
Based on Quantification Software Quality
Assessment Method

Yang Aimin , Zhang Wenxiang
Computer and Information Technology College, Zhejiang Wanli University , Ningbo, CHINA

yhyang@sina.com.cn, zwx1962@zwu.edu.cn

Abstract—The influence which the software quality exerts

on software industry is more deeply in recent years.From

the beginning of software development to the present

software development, the assessing of the software quality

and the assurance of the software quality has already

become an important and indispensable factor in software

development. A lot of experts, scholars in the world begin to

study how to assess and guarantee the quality of the

software. Some assessing methods come from the author’s

understandings to the software quality are discussed and an

effective quantitative assessing model is proposed.

Index Terms—software quality,quality assessing,

algorithm,hiberarchy model,

I. INTRODUCTION

With continuous deepening of computer application,

the quality of software will directly affect depth and

scope of application. Obviously, PC can’t be widely used

today without steady and powerful operation system

software. So do other application fields such as

aeronautical & astronautic industry and national defense

industry, etc. It is necessary for both developers and users

to assure software quality.

Software quality evaluation refers to a series of tasks

including end product evaluation, development process

evaluation and evaluation on comparison among software

with similar function. Currently, it is difficult to

effectively evaluate software quality in software

engineering field, which arouses high attention in US,

Japan and Europe in recent years. For example, some

relevant effective evaluation methods such as software

quality method have been extensively used in

complicated fields including aeronautical & astronautic

industry, communication engineering and bank credit,

which have brought substantial effectiveness. This

development trend will play an important role in the

development of software industry.

II. SOFTWARE QUALITY OVERVIEW

A. Software Quality

Despite of numerous definitions of software quality,

through examining each definition and combining with

my own understanding on software quality, I think

reasonable definition should be as follows: software

quality characterizes all attributes on the excellence of

computer system such as reliability, maintainability and

usability. In terms of practical application, software

quality can be defined with three points on consistency:

consistency with determined function and performance;

consistency with documented development standard;

consistency with the anticipated implied characteristics of

all software specially developed. The above two

definitions are based on two different perspectives, but

they share the same essence: the satisfaction of

customers’ demands, that is, the satisfaction by software

products of operating requirements.

B Software Quality Evaluation

Software quality directly affects the application and

maintenance of software, so how to objectively and

scientifically evaluate software quality becomes the hot

spot in software engineering field. Software quality

evaluation involves the following tasks throughout

software life cycle and based on software quality

evaluation standard, which is implemented during

software development process: continuously measure

software quality throughout software development

process, reveal current status of software, predict follow-

up development trend of software quality, and provide

effective means for buyer, developer and evaluator

A set of evaluation activities may generally include

review, appraisal, test, analysis and examination, etc.

Performance of such activities is aimed to determine

whether software products and process is consistent with

technical demands, and finally determine products quality.

Such activities will change the phase of development, and

may be performed by several organizations. A set of

evaluation activities may be generally defined in the

software quality specifications of project plan, special

project, as well as related software quality specifications.

The developer may have software quality evaluation on

the finished products before delivery of semi-finished

products at every phase of development, identify the

difference between current quality level of products and

the required quality level of products, and take timely

corrective measures, to ensure the required quality is

incorporated in every stage of manufacturing, so as to

ensure the final quality level meets the requirements.

This paper is based on “Quantification Software Quality Assessment
Method,” by Yang aimin and Zhang wenxiang which appeared in the

Proceedings of the 9th International Conference for Young Computer

Scientists(ICYCS 2008) Zhangjiajie, China, November18-21, 2008. °＠
2008 IEEE.

This work was supported by National Natural Science Foundation of

NinBo under Grant No. 2009A610107.

1110 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.10.1110-1118

While software evaluation method may provide

independent third party software quality evaluation, and

present impersonal, authoritative, and just results of

evaluation
[1]

.

 The evaluation plan also includes the evaluation and

measure of software development process and the

activities and methods forming such process, so such

evaluation is actually a verification of initially chosen

methodology. However, it is naturally notable that the

precondition for software quality evaluation by the

software developer is that the development process shall

comply with software engineering standards.

