
A Semantic and Adaptive Middleware
Architecture for Pervasive Computing Systems

Wu Qing, Hu Weihua
College of Computer Science, Hangzhou Dianzi University

Email: {wuqing, hwh}@hdu.edu.cn
Ding Wen

Zhejiang Education Examine
Email: dwzz11@mail.hz.zj.cn

Abstract— With the increasing demands for adaptive mid-
dleware of dynamic systems in pervasive computing envi-
ronments, the need for dynamic software architecture and
programming infrastructure to achieve dynamic adaptation
is widely recognized. In this paper, we firstly present
a semantic and adaptive middleware architecture called
ScudWare that supports for dynamic and heterogeneous
environments. ScudWare middleware is based on adaptive
communication environments, which consists of adaptive
components, and semantic virtual agents. Specially, a Scu-
dADL framework and the specification semantics, based
on higher-order typed π calculus theory, are proposed,
which describes ScudWare component structure characters,
and dynamic behavior adaptation. In the ScudADL, the
computing resources consumption is concerned. And the
component inner and outer adaptive behaviors are separated
from component functional behaviors in an explicit way. Fi-
nally, we introduce an application of ScudWare architecture,
which is a computer aided assessment system in a smart
CAA space, and give a case study to show its adaptation.

Index Terms— adaptive middleware, smart CAA space,
architecture description language, higher-order typed π
calculus

I. INTRODUCTION

Today pervasive computing [1] as a novel comput-
ing model is coming into our daily life. In pervasive
computing environments, information and communication
technology are anywhere, for anyone, and at anytime.
The physical world and information space will gradually
be united naturally and seamlessly. The smart space is
considered as an integral implementation of pervasive
computing, where the computing environments should
continually adjust itself to deal with the situation chang-
ing. By using smart devices, users in this active computing
environment can interact with the physical space transpar-
ently and seamlessly.

To realize the idea of above computing model, a lot of
information and communication technologies should be
developed and be integrated into our environments: from

This paper is based on “Computer Ability Assisted Assessment Sys-
tem for Large-Scale Heterogeneous Distributed Environments,” by Wu
Qing, Hu Weihua, Zhou Bishui, Ding Wen and Chen Tianzhou, which
appeared in the Proceedings of the 9th International Conference for
Young Computer Scientists(ICYCS