, the 
replacement strategy will lead to 
cache miss. The second strategy 
is to degrade the data in one step. 
In this way, all the valid data 
between the source one and the 
destination one should be 

for (i=0; i<N; i++) {

    prepromote(&a[i+1]);

    sum += a[i];

}

for (i=0; i<N; i+=4) {

    prepromote(&a[i+4]);

    sum += a[i];

    sum += a[i+1];

    sum += a[i+2];

    sum += a[i+3];

}

prepromote(&a[0]);

for (i=0; i<N-4; i+=4) {

    prepromote(&a[i+4]);

    sum += a[i];

    sum += a[i+1];

    sum += a[i+2];

    sum += a[i+3];

}

for (; i<N; i++) {

    sum += a[i];

}
 

Figure 4.  Software prepromotion 
examples 

Prepromote(addr, hop)
 

(a) 
address hopopcode  
(b) 

Figure 5.  Multihop software prepromotion instruction 
(a) Assembly code (b) Instruction format 
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Figure 6.  Three different strategies for multihop prepromotion 
(a) The bank containing d1 is to be prepromote to the bank containing d2 

(b) After prepromotion with the replacement strategy 
(c) After prepromotion with the degradation strategy 
(d) After prepromotion with the exchanging strategy 

Prepromote(addr, stride, num)
 

(a) 

address strideopcode num
 

(b) 

Figure 7.  VLSP instruction 
(a) Assembly code 

(b) Instruction format 
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degraded in one step as shown in Fig. 6c. We name it 
degradation strategy. The degradation strategy often 
brings up too much data moving, which will consume 
much bandwidth of the interconnection network. Another 
compromising method is exchanging strategy. The 
exchanging strategy only exchanges the data in source 
bank and destination one, and does not move data in other 
banks. Thus, the exchanging strategy not only prevents 
data from being evicted out of cache, but also saves the 
network bandwidth. 

 

 
The other problem is how to choose the prepromotion 

hop. Generally, the nearer bank to the processor is the 
most frequent accessed data moved into; the lower is the 
access time. However, because the bank closer to the 
processor often contains more frequent accessed data, the 
large hop prepromotion may make the useful data far 
from the processor. This is the so-called pollution 
problem. On the other hand, there may be no banks far 
from the source bank in the given distance. And even if 
the destination bank exists, there may be two or more 

banks with the same distance. The choosing of the 
destination bank will directly affect the prepromotion 
performance. To deal with this problem, we propose 
smart multihop software prepromotion (SMSP). When a 
SMSP package walks in the interconnection network, it 
records the information of banks in its path. The banks in 
its path are just those between the source bank and the 
processor. Thus, the destination bank will be one of them. 
We choose the destination in these candidate banks 
according to different priority level. The first is the banks 
containing no valid data. And if there are two or more 
banks satisfying this condition, we choose the closest 
bank to the processor as the destination of prepromotion. 
The second is the banks containing clean data. A clean 
data is often read by the processor. The higher memory 
hierarchies may contain the copy of this clean data. So, 
clean data is accessed with lower probability than dirty 
data. If there are two or more clean ones in the path, we 
choose the bank farthest from the processor. If there is 
neither empty room nor clean data, the SMSP will 
prepromote the data in only one step. 

IV.  VERY LONG SOFTWARE PREPROMOTION 

Similar with software prefetching, software 
prepromotion has to add many prepromotion instructions 
in programs. If these instructions are too excessive, not 
only will the execution time of whole program be 
affected, but also will too much cost come arise. The cost 
includes bandwidth increasing, package conflict, power 
consumption raising, etc. To reduce the cost brought by 
too much software instructions, we propose very long 

software prepromotion (VLSP). 
The basic idea of VLSP is completing prepromotion of 

multiple data with one prepromotion instruction. On one 
hand, the coming of routers in NUCA’s interconnection 
networks brings more functions than the traditional cache. 
On the other hand, cache banks are distributed in NUCA, 
so many banks can be accessed simultaneously. VLSP 
makes full use of these features of NUCA to prepromote 
multiple data with one instruction. 

