
Design and program multi-processor platform
for high-performance embedded processing

Yijun Liu, Zhenkun Li
Faculty of Computer,

Guangdong University of Technology, Guangzhou, China
Email: {yjliu, zkli}@gdut.edu.cn

Abstract— Modern embedded markets call for high density
computing ability, making it is difficult to use just one
microprocessor to meet function requirements of high-
performance embedded systems. Multiple processors, in-
cluding general-purpose embedded microprocessors, digi-
tal signal processors (DSPs), ASICs and FPGA hardware
accelerators, are often used in these embedded systems.
Not all processors in an embedded device have the same
characteristics and they are asymmetric. Heterogeneous
multiprocessors bring forward difficulties in both hardware
and software designs. The paper addresses the issues of
supporting parallelization in asymmetric multiprocessor
(AMP) environment from both hardware and software
sides, including cache coherence, semaphore and embedded
software programming.

Index Terms— Asymmetric multi-processor, Symmetric
multi-processor, Cache coherence, Parallelism program-
ming, Program model

I. INTRODUCTION

With the development of silicon technologies, em-
bedded chips become more powerful and have more
dense computing ability. Embedded processors take the
place of general-purpose PC processors not only be-
cause of their low cost but also because of their low
power consumption, rich functionality and high reliability.
Embedded microprocessors have been used broadly in
consumer electronics (such as multimedia players and
gaming devices) and communication devices (such as
cellular phones and personal digital assistants). However,
people’s pursue for high performance will never stop.
Many embedded devices still call for high computing abil-
ity, making it is difficult to use just one microprocessor
to satisfy the functionalities. For example, one advanced
200 MIPS ARM processor is not powerful enough to
decode MPEG4 or H.264 video signals in a set top box.
In many embedded systems, more than one processor is
used to achieve high performance, a number of tasks run
in parallel [1]. Normally, the systems have three solutions:

1) Designing software for several symmetric general-
purpose embedded microprocessors (SMP) [2] [3]
running in parallel;

2) One general-purpose embedded microprocessor
plus programmable hardware accelerators (FPGAs),
application-specific integrated circuits (ASICs), and
digital signal processors (DSPs). The general-
purpose cooperates with the specific hardware to
improve performance;

3) Asymmetric multiprocessors (AMP) [4] [5], blend-
ing multi-core microprocessor, DSPs, FPGAs and
ASICs.

The first one is a pure software solution, in which, all
processors have the same characteristics and identical.
In this scenario, tasks are easy to schedule and every
processor can fully use their potential processing ability
if there are enough tasks. Thus, ‘best-effort’ and good
average performance can be easily achieved. However, in
embedded systems, average performance and throughput
are not the most important issue. Guaranteeing ‘hard’ real-
time is of the most important. For example, in a guided
missile control system, the processing must be 100%
deterministic. Hard real-time is usually guaranteed by an
exclusive processor or by hardware. Therefore, embedded
systems should include multiple processors to enhance
processing ability, and also need application-specific
processor to guarantee real-time requirement. Blending
general-purpose microprocessors and application-specific
processors (asymmetric multiple processors) have been
the way in embedded systems for years, and it will
continue to be so.

The scenario brings forward difficulties in both hard-
ware and software designs [6] [7]. In an asymmetric
multiple processors platform, all the processors should
communicated in an efficient way. The issues in parallel
programming should be supported, such as cache coher-
ence, semaphore and task arrangement. New embedded
software program model should be studied to improve
program efficiency. Since the ARM microprocessors are
most-commonly used, the paper studies the solutions in
ARM multiple processors background, but the principle
proposed in the paper is valid in any other multiple
processor environments.

The remainder of the paper is organized as follows:
Section 2 describes the necessary of asymmetric multi-
processor architecture from the study of embedded pro-
cessing, a common AMP architecture is presented; Sec-
tion 3 addresses the hardware support for data coherence
and process synchronization of AMPs. Section 4 discusses
how the processors in an AMP environment cooperate
and communicate with each other; Section 5 proposes a
program model for ASP embedded systems; and Section
6 concludes the paper.