III. SOFTWARE QUALITY EVALUATION METHODS

A Factors Affecting Software Quality

There are any factors affecting software quality,

generally include: human factor, software demand,

testing limitation, difficulty in quality management,

traditional custom of software personnel, development

specifications, insufficient support of development tools

and others, the foregoing of which may be considered as

factors that may affect software quality. Generally

speaking, such factors may be considered in either respect

of the developer and the administrator
[2]

.

From the administrator’s perspective, the factors

affecting software quality may include:

(1) The administrator is unaware of quality, without

overall plan or effective measures that could ensure the

quality, and is not paying enough attention to the quality,

nor stressing on the quality from the beginning.

(2) The administrator has not set up a good incentive

mechanism. Developer’s personal proceeds (whether

physical or mental) are not related directly to its working

performance. There is not any good personal performance

evaluation mechanism, so the fact is it causes the

developer to feel doing not well is fault of the entirety of

us, well its own interest is not affected, however, doing

well will not result in timely and obvious reward. Delay

for one month more will be paid for one month more,

advance for one month cannot help the next project. All

in all, doing well is almost the same as doing badly, so

every one is not active, no one will try the best to finish

task with high quality.

From the developer’s perspective, the factors affecting

software quality may include:

(1) the developer cannot put quality assurance as the

priority that is material and required to be completed,

unfortunately, product quality assurance is deemed to be

responsibility of quality inspector. Lack of the idea of

overall quality management and that every one is the

quality assurer and person liable.

(2) Everybody lacks this idea: Must no do unqualified

work in each product development stage, must not bring

any unqualified intermediate product to next stage,

avoiding resort to specialized quality inspector for

examination and product quality assurance at the last

stage of product. This requires design of examination

standard for each stage of work explicitly, letting

everybody know what work is qualified
 [3]

.

(3) No one can see how important the increased quality is

to the existence and development of company, in general

lack of the sense of ownership.

Obviously, not only either of the two has problems

affecting the quality of software products, but also the

relation between the two affects the quality. For example,

inconsistence of versions arises because the

administrator’s direction is not implemented as far as

practicable. For another example, the measures take by

the administrator to emphasize quality and maintain

quality will arouse the developer’s revulsion. If everyone

can better communicate and cooperate, this kind of

problems will become far less. Additionally, we are

unfamiliar with customer’s quality requirement, don’t

understand customer’s mentality and lack the idea of

rendering customers satisfactory
 [4]

.

B. Software Quality Quantitative Evaluation Methods

The above sets out factors affecting software quality,

mainly from the perspective of inside factors of software

development enterprises, and in fact the factors affecting

software quality shall also include the problems that

occur when users are communicating with software

developers. Such problems can be found in the software

quality evaluation method.

When we say some software is good, some software

has complete function, reasonable structure, and clear

arrangement. These expressions are ambiguity, not exact

for evaluation of software. To users, when the developer,

based on its own demand, develops a application system,

completes it on time and delivers it for use, and the

system correctly perform the functions required by the

user, it is far from enough with satisfaction of the above.

Since the users will encounter many problems during

introduction of a set of software, for example, it is hard to

understand the customized software, or modify it, and

during the maintenance period, the maintenance costs of

users increase substantially, so the users become to

skeptical about the quality of outsourced software,

however, the users have no suitable indicator for

evaluating software quality, and the developer usually

lacks productivity indicator for developing software, so

the users are unable to accurately evaluate the working

quality of the developer. This kind of evaluation method

for software will directly result in shrinkage of life cycle

and further development by the developer
 [5] [6] [7]

.

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1111

© 2009 ACADEMY PUBLISHER

Figue1. Relations between Software Quality Elements and Evaluation
Standards

For this purpose, it is necessary to discuss a complete

quality evaluation system, which evaluation model is 3-

tiered: The 1st tier is software quality elements which can

be divided into 6 elements which are fundamental

features of software, including:

(1) Functionality is the degree to which the functions

realized by the software can satisfy user’s demand. It

reflects the degree to which the developed software can

satisfy the alleged demand or implied demand of users,

that is, whether the functions required by users are fully

realized.

(2) Reliability is the degree to which the software can

maintain its performance level in specified time and

conditions. Reliability is an important quality requirement

for some software, it reflects the degree to which the

software can continue to operate in case of failure, in

addition to the degree to which the software can satisfy

the normal operation required by users.