We extend the format of the basic software 
prepromotion instruction to implement VLSP. As 
illustrated in Fig. 7. Stride field and num field are added 
in VLSP instruction. An instruction Prepromote(addr, 
stride, num) simultaneously promote data which 
addresses are addr, addr+stride, addr+2stride, …, 
addr+(num-1)stride. 

Fig. 8 shows the code when we use VLSP in the 
program shown in Fig. 2 and Fig. 4. Here, we use one 

prepromote(&a[0], 1, 2);

for (i=0; i<N-8; i+=8) {

    prepromote(&a[i+8], 1, 2);

    sum += a[i];

    sum += a[i+1];

    sum += a[i+2];

    sum += a[i+3];

    sum += a[i+4];

    sum += a[i+5];

    sum += a[i+6];

    sum += a[i+7];

}

for (; i<N; i++) {

    sum += a[i];

}  
Figure 8. An example of VLSP 

address stridepackage head PP bit vectornum  
Figure 9.  Interconnection network package for VLSP 
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Figure 10.  An VLSP package transmits  

in the interconnection network 
(PP bit vector in this VLSP is underlined in the figure) 

TABLE I.  EXPERIMENTAL CONFIGURATION 

Processor UltraSPARC-III, in-order 
L1 I-Cache 32KB, 64B block size, 4-way set-

associative 
L1 D-Cache 32KB, 64B block size, 4-way set-

associative 
L2 (NUCA) 8MB, 64B block size, 16-way set-

associative 
OS Solaris 10 

 

14 JOURNAL OF SOFTWARE, VOL. 5, NO. 1, JANUARY 2009

© 2010 ACADEMY PUBLISHER



prepromotion instruction to prepromote two cache lines, 
which can contain 8 elements of the array a. Thus, the 
loop is unrolled 8 times to match the VLSP operations. It 
is obvious that the number of prepromotion instructions 
in VLSP is reduced to the half. 

If we want to prepromote n data items using the basic 
prepromotion instruction, we need issue n instructions. 
To complete the prepromotion, each instruction will 
produce request package. However, if we use the VLSP 
instruction, only one instruction is needed and only one 
package will be produced in the interconnection network. 
The package format is shown in Fig. 9. The PP bit vector 
in Fig. 9 denotes which data has been prepromoted. When 
the prepromotion package passes some bank, the router 

beside this bank is in charge of computing the data 
addresses to be prepromoted and issuing the 
corresponding operations to this bank. If a bank contains 
the data requested for prepromotion, the router sets the 
corresponding bit of the PP bit vector in the package to 1. 
Once all the bits of the PP bit vector are set to 1, the 
package will not be transmitted again. Fig. 10 shows an 
example in which a VLSP package transmits in the 
interconnection network. It is obvious that the VLSP can 
reduce the number of prepromotion packages efficiently 
under the help of routers. Meanwhile, because all banks 
are distributed, those prepromotion operations can be 
completed simultaneously. 

In actual, SMSP and VLSP can be combined. We test 
the combination in the experiment. As seen in section 6, 
the combination of SMSP and VLSP achieves the best 
performance. 

V.  EVALUATION METHODOLOGY 

To evaluate the software prepromotion proposed in this 
paper, we test seven kernel benchmarks in a full-system 
simulator, Simics [4]. The Table I lists the experimental 
configuration. The target of prepromotion is a L2 NUCA 
cache. It is 16-way set-associative. And we derive its 

NUCA parameter using CACTI 6.0 [5] as illustrated in 
Table II. There are 16 cache banks in it, and they are 
organized as 4 rows and 4 columns. Each way in a set 
locates in its own cache bank. The prepromotion 
operations act between two cache banks, which belong to 
the same set. Thus, prepromotion does not affect the 
correctness of the program running. 

Table III shows the benchmarks used in our 
experiment. Iccg, es, dp and lre are all loops from the 
Livermore benchmark [6]. Table III lists the numbers of 
instructions and L2 cache accesses. All benchmarks are 
compiled by GCC 4.2 with -O3 optimizing option. 