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1069

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.10.1069-1075

II. ASYMMETRIC MULTI-PROCESSOR ARCHITECTURE

With the development of silicon technology, more and
more transistors can be integrated in a single chip, multi-
core processors are technique trend both in embedded
and PC markets. Multi-core processors have advantages
in both high performance and low-power consumption.
If the processing cores of a processor are identical, the
processor is called a symmetric multi-processor (SMP).
ARM11 MPCoreTM is a SMP [9] [10]. An ARM MP-
Core processor can be configured to have 1-4 processor
cores. Figure 1 illustrated the architecture of an ARM11
MPCore processor with 4 processor cores. The processor
cores in this processor are identical, which make it easy
for a single OS to schedule tasks within cores in balance.

Timer

Wdog

 CPU
interface

CPU/VFP

L1 Memory

IRQ

Timer

Wdog

 CPU
interface

CPU/VFP

L1 Memory

IRQ

Timer

Wdog

 CPU
interface

CPU/VFP

L1 Memory

IRQ

Timer

Wdog

 CPU
interface

CPU/VFP

L1 Memory

IRQ

Snoop Control Unit (SCU) maintain cache cohenrency

Support 64-bit I & D bus

Interrupt Distrubutor

Private
peripheral
bus

Configurable number of hardware interrupt lines Private FIQ lines

AXI 64-bit W/R bus to memory

Figure 1. The Architecture of a symmetric multi-processor

As described before, SMPs usually support only pure
software solutions, in which, ‘hard’ real-time cannot be
guaranteed. The application-specific processors, such as
FPGAs, DSPs and ASICs, are included to meet worst-case
latency. Application-specific circuits are also involved in
embedded systems to enhance the performance and power
efficiency of some important program ‘kernels’. In one
our early paper, the characteristics of embedded programs
were analyzed [8].

Embedded processors usually deal only with a fixed
number of applications, and among these applications,
CPU occupation rates are highly unbalanced. Embedded
processors may spend most of their execution time in
executing only a few loops of a few programs. Conse-
quently, a small number of important program kernels
(program segments which may be small loops or function
calls) have the greatest impact on the success of an
embedded processor. Moreover, since the execution and
power-efficiency of these important kernels are critical for
overall performance and power consumption, the kernels
are normally hand-optimized, but application-specific cir-
cuits can greatly improve the efficiency of execution than
pure software solutions.

Specifically designed hardware can greatly enhance
the performance and power-efficiency for these important
kernels, and therefore, DSPs, FPGAs and ASICs are
usually selected by embedded system designers. The in-
volvement of these application-specific processors makes

the multiple processors asymmetric. The architecture of
an asymmetric multi-processor (AMP) is illustrated in
Figure 2.

SMP0

cache

SMP1

cache

SMP2

cache

AMP0

cache

AMP1

cache

ASIC

SMP Memory Shared Memory AMP Memory

Figure 2. The Architecture of an asymmetric multi-processor

An AMP architecture includes several identical micro-
processors, several different microprocessors, and some
application-specific circuits. Therefore, an AMP system
is a mixture of SMP and AMP. SMP and AMP have
their own memory area. But they need to communicate
and cooperate, a shared memory area is necessary. To
overcome the bottleneck of memory and processor, a
small local cache is often put between processors and
main memory. A data coherence mechanism must be used
to promise the correctness and consistency of data.

AMP architecture brings forward challenges for embed-
ded hardware design and parallel software programming.
The challenges are listed as follows:
• Hardware supporting parallelism:

In AMPs, software tasks run in parallel. The par-
allelism must be supported by hardware, including
cache coherence and atomic operations.

• Message passing and task allocation:
The tasks running in heterogeneous multiprocessors
frequently send message to each other, requiring an
efficiently message passing mechanism. Moreover,
tasks are loaded dynamically. Threads should be allo-
cated to different AMP processors based on run-time
conditions. An efficient task allocating mechanism is
also a great challenge to AMP design.

• Software program model:
In AMP environment, tradition embedded software
program model is greatly challenged. Traditional
hand-optimal programming methods depend on pro-
grammer’s ability in understanding low-level hard-
ware details and not very efficient.

We will address the solutions to these challenges in the
following sections.