(3) Facility to use is the degree to which the users

spend efforts in learning, operating, preparing input and

understanding output of some software. It reflects the

user-friendliness, that is, the facility of this software in

use.

(4) Efficiency is the effectiveness of computer

resources (including time) required for some function

realized by software in specified conditions. It reflects

whether there is waste of resources or so when the

required functions are completed.

(5) Maintainability is the facility of modification in

case of change in environment or software error in some

operable software, in order to satisfy user’s demand.

(6) Portability is the facility of transplantation from

one computer system or environment to another computer

system or environment.

The 2nd tier is evaluation standard, which can be

divided into 22 points, including accuracy (software

property of accuracy required in computer and output),

robustness (software property of continuous performance

and system restoration in case of accident), security

(software property of prevention from accidental or

willful access, use, change, destruction or disclosure), and

communication validity, treatment validity, equipment

validity, operability, trainability, completeness,

consistence, traceability, visibility, independence of

hardware system, independence of software system,

expandability, utility, modularity, legibility, self-

descriptiveness, simplicity, structuredness, and

completeness of product files. A certain combination of

evaluation standard will reflect the quality elements of

some software, the relation between which and evaluation

standard is summarized into a dendrogram as shown in

Figure 1.

The 3rd tier is metrics: Design a questionnaire for each

stage of the seven stages including software demand

analysis, preliminary design, detailed design, realization,

assembly testing, identification testing and maintenance

& use, to realize the quality control over software

development process all at once. To an enterprise, no

matter for customization or for secondary development

after software outsourcing, it is crucial to know and

monitor the progress and product level at every sector of

software development process, since the level of software

quality substantially depends on user’s participation. It is

necessary to explain the following points [9]:

 (1) To different types of software, system software,

control software, management software, CAD software,

educational software, Internet software and different

scales of software will have different emphases on quality

requirements, evaluation standards, quality problem, so

they should be distinguished, as shown in TABLEⅠ.

Software quality assurance and evaluation activity

have different emphases. In the stages of demand analysis,

preliminary design, detailed design and its realization, the

evaluations are mainly on whether the software demands

are complete, whether the design has fully reflected the

demand or whether the coding is concise or legible. And

each stage has a specific metric work sheet, composed of

specific metric units whose score is the basis for score of

metric standard and elements, and further evaluation.

This point is very applicable to enterprises developed in

cooperation with software developers.

(2) The fundamental purpose for metrics at every stage

of software quality is to control cost, progress and

improve efficiency and quality of software development,

however, currently there are not many large-scaled

software companies in China; this requires continuous

improvement of a majority of software development

TABLE Ⅰ

Different Factors to be Considered by Different Software

Software application features Factors to be considered

Software demanding

longer lifetime

Portability,

maintainability

Real time system Reliability, efficiency

Software to be used in
different environments

Portability

Bank related system Reliability,
functionality

1112 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Figue2 Quantitative Software Quality Evaluation Standards

enterprises, for establishing their own department

dedicated to software quality assurance and software

quality evaluation, and alternatively, they can also entrust

professional agencies to participate in or help software

quality control and assurance.

(3) The users, when selecting software suppliers,

developers, needs to inspect whether that company has

established its own software quality metric and evaluation

data, whether the database has kept any software related

to proper industry, and whether it has related experience

of development.

In combination with foregoing software 3-tiered

evaluation model, a quantitative software quality model is

given here. This model, combined with evaluation chart

(as shown in Figure 2), applies following rating method.

(1-16 as shown in TBALEⅡ)

(1) Weight rating of principal characteristic factors:

The evaluator, in combination with current software, will

rate the weight of principal characteristic factors in

evaluated model. There are 3 kinds of principal

characteristic factors, namely functionality, reliability and

portability. Weight is represented by the size of area

taken by the factor in the evaluation chart.

(2) Weight rating of sub-characteristic factors: To

compute the weights of sub-characteristic factors

included in each principal characteristic factors. The

number of sub-characteristic factors depends on the

principal characteristic factor. The weight of sub-

characteristic factor is represented by the percentage of

such factor in the area of principal characteristic factor. It

is easily found that the sum of every sub-characteristic

factor’s percentage in the total area is a fixed value 1, so

the percentage of each sub-characteristic factor can be

construed as such factor’s weight in the system.