We test the performance of our approaches in detail, 
and choose the system without software prepromotion as 

TABLE II.  L2 NUCA CACHE CONFIGURATION DERIVED BY CACTI 6.0 

Layout 4 rows × 4 columns 
Horizontal Wire Delay 2 cycles 

Vertical Wire Delay 2 cycles 
Router Delay 3 cycles 

Bank Access Delay 6 cycles 
 

TABLE III.  BENCHMARKS CHARACTERISTICS 

Benchmark Description # of Instructions # of L2 Access 
mm Matrix multiplication 30.50M 0.44M 
jac Jacobi iteration algorithm 32.79M 1.71M 
lap Laplace transformation 53.15M 3.79M 
iccg Incomplete Cholesky Conjugate Gradient 24.70M 0.71M 
es Equation of state fragment 47.80M 0.74M 
dp Difference predictors 48.78M 8.86M 
lre General linear recurrence equations 44.62M 0.62M 

 

 
Figure 11.  IPC in the baseline 

 

 
Figure 12.  IPC improvement of basic software prepromotion  

over baseline 
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our baseline. Fig. 11 shows the IPC of benchmarks in the 
baseline. The average of IPC is 0.4661. 

VI.  RESULTS AND ANALYSIS 

A.  Basic software prepromotion 

Fig. 12 shows the improvement using basic software 
prepromotion in IPC over the baseline. It is obvious that 
most benchmarks except dp gets the performance 
improvement. The average improvement in IPC achieves 
2.6893%. Dp is the difference predictors kernel. One of 
its loops accesses two arrays in column major mode. 

Since each row of those loops contains 1024 elements, 
multiple data accessed continuously are mapped into one 

set of the cache. Thus, the 
performance of dp is the lowest as 
shown in Fig. 11. The basic 
software prepromotion sharpens 
the problems because the 
prepromoted data compete more 
seriously. The problem reflects 
some intrinsic shortcomings in the 
basic software prepromotion. The 
blind prepromotion may replace 
some useful data far from the 
processor. On the other hand, the 
adding of prepromotion 
instructions may bring more cost 
than the gain. 

B.  Multihop software 

prepromotion 

Compared with basic software 
prepromotion, multihop 
prepromotion can get better 
performance. Fig. 13 shows the 
IPC of benchmarks with hop = 3 in 
different strategies. The 
degradation management gets the 
best performance in most 
benchmarks except es. The average 

IPC in the replacement 
management is 0.4832; the one in 
the degradation management is 
0.4862; and that in the exchanging 
management is 0.4860. The 
performance of the exchanging 
strategy is very close to that of the 
degradation one. However, the 
exchanging strategy saves lots of 
bandwidth compared degradation. 
Thus, the exchanging strategy is 
our first choice. In the following 
experiments, we choose 
exchanging as the management 
strategy of multihop software 
prepromotion. 

To study the performance 
influence from different hops, we 
compare the number of 
prepromotion operations and 
system IPC in different hops as 

shown in Fig. 14. Note that the IPC does not increase 
along with the increment of the hop value. This 
appearance results from the decrement of prepromotion 
operations. A data to be prepromoted with hop = n may 
not be prepromoted because there may be no bank that is 
away from the source bank at a distance of n. On the 
other hand, we find that different benchmarks favor 
different hop values in Fig. 14. Mm and lre favor the 
prepromotion with hop = 1; joc, lap and dp gets the best 
performance at hop = 2; while the performance of 

 
Figure 13.  IPC in multihop prepromotion with different strategies 

 
Figure 14.  Number of prepromotion and IPC in multihop prepromotion with different hops 
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prepromotion with hop = 3 outperforms the other two in 
iccg and es. Thus, we need an intelligent method which 
can select the best hop value for different benchmarks. 

The smart multihop software prepromotion is just the 
best candidate for solve the above problem. Fig. 15 
illustrates the IPC improvement of the basic multihop and 
smart multihop over the baseline. It is obvious that the 
smart multihop prepromotion achieves the best 
performance. The average improvement of IPC in the 
smart one is 7.0928%, while those in the basic multihop 
are 2.6893%, 3.2756% and 3.2534% respectively from 
hop = 1 to hop = 3. It is exciting that the smart 
prepromotion gets a considerable performance 
improvement in dp, which is hard to optimized using 
basic software prepromotion and basic multihop software 
prepromotion. 