III. INTERFACE MODULE FOR PARALLELISM

Cache coherence and atomic operations are necessary
for parallel program execution. It is a headache and inef-
ficient to maintain cache coherence and atomic operations
in a software way. We designed an interface module
for AMPs and ASICs, which automatically maintains
cache coherence with SMPs and also guarantees atomic
operations. The interface modules also handle message

1070 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

passing and dynamic task allocation. The module is put
between AMPs/ASICs and buses as shown in Figure 3.

SMPs

system bus

cache

Main Memory

AMPs

cache

interface

ASICs

interface

cache coherence

atomic operations

message passing

task allocation

Figure 3. Interface module for parallelism

A. Cache coherence module

Cache coherence is a phenomenon existed in cached
memory for multiple microprocessors [11]. A processor
fetches a variable from memory and stores it in its own
cache. After that, the processor modified the variable the
variable in the private cache but does update the memory.
Two copies of the variable exist — the one in the cache
is up-to-date and the one in the memory is out-of-date. If
another processor accesses the variable from the memory,
it gets the invalid value. All the copies of a same variable
should be consistent — this is called cache coherence.

Many cache coherence protocols are proposed. The
ARM MPCore uses a write-invalidate cache protocol,
called a MESI-type protocol [12]. To be compatible with
ARM MPCore standard, we also design a MESI-type
cache coherence module.

Using a MESI protocol, a cache line has four states:
• Modified (M states) — indicates that the processor

owns the modified data block exclusively in its
cache, and no other copies of the same memory
location exist. Its contents are not up to date with
main memory.

• Exclusive (E states) — indicates that the cached
block has not been modified, and that no other copies
of the same memory location exist.

• Shared (S states) — indicates that the coherent cache
line is present in the cache and up to date with main
memory.

• Invalid (I states) — indicates that a data block in the
cache is not up-to-date and invalid.

The state of each cache line block changes depending
on the read/write actions taken by the CPU. The diagram
shown in Figure 4 illustrates state transfer actions of a
cache line using a MESI protocol. In the figure, a solid
line in the state transition indicates that the transaction
is initiated by its own processor; a dotted line indicates
that the state transition is initiated by a remote processor.
The notation A/B means that transaction B takes place
after the observation of transaction A. The meanings of

M

E

S

I

PrRd/-
PrWr/-

PrRd/-

PrWr/-

PrWr/
BusUpgr

 PrWr/
BusRdX

 PrRd/
BusRd(#S)

 PrRd/
BusRd(S)

 PrRd/-
BusRd/Flush

BusRdx/
Flush

BusRd/
 Flush

BusRdX/
 Flush

BusRd/
 Flush

BusRdX/Flush'
 BusUpgr/-

Figure 4. A MESI cache protocol

the actions are listed as follows:
• PrWr — Local processor’s write operation
• PrRd — Local processor’s read operation
• BusRd — Read transaction on the bus
• BusRdX — Read exclusive transaction on the bus

for the ownership of a memory block
• BusUpgr — Same as BusRdX, but no data involved

since the purpose is to invalidate the same memory
block in remote caches

• BusRd(S) — Read transaction on the bus, and the
shared signal is asserted by remote processor(s)

• BusRd(#S) — Read transaction on the bus, and the
shared signal is de-asserted by remote processor(s)

• Flush — Cache line data supply to the bus for cache-
to-cache transfer

• Flush’ — Same as Flush, but data is supplied by the
cache responsible for supplying the data

• ‘–’ — No action taken
Based on the state machine in Figure 4, we designed a

very tight cache coherence module to maintain the cache
coherence of AMP and SMP. ASICs normally contain
no cache; they directly read/write main memory. But
they need to know if a variable is up-to-date. The data
coherence module is simpler in ASICs than that in AMPs.