(3) Sub-characteristic factor performance rating: To

estimate the performance score of each sub-characteristic

factor, according to the evolution chart in the

performance intensity scale division line divided with

circles, and spot on the internal bisector of the sector zone

occupied by each sub-characteristic factor according to

estimate value.

(4) Connect all points to form a line, the surrounded

area is the quality evaluation of such software.

The quantification formula is induced as follows:

Supposing the evaluated software has n sub-characteristic

factors, the performance score of which is represented by

Vi, the internal angle of surrounded sector is represented

by αi, where 1≤i≤n，0≤i≤MAX (performance intensity

scale line), and the characteristic factor of continual

marking in the evolution chart is neighboring.

By assumption

1

n

i

i

α
=

∑ =1 (1)

 Software quality evaluation:

Q=
1

n

i

i

V
=

∑ × (2)

(1)mod (1)modsin (/ 2 / 2)i n i i nV α α
+ +

+ (3)

 where mod represents modulo operation, that is,
the residue of acquisition dividing operation

[10]
.

IV. CAPABILITY MATURITY MODEL(CMM)

CMM (Capability Maturity Model) is an early

research results of non-profit organizations ----Software

Engineering Institute (Software Engineering Institute,

SEI) .SEI was federally funded and founded by the

United States Congress and major U.S. companies

cooperate with The Research Centers in 1984.The model

TABLE Ⅱ

Cross Reference Table

1 Completeness

2 Consistency

3 Security

4 Consistence

5 Adequacy

6 Simplicity

7 Performance intensity scale line

8 Robustness

9 Versatility

10 Legibility

11 Modularity

12 Self-descriptiveness

13 Expandability

14 Independency of hardware

15 Independency of software system

16 Traceability

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1113

© 2009 ACADEMY PUBLISHER

Figue3 Level of the software process maturity

Figue4 The five maturity levels of CMM

provides the results of software engineering and

management framework, has been made since the 90's,

has been successfully applied in North America, Europe

and Japan. The model has become the industry standards

of software process improvement. Any development of

software development, maintenance and software

organizations can not be separated from the software

process and software process experienced the process of

development that immature to mature, imperfect to

perfect. It need continuous improvement of the software

process to obtain the final results. CMM is designed

based on this guiding ideology. In order to guide the

software process activities correctly and orderly, the

model establish an effective description and expressed in

the framework of software process improvement to

enable it guide the various stages of the software process

and management. The model is based on the concept of

product quality and software engineering experiences and

lessons to guide enterprises how to control the

development, stick up for software production process

and how to set a software process and management

system.

（1）classification criteria

CMM model describe and analyse the software

development process level of software process capability,

establish a grading standards level of software process

maturity, show in Figure 3. On the one hand, software

organizations can make use of it to assess their current

process maturity and advance a strict software quality

standards and process improvement methods and

strategies, through continuous efforts to achieve a higher

level of maturity. On the other hand, the standard can also

be used as a evaluation criteria of the organization for

software user so that the user no longer be a blind and

uncertain when in the choice of software developers.

Hierarchical structure of the CMM can be described

as:
The initial level: the character of software process is

disorderly and sometimes disordered. The definition of

software process almost in the state of following no rules

and the steps , software product success is often highly

dependent on the efforts of individuals and opportunities.
Reusable level: It has established a basic project

management process and also can be used to track

the cost, schedule and function features. When it

comes to the similar application projects, can rule-

based and repeat the success of the past.
Has been Defined level: The software process which is

used to manage and engineer have been documented,

standardized, and formed a standard software process for

entire software organization. All projects use the

normal software process which is in line with the

actual situation and with appropriated modifications

to operate.

Has been Managed level: software process and

product quality has measurement standard in detail.
Software process and product quality has the quantitative

understanding and control.

optimization level: can be constantly and continuously

improve the promotion process via the process , new

concepts and new technologies, such as the various

aspects of the of useful information quantitative analysis .

In addition to the first level, each level set a batch of

objectives, if achieved the goal of this group indicating

the maturity level has reached and can move to the next

level. CMM systems are not in favor of inter-level

evolution. Because each low-level, since the beginning of

the second level, realization are the elements of the high-

level realization.