C.  Very long software prepromotion 

Fig. 16 shows the improvement of IPC with basic 
software prepromotion and VLSP over the baseline. In 
the experiments, we use one VLSP instruction to 
prepromote four cache lines. By reducing instructions in 
programs and packages generated in networks, the very 
long software prepromotion gets better performance than 
the basic one. The average of IPC improvement with 
VLSP arrives at 7.2194%, while that with the basic 
prepromotion is 2.6893%. 

As shown in Fig. 16, the VLSP can not prevent the 
blind prepromotion as well, so dp with the VLSP does not 
get the performance improvement. Thus, we integrate the 
smart multihop software prepromotion and the very long 
software prepromotion. As illustrated in Fig. 17, the 
combination gets the better performance. The average 
improvement in IPC with the combination achieves 
11.8650%. And dp also obtain the considerable 
performance improvement. 

VII.  RELATED WORK 

The software prepromotion proposed in this paper 
prepromote data in the non-uniform cache architecture. 
We summarize the work that most closely relates to the 
techniques proposed in this paper. 

A.  Non-uniform cache architecture 

Changkyu Kim firstly proposed non-uniform cache 
architecture in 2002 [1]. After that, lots of researches 
emerged [7-14]. There are two kinds of NUCA, static 
NUCA and dynamic NUCA. The static NUCA fixes each 
data in one cache bank, while the dynamic one permits 
that data stay in one of multiple banks. Thus, data can be 
moved between banks in the dynamic NUCA. This is the 
so-called promotion. It is used to reduce the NUCA 
access time. However, promotion acts when the data is 
accessed next time. Thus, promotion technique belongs to 
a passive method. The prepromotion is an active 
technique, which prepromote data that may be used in the 
near future. Akio Kodama proposed one block ahead 
(OBL) prepromotion [2], which belongs to hardware 
prepromotion. To our knowledge, the software 
prepromotion proposed in this paper is the first work that 
studies prepromotion using software methods. Under the 
help of programmer or compiler, the software 
prepromotion is often saner than the hardware one, so it 
can get better performance. Besides, the smart software 
prepromotion and the very long software prepromotion 
proposed in this paper overcome the shortcoming of the 
basic software method. 

B.  Software prefetching 

Prefetching is one of the most important techniques for 
hiding the memory access latency. Prefetching is divided 
into three classes: hardware prefetching [15], software 
prefetching [16-18] and the combination [19]. Hardware 
prefetching uses hardware to predict the future accesses 
using the history information of programs. Software 
prefetching inserts prefetching instructions in programs. 
The software prepromotion proposed in this paper is 
similar to software prefetching. Thus, some optimizing 
approaches for software prefetching are also adapted to 
our software prepromotion. However, because of the 
different platforms of prefetching and prepromotion, 
software prepromotion is different from software 
prefetching. For example, the smart multihop 
prepromotion and the very long software prepromotion 
proposed in this paper just act for software prepromotion, 
and there is no similar technique in software prefetching. 

 
Figure 15. IPC improvement of basic multihop  

and smart multihop software prepromotion 
 

 
Figure 16. IPC improvement of very long software prepromotion 
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C.  Interconnection network 

Interconnection network is one of the key techniques 
in non-uniform cache architecture. This kind of network 
is an on-chip one. The approaches in this paper need 
some support of the interconnection network. However, 
compared with the on-chip network used in multi-core 
processor [20-24], the modified part is very little. 

VIII.  CONCLUSION AND FUTURE WORK 

Non-uniform cache architecture has always been the 
trend of the future cache design. This paper has proposed 
the concept of software prepromotion and studied 
software prepromotion in detail. Besides the basic 
software prepromotion, smart multihop one has been 
proposed to match the particular of NUCA. And very 
long software prepromotion has also been studied for 
reducing the number of prepromotion instructions and 
improving the utilization of network bandwidth. Finally, 
we have tested seven kernel benchmarks to evaluate our 
approaches. The smart multihop software prepromotion 
improves IPC by 7.0928% averagely. And the very long 
software prepromotion gets the IPC improvement of 
7.2194% averagely. After combining smart multihop and 
very long software prepromotion, the improvement in 
IPC achieves 11.8650% averagely. Similar with software 
prefetching, software prepromotion lets programmers or 
compilers to insert prepromotion instructions in programs. 
How to do the work using compilers automatically is the 
challenge. This and the optimizing methods for software 
prepromotion are our future work. 
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