B. Atomic operation support

A standard problem in multiprocessor system that share
data memory is to control accesses to the shared data to
ensure deterministic behavior. One processor can access
to the shared data areas only after another processor
finishing a whole operating process of the data inside.
Otherwise, you don’t know which step of the process
the formal processor has done, incurring indeterminate

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1071

© 2009 ACADEMY PUBLISHER

behaviors. Such sensitive data areas should be mutually
exclusively accessed. Mutually exclusive access is done
by some ‘semaphores’. Semaphore operations must be
uninterruptible. In another word, the instructions should
be ‘atomic’. In old ARM processors, the ‘SWAP’ in-
struction is such an atomic instruction [13]. A register
is set to a ‘busy’ value, then this register is swapped with
a semaphore memory location containing the Boolean.
If the loaded value is ‘free’, the process can continue;
otherwise, it means another processor is occupying the
memory area, and the process repeats the test until it
get the ‘free’ result. The SWAP operation is atomic.
No other instruction can interrupt the swap operation
between register and memory. The SWAP instruction
locks external bus until operation finishes. This instruction
is not acceptable for multiple processors because one
processor could hold the entire bus until completion, dis-
allowing all other processors. ARM MPCore introduces
two new instructions — load-exclusive LDREX and store-
exclusive STREX [14]. LDREX and STREX can be used
for semaphore, such as the code listed below:

MOV r1, #0x1
try

LDREX r0, [LockAddr]
CMP r0, #0
STREXEQ r0, r1, [LockAddr]
CMPEQ r0, #0
BNE try
....

The lock value is put in LockAddr. The process keeps
on claiming the lock until it obtains the lock. LDREX
and STREX take the advantage of an exclusive monitor
in the memory.
• LDREX loads data from memory:

– If the physical address has the Shared TLB
attribute, LDREX tags the physical address as
exclusive access for the current processor, and
clears any exclusive access tag for this processor
for any other physical address.

– Otherwise, it tags the fact that the executing
processor has an outstanding tagged physical
address.

• STREX performs a conditional store to memory. The
conditions are as follows:

– If the physical address does not have the Shared
TLB attribute, and the executing processor has
an outstanding tagged physical address, the store
takes place, the tag is cleared, and the value 0
is returned.

– If the physical address does not have the Shared
TLB attribute, and the executing processor does
not have an outstanding tagged physical address,
the store does not take place, and the value 1 is
returned.

– If the physical address has the Shared TLB
attribute, and the physical address is tagged as
exclusive access for the executing processor, the

store takes place, the tag is cleared, and the
value 0 is returned.

– If the physical address has the Shared TLB
attribute, and the physical address is not tagged
as exclusive access for the executing processor,
the store does not take place, and the value 1 is
returned.

Using LDREX and STREX to implement semaphore
is better than SWAP because the instruction will not lock
systems, granting other processors or threads access to
the main memory.

The atomic instructions, such as LDREX and STREX
need the support from hardware. Embedded ASPs and
ASICs do not need many semaphores. We put 5 control
registers to store the 5 latest exclusive monitors. A ‘snoop’
circuit is design to check the instructions in I-bus. If it
finds a LDREX instruction, the address of the monitors
is store in a control register. If the ASPs or ASICs want
to write data to memory, they will check the 5 control
registers to see whether the memory address is locked. By
doing this, ASPs or ASICs will not interrupt the atomic
operations of SMPs. To prevent SMPs from interrupting
the atomic operations of ASPs or ASICs, we designed
a circuit that can emulate the signals as LDREX and
STREX. When an ASP or ASIC enters a sensitive area,
it use LDREX to generate the semaphore.

IV. COUPLING MECHANISMS

The previous section addresses the issues of data coher-
ence and process synchronization of AMPs. This section
discusses how the processors in an AMP environment
cooperate and communicate with each other.

In an AMP system, a number of tasks (some tasks are
software threads running on microprocessors, others are
hardware executions in FPGAs and ASICs) run in parallel
and cooperate with each other. At the time when system
restarts, not all tasks exist. Tasks may finish and new tasks
are created. Tasks may create other tasks. A software
thread may create children threads. A software thread
can also dynamically configure a FPGA and cooperates
with the FPGA implementation (a hardware task) during
runtime. During cooperation, the thread and the FPGA
need to send messages to each other and synchronizations
are required.

A. Message sending mechanism

Figure 5 illustrates massages sent among tasks in
different processors. The message sending modes can be
put in three categories:

1) Messages are sent between two symmetric proces-
sors in ARM MPCore.

2) Messages are sent between a SMP processor and an
AMP processor.

3) Messages are sent between a processor and a
FPGA/ASIC.