(2) Main content of CMM

CMM provide a step-by-step evolution of the

framework for process capability of software companies

which use hierarchical way to explain the starting

component as show in Figure 4. In the second to the fifth

maturity level, each level contains a concept of the

internal structure. Detail description of the internal

structure of CMM in the following internal structure for a

column. The process of every level move to higher level

has its own specific plan to improve.

 (3) The internal structure of CMM

CMM provide a improvement means for software

process capabilities. CMM Maturity comprises 5 levels

and each maturity level have their own functions. Except

the first level, every level of CMM has exactly the same

internal structure. Show as Figure5. The top-level is

Maturity level, different maturity levels reflect the

software process capability of software organizations and

the expected results extent of the organization may be

achieved
[8]

.

1114 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Figue6 GQM Model

Figue5 Internal structure of CMM

V. PROCESS PERFORMANCE METRIC AND ANALYSIS

MODEL STUDY IN SOFTWARE QUALITY MANAGEMENT

Process performance metric in software quality

management is the key to quantitative process

management which relies on quantitative technique. In

software production, all jobs are composed of a series of

interrelated processes which are changing, so the

establishment of effective process performance metric is

the key to knowledge and understanding of the processes.

The understanding of process data and changes is an

important feature of high mature organization,

establishment of effective process performance metric

model is for one purpose of effective understanding of

and control over processes, and for the other purpose of

real time decision-making scheme based on process data.

A. GQM Rationale

Implementation of Goal-Question-Metric (GQM)

method
[11]

will result in a specification of metric system,

including a set of specific problems and a set of rules to

interpreting observed data. The resulting metric model

includes 3 tiers as shown in Figure6:

 (1) Conceptual Tier (Goal): to designate a goal for

metric object which is generally any or all of those

software-related activities involving time, such as

specification, design, test and review.

(2) Operating Tier (Questions): to describe those

methods used to evaluate/realize a specific goal with a

group of questions which describe the metric object based

on the chosen quality points, and measure its quality from

selected perspective.

(3) Quantitative Tier (Metric): To reply each question

in quantitative manner based on a group of data acquired

for such question. These data may be objective, or may

be subjective.

The GQM method is based upon such a supposition:

purposeful metric of a software organization requires

clarification of the goal of its organization and the goal of

each project, then it is required to define operable data for

such goals and collect them, and finally it needs to

provide a kind of framework to interpret such data based

on determined goals
[12]

. The GQM model is a tiered

structure, starting from a high level goal, for example, “to

improve the timelines of demand changing process from

a project manager’s view”. This goal designates the

measure intent (improvement), measure object (demand

changing process), measure focus (timeliness) and from

which perspective to measure (from a project manager’s

view). These goals are segmented into many questions,

usually segmenting measure focus as its key component.

Then each question is segmented into metrics to answer

such questions, and follow up the conformity of product

and process with goals. Such metrics may include

objective ones, or may include subjective ones. One

metric may be used to answer different questions under

the same goal. More than one GQM model may also

share some questions and metrics. However, it should be

noted that the measure should be performed correctly

from defined perspective, that is, the measure may have

different values from different perspective.

Benefit of this methods
 [13]

:

(1) It can ensure the adequacy, consistency and

completeness of measure plan and data collection. The

designer of metric procedure (i.e. metric analyst) should

have huge information and the interdependency between

them. In order to ensure the measure set is adequate,

consistent and complete, the analyst is required to

accurately know any reason for measuring these

properties, any implied premises, any model to be used in

measuring data.

(2) It can also help manage the complexity of measure

plan. When there are numerous measurable properties

and the number of measures to be taken for each property

is rising, the complexity of measure plan is undoubtedly

increasing. In addition, the means chosen for full measure

of a certain property will also rely on the measure goal.

Without a goal-driven structure, the measure plan will go

out of control soon. Without a mechanism capturing the

interdependence between all properties, any change of

measure plan may easily introduce inconsistency.

(3) In addition, it also helps us discuss the measure and

improvement goals on the structural basis of common

understanding, and finally form an agreement. Vice versa,

this also enables us to define the widely accepted measure

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1115

© 2009 ACADEMY PUBLISHER

and model in the organization. And such is premise of

successful measure.