An OS is usually used in either SMP or ASP, such
as Linux, eT-Kernel [15], ThreadX, etc. In the first

1072 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

SMP0

cache

SMP1

cache

SMP2

cache

AMP0

cache

AMP1

cache

ASIC

SMP Memory Shared Memory AMP Memory

SMP OS

Message sending

AMP OS

Message sending

(1) (2)

(3)

system bus

Figure 5. Message passing between AMPs

scenario, communications between SMP CPUs are best
accomplished without accessing main memory. In the
second scenario, communications between SMP CPUs
and AMP CPUs are accomplished through an interpro-
cessor interrupts (IPI) mechanism. The IPI typically uses
an interrupt system designed to interface interrupts from
I/O peripherals rather than another CPU. In these two
scenarios, message passing among software tasks can
be done using message sending APIs (such as POSIX
thread [16]) provided by operating systems.

The emphasis of the work is message sending mecha-
nism in the third scenario. If a message sending behavior
is initiated by a FPGA/ASIC, the circuit will trigger an
interrupt of processor. Otherwise, if a message sending
behavior is initiated by a processor, communication be-
tween the processor and circuit is done in a way of
processor-coprocessor. The circuits are designed to be
compatible with ARM coprocessor standard. If proces-
sor wants to send a message to the circuit, it issues
a coprocessor instruction on system bus. The ‘snoop’
module in the interface circuit detects the instruction and
interprets it. If only small numbers of data are needed to
send, the data can be sent using the several coprocessor
instructions. If a big data block is needed to send, a
shared memory mechanism is more efficient. Processor
sends one or several coprocessor instructions to circuit.
The instructions contain not data but memory location of
the data block. Data fetching is done by circuit.

B. Dynamic allocation mechanism

In mixed AMPs and FPGA systems, dynamic tasks
allocation means not only software thread creat-
ing/allocating but also dynamic FPGA configuration.
SMP and AMP OS can handle software thread dynamic
allocation automatically, but dynamic FPGA configuration
is hardware-related and need to be mentioned exclusively.

A FPGA configuration bit stream is previously gen-
erated and store in a consecutive memory area. It is
a very inefficient way for a processor to configure the
FPGA bit by bit through coprocessor instructions as
described before. Alternatively, processor only sends the

start address and the size of configuration bit stream
through coprocessor instructions. The ‘snoop’ module
in the interface of FPGA detects the instruction and
interprets it, then a DMA will do the configuration.

V. PROGRAMMING MODEL

Section III and IV address how to support parallel
program from hardware side. This section discusses the
issues of software programming environment and model
for mixed SMP, AMP and FPGA systems.

The heterogeneous processing units, including symmet-
ric processors, asymmetric processors, DSPs, FPGAs and
ASICs, are integrated in high-end embedded systems,
making software programming very difficult. A good
software programming environment and model can cover
low-level hardware details, thus greatly shortening time-
to-market and increasing design efficiency.

Figure 6 shows the software architecture. User applica-
tions are defined by software designers using high-level
language (as C++ and JAVA). The application is parti-
tioned into many parallel tasks. Tasks dynamically create
and destroy. Tasks run on parallel OS and communicate
through communication and synchronization APIs (C/S
APIs). Operating system also contains some Hardware-
dependent Software (HdS) which deal with specific hard-
ware. System software designer should modify parallel
operating system (eg, a POSIX compliant operating sys-
tem) for specific hardware platform and design HdS.

A good Hardware-dependent Software (HdS) allows
efficient hardware-software cooperate and communication
and thus to minimize performance penalties. Platform
designers of embedded AMP systems are fully aware of
architecture specific resource constrains, such as proces-
sor processing abilities, inter-processor latencies, avail-
able bus throughput and bandwidth, I/O speeds, etc. HdS
designers should fully uses the information and send
the information to OS. This will help OS optimize task
allocation and gain good performance.

T1 T3

T2

T4

T5

C/S API

Parallel OS

HdS

Hardware Platform

User software

System software

Hardware

Figure 6. Software architecture

User software designer should not know many hard-
ware details and good program environment will cover

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1073

© 2009 ACADEMY PUBLISHER

hardware details. Figure 7 show our embedded software
design environment. Application programmers first write
program in a traditional parallel programming way. In this
step, programming is hardware independent. Program-
mers need to specify parallelism of processes and their
interactions.

 User program

FPGA bit stream
 & ASIC library

Edit environment

Mixed compiler

Pretreatment
Hardware platfrom
 specification

OS services, glue
 & HdS library

Link

Image file

Figure 7. Software programming environment

Designers then use a graphics-based editor to include
hardware-dependent information. For example, designers
can click a button to include a bit stream of a FPGA and
specify when FPGA configuration should happen. The
actions in the editor are recorded in specific macros. The
following segment shows an example of macros.

C=A+B;
/*hardware independent instructions*/

FPGAload(F3, DESbs);
/*load DES bit file to F3 FPGA*/

SendMem(F2, v1);
/*send variable V1 to F2*/

......

In pretreatment step, the micros are interpreted using
real hardware parameters. In the last example — FP-
GAload(F3, DESbs), the physic address of F3 FPGA
configuration port and the size of DESbs are added.

After the processes of compile and link, the final binary
image file is generated, and the binary image can be put
in the memory for execution. As shown in Figure 8, the
binary image is put in the main memory. Operating system
creates a main process. The main process will create
other processes. The processes are dynamically allocated
to SMP processors and AMP processor by operating
systems. Some process may incur the configuration of
FPGAs. SMPs, AMPs, DSPs, FPGAs and ASICs can
communicate and cooperate with each other through a
message sending mechanism. The message sending mech-
anism is implemented through hardware.

Following the program model, application program-
mers can use their familiar programming methods without
knowing many low-level hardware detail.

T1

T2

T3

T4

T5

T6

T7

T8

BS1

BS2

Parallel OS

SMP0 SMP1 AMP0 AMP1 FPGA0 FPGA1

Application
 Tasks

Operating
 System

Hardware
 Platform

Figure 8. The execution of processes

VI. CONCLUSIONS

With the development of information technology, more
and more embedded systems, such as cellular phones, per-
sonal digital assistants (PDA) and portable multi-media
players, call for high processing capability, making it’s
difficult for a single processor to meet their performance
requirements. These high-performance embedded designs
usually include multiple asymmetric processors (AMP),
including general-purpose microprocessors, digital signal
processors (DSPs) and custom-designed FPGA hardware
accelerators and Application-Specific Integrated Circuits
(ASICs). AMPs greatly challenge traditional embedded
system design in both hardware and software. Cache co-
herence and atomic operations need hardware to support.
Message sending and task allocation can be done in a
pure software way, but hardware can greatly increase the
efficiency of message send and task allocation.

In the paper, an interface module supporting parallelism
is proposed. The module is used as an interface to AXI
bus for FPGAs and ASICs. The module handles cache
coherence, atomic operations, message sending and task
allocation in a hardware way. The paper also proposes an
embedded system program model for asymmetric mul-
tiple processor systems. Following the program model,
hardware details are covered. Application programmers
can use their familiar programming methods with a little
modification.

ACKNOWLEDGMENT

The project was funded by a grant from Natural Science
Foundation of Guangdong (No. 07300421) and a PhD
grant from Guangdong University of Technology. The
authors would like to acknowledge with gratitude these
grants.

REFERENCES

[1] W. Wolf, The future of multiprocessor systems-on-chips,
in: Design Automation Conference, 41st Conference on
(DAC’04), 2004, pp. 681-685.

[2] Yingmin Li, K. Skadron, D. Brooks, Zhigang Hu, Per-
formance, energy, and thermal considerations for SMT
and CMP architectures, 11th International Symposium on
High-Performance Computer Architecture, 2005. HPCA-
11., 12-16 Feb. 2005 Page(s):71 - 82

1074 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

[3] J. Moses, K. Aisopos, A. Jaleel, R. Iyer, R. Illikkal, D.
Newell, S. Makineni, CMPSched$im: Evaluating OS/CMP
interaction on shared cache management, IEEE Interna-
tional Symposium on Performance Analysis of Systems
and Software, 2009. ISPASS 2009. 26-28 April 2009
Page(s):113 - 122