B. Problem and Development Existing in GQM Method

GQM technique is proven to have offered great help to

the definition of reasonable measure, though it also has

some limitations.

GQM method results in definition of measure through

breaking down the goal and problem. But such process is

not strictly defined, and its quality depends on executor’s

experience. David N. Card once pointed out following

limitations existing in the GQM method
 [14]

:

(1) It cannot ensure repetition: two different teams in

the same organization may have different problems and

measures, even if starting from the same goal. The same

team will have some difference in defined problem and

measure after segmenting the goal again after several

months.

(2) It is unable to determine the time of termination: It

is not explained in GQM when to stop raising problem

and defining corresponding measure. Therefore, user may

have raised too many questions for developing a

“complete” measure plan, thus the final measure amount

becomes very huge.

(3) It produces impractical results: Some questions

raised by GQM method may be the ones that could not be

answered by the organization, unless it transforms its

operating style to enable the performance of necessary

measure. If our main purpose is data collection (i.e. test

carried bout by researchers), there is no problem. But in

typical industrial environment, that is not suitable. The

implementation of GQM producing a great deal of

problems and measures with priority level will trap the

entire organization into mud.

(4) In addition, our practice also indicates that because

there is no clear explanation of size segmented by the

“goal” in GQM method, we cannot make it clear when to

stop such segmentation as we segment the initial goal into

sub-goals. This segmentation process also has foregoing

three limitations. What is more, there is no explanation

about how to select measure goal in the GQM.

(5) In GQM, it also lacks the analysis on measure

results, and the instruction on explanation work. Without

reasonable analysis and explanation, we cannot make full

use of the measure results, or even possibly mislead

others.

At the same time, Basili's and Weiss' work takes

consideration of the measure process and its validity, but

does not combine the measure process with the software

process where it is located
 [15]

. Thus it can be seen that

GQM can be regarded as one kind of guiding principle,

used to direct the definition of measure, in stead of a

strict engineering method in the design of measure

system. The method often needs to be supplemented by

project judgment and common sense. However, one kind

of effective supplement to GQM is to model measure

objects, through which, we can effectively select measure

according to the validity, instead of merely based on our

wills. To define the measurable properties and express the

model which explains the relations between them is also

very important for explanation of measure data. The

analysis of measure results, in turn, also possibly deepens

our understanding of the model, and helps us improve

these models. To some degree, our modeling ability

decides our measure ability.

Due to the recognition of various limitations in early

versions of GQM, Victor R. Basili et al. are also

constantly improving the GQM method. For example,

they introduce the modeling thought in GQM, increase

the modeling of measure object, and provide support for

defining measure goal, but they have not given operable

definition of modeling.

The GQM method obtains widespread application in

the software industry, and many companies have

published their experience in applying GQM. In addition,

many people have made improvement or supplement,

based on their practical experience, to the GQM method,

like Rini van Solingen and Egon Berghout
[16]

, also some

people have developed measure tools to support GQM

implementation
[17]

. Although it is largely improved,

GQM has not completely solved the limitations above-

mentioned, and measure plan maker needs to have a

profound understanding of the organization's software in

order to have meaningful segmentation of measure goal,

in implementing the GQM method.

Although the GQM/GQIM method model provides a

feasible method for the selection and definition of process

performance in software quality management, it is quite

abstract after all. But software organizations, when

carrying on actual measure, are often not very clear about

what measure goal and question to propose, or don’t

know which process performance to measure, but the

CMM/CMMI model happens to provide possible

solutions for these problems. CAS software, on the basis

of GQM/GQIM, proposes the P-GQIM measure model
[18]

, where P represents “the Process”, GQIM represents

“Goal-Question-Indication-Measure”. This model

increases process modeling content in view of actual

situation of process measure, and increases data analysis

and other parts, simultaneously has provided a more

explicit instruction to the original part of GQM method.

The main extension includes:

(1) Increases process modeling. We can model

organization process in light of the organization's

business goal, forming process model base. Every actual

process performed by the organization is example of

process model in the model base. In the process model

including with the process correspondence's GQIM plan,

such in the future when will work out the GQIM plan to

the similar process's identical measure goal, may entrust

with heavy responsibility the existing process wealth.

Process model includes the GQIM plan specific to such

process, so we can reuse the used process wealth in

designing the GQIM plan for the same measure goal of

the same process.

(2) Limit the options scope of measure goal. In the

GQM method, there is no limitation to the options of

measure goal, and moreover, the introduced

process/product model is mainly used to break down

problems according to the goal. In the P-GQIM measure

model, the measure goal is limited to have options only

1116 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Figue7 P-GQIM Model

according to organization's business goal and

corresponding process model. Such limit is to guarantee

that the measure serves for the business goal, namely

guarantee its rationality. Therefore, we establish the

organization's process model according to its business

goal at first, and then determine measure goal according

to its business goal and process model, instead of opting

for measure goal at first and then opting for process

model.

(3) Break down the 3-tier structure of GQM (Goal-

Question-Metric) into 4-tier structure of GQIM (Goal-

Question-Indicator-Measure), where Indicator and

Measure replace Measure section in GQM, enhance

definition of indicators and make the tiers of model

clearer.

(4) Enhance the technique of analysis and explanation

on measure result, and add the improvement section of

process model.

This model is shown in Figure 7:

C. Process Performance Measure & Analysis based on

P-GQIM Model

 (1) Starting from Business Goal

Although we call the P-GQIM Model as goal-driven

measure model, its apparent difference with traditional

goal-driven measure method is that it is starting from

business goal. Traditional goal-driven measure method

starts from measure goal, but in P-GQIM, the first to do is

determine the business goal of the organization, and then

we can build the model for the organization process based

on business goal. Its measure goal will be exported from

the business goal and process model ensuring the entire

measure program to serve the business goal of the

organization.

(2) Reusability of Measure Scheme

The P-GQIM Model records the GQIM plan of a

certain measure goal specific to such process through the

“measure” dimension in process model, in such a way,

we can use existing GQIM plan directly in developing

measure procedure under the same process and the same

measure goal. In doing so, we can solve the problem

“unable to ensure repetition” existing in GQM method to

some degree.

(3) Consistency of Measure Scheme with Process

In P-GQIM Model, the measure goal, together with

following problem, indicator, measure in the GQIM plan

are all designed on the basis of existing process model,

thus their consistency with process model is ensured. All

measure data can be collected from examples of existing

process models, therefore implementing the measure plan

designed by the P-GQIM Model will avoid the limitation

“producing impractical results” existing in the GQM

method.

(4) Determination of Operability of Measure Goal

Through defined process model, it can also guide the

breakdown of measure goal. If we select such goal as a

higher level process, including sub-process, the goal size

defined specifically for it will be probably larger. In this

way, we need to break it down into several sub-goals step

by step at first, and then design GQIM plan based on the

final sub-goals. In breaking down the measure goal, we

can make reference to the structure of process model.

According to the sub-process composition of the process,

we can beak down the measure goal into sub-goals

specific to sub-processes, step by step until we break it

down to the lowest level process unit.

However, due to close relationship between the

problem and specific goal or and environment, there is

not any good solution to the limitation “unable to

determine when to stop raising the question and defining

the corresponding measure” existing in the GQM method.

 VI. CONCLUSION

Software quality evaluation is another important

approach to further drive quality forward by great steps

after software quality management and independent

software test. It is fair to say that software quality

evaluation provides an important guarantee for

quantitative evaluation of software quality, and plays an

irreplaceable role. This article gives a model for

quantitative evaluation of software quality. Such a model

is visualized, easy to measure, and it is easy to outline the

effect curve of software characteristic factors on software

quality according to this model, and better evaluate the

quality level of the software, and accurately control,

manage and improve software quality.

REFERENCES

[1] Roger S Pressman, “Softwear engineering, a practitioners’s

approach”, [M]. Fourth Edition. McGraw-Hill Press , 1997.

[2] Witold Pedrycz and Giancarlo Succi, “ Genetic granular

classifiers in Modeling software quality”,.Journal of

Systems and Software,2005,76(3):277-285

[3] Anders Henriksson, Uwe Aβman,and ames Hunt,

“Improving software quality in safety-critical applications

by model-driven verification”, [J]Electronic Notes in

Theoretical Computer Science,2005,133(31):101-117.

[4] Fan Dongping and Liu Youcheng, “Structure Modeling and

System Building of Self-adaptation Application Software

System”, [J] Computer Engineering and Application, 2001,

37(12).