[4] A. Beric, R. Sethuraman, C.A. Pinto, H. Peters, G. Veld-
man, P. van de Haar, M. Duranton, Heterogeneous mul-
tiprocessor for high definition video, International Con-
ference on Consumer Electronics, 2006. ICCE ’06. 2006
Digest of Technical Papers. 7-11 Jan. 2006 Page(s):401 -
402

[5] J. M. Paul, D. E. Thomas, A. Bobrek, Scenario-oriented
design for single-chip heterogeneous multiprocessors,
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Volume 14, Issue 8, Aug. 2006 Page(s):868 - 880

[6] B. Senouci, A. M. Kouadri M, F. Rousseau, F. Petrot,
Multi-CPU/FPGA Platform Based Heterogeneous Mul-
tiprocessor Prototyping: New Challenges for Embedded
Software Designers The 19th IEEE/IFIP International
Symposium on Rapid System Prototyping, 2008. RSP ’08.
2-5 June 2008 Page(s):41 - 47

[7] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck, M.
Frisbie, J. Ortiz, P. Ashenden, Programming models for
hybrid FPGA-CPU computational components: a missing
link, Micro, IEEE, Volume 24, Issue 4, July-Aug. 2004
Page(s):42 - 53

[8] Y. Liu, S. Furber and Z. Li, The design of a dataflow
coprocessor for power-efficient embedded processing, Pro-
ceedings of 2006 PATMOS, Springer Lecture Notes in
Computer Science, September. 2006, Page: 425-438, Vol-
ume 4148/2006, ISBN 978-3-540-39094-7, ISSN 0302-
9743

[9] ARM11 MPCore Processor Technical Reference Manual,
ARM Limited, Lit.-Nr.:ARM DDI 0360D, 2006.

[10] Core Tile for ARM11 MPCore User Guide, Ref: DUI
0318C, 2006.

[11] M. M. Michael, A. K. Nanda, B. -H. Lim, M. L. Scott,
Coherence Controller Architectures for SMP-Based CC-
NUMA Multiprocessors, Proceedings of the 24th Annual
International Symposium on Computer Architecture, pp.
219-228, 1997.

[12] M. Papamarcos and J. Patel, A Low Overhead Coherence
Solution for Multiprocessors with Private Cache Memo-
ries, Proc. 11th Annual Int’l Symposium on Computer
Architecture, pp 348-354, June 1984.

[13] Furber, S.B., ARM System Architecture, Addison Wesley
Longman, 1996. ISBN 0-201-40352-8.

[14] J. Goodacre, A. N. Sloss, Parallelism and the ARM in-
struction set architecture, Computer, July 2005, Volume:
38, Issue: 7, On page(s): 42- 50, ISSN: 0018-9162

[15] Masaki Gondo, Blending asymmetric and symmetric mul-
tiprocessing with a single OS on ARM11 MPCore, Infor-
mation Quarterly, Volume 5, Number4, 2007

[16] B. Senouci, A. Bouchhima, F. Rousseau, F. Petrot, A.
Jerraya, Fast Prototyping of POSIX Based Applications on
a Multiprocessor SoC Architecture: ”Hardware-Dependent
Software Oriented Approach”, Seventeenth IEEE Inter-
national Workshop on Rapid System Prototyping, 2006.
Volume , Issue , 14-16 June 2006 Page(s):69 - 75

Yijun Liu was born in Jiangxi, China. He received his PhD
degree from the University of Manchester, UK, in 2005, his M.
Phil degree from the University of Manchester in 2003, his MS
Degree from Guangdong University of Technology, China, in
2002, and his BS degree from the Beijing Normal University,
China, in 1999. All degrees are in Computer Science.

He is currently an associate professor of Computer Science
at Guangdong University of Technology, China. His current re-
search interests include low-power circuit design, asynchronous
logic design, computer architecture and embedded systems.

Professor Liu is a member of Computer Architecture Tech-
nical Committee, China Computer Federation.

Zhenkun Li was born in Guangdong, China. He received his
BS degree in automation from the Guangdong University of
Technology, China, in 1976.

He is currently a Professor of Computer Science at Guang-
dong University of Technology, China. His current research
interests include computer architecture and embedded systems.

Professor Li is a recipient of the Chinese Government Al-
lowance granted by the State Council.

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1075

© 2009 ACADEMY PUBLISHER