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1117

© 2009 ACADEMY PUBLISHER

[5] Fan Dongping, “Enterprise MIS System Component

Developing Methodology Study” [D]. Beijing: Beihang

University, 2001.

[6] Tang Ying, “Component Reuse Technique Research and

Realization in the Development of Commercial

Management Automation System”, [D]. Beihang

University, 2000.

[7] Li Jia, “MIS System Development Method Study and

Component Library Realization”, [D]. Beijing: Beihang

University, 2001.

[8] Wang hao, “Based on J2EE technology software quality

monitoring model research and application” Dissertation

Chinese full-text database,2005

[9] Zhou Bosheng, Xu Hong and Zhang Li, “Introduction to

Process Engineering Principle and Process Engineering

Environment”,[J].SoftwareJournal,1997.8, Additional:

519-534.

[10] Karl E and Wiegers. “Software Metrics: Ten Traps To

Avoid”,[J]. Software Development. 1997, October. pp.

111-125.

[11] Victor R. Basili and M. W. Weiss, “A methodology for

collecting valid software engineering data”,[J]. IEEE

Transactions on Software Engineering. 1984, Nov, Vol.

10(NO. 6). pp. 36-49.

[12] Victor R. Basili, Gianluigi Caldiera and H. Dieter

Rombach. “The Goal Question Metric Paradigm”[J],

Encyclopedia of Software Engineering-2 Volume. 1994,

pp.528-532.

[13] Lionel C. Briand, Christiane M. Differding and H. Dieter

Rombach,“Practical Guidelines for Measurement-Based

Process Improvement”,[J]. Software ProcessImprovement

and Practice Journal. 1997, Vol. 2(4). pp. 231-238.

[14] David N. Card., “What makes for effective

measurement”,[J]. IEEE Software. 1993,Nov, vol. 10,pp.

94-95.

[15] Maurizio Morisio, “A methodology to measure the

software process”,[C].Proceedings of the 7th Annual

Oregon Workshop on Software Metrics. 1995,pp.216-221.

[16] Rini van Solingen and Egon Berghout, “Integrating Goal-

Oriented Measurement in Industrial Software Engineering:

Industrial Experiences with and Additions to the

Goal/Question/Metric Method(GQM)”, [C]. Proceedings

of the 7th International Software Metrics Symposium.

2001. pp. 178-186.

[17] Luigi Lavazza, “Providing Automated Support for the

GQM Measurement Process”,[J]. IEEE SOFTWARE.

2000, May/June. pp. 32-36.

[18] Yi Haifeng, “Software Quality Management Process

Performance Measurement and Analysis” , Dissertation

Chinese full-text database,2006

Yang AiMin

associate professor，（1967.8 ,born in HeBei) ,Holder of a

master's degree in Tianjin Universyty in 1997.6 ,

specialty:Computer Organization and System Architecture.

major field of study : Computer Application

Current job:

Zhejiang Wanli University /Computer Science and

Information Technology College,(2000-) Ningbo, CHINA

Major articles:

[1] Yang Ai-Min,Zhang Wen-Xiang ，A Fast Multiplier

Design over Composite Fields 2006 , WSEAS

TRANSACTIONS ON SYSTENS ,Issue 3,Volume

6,March 2007, (EI).

[2] Yang Aimin WuJunping, THE DIGITAL SYSTEM

VIRTUAL LAB BASED ON EMBEDDED

STRUCTURE, International Sysmposium on Computer

Science and Technology,2007.5 (ISTP).

[3]Aimin Yang, Junping Wu，Lixia Wang ，Research and

Design of Test Question Database Management System

Based on the Three-Tier Structur ， WSEAS

TRANSACTIONS on SYSTEMS Volume 7, 2008ISSN:

1109-2777

Zhang Wenxiang

professor,（1963.1 ,born in HeBei) ,Holder of a master's

degree in BeiHang Universyty in 1999.3,specialty:Computer

Software;

Zhejiang Wanli University /Computer Science and

Information Technology College,(2001-) Ningbo, CHINA

major field of study : Computer Application

Current job:

Zhejiang Wanli University /Computer Science and

Information Technology College,(2000-) Ningbo, CHINA

1118 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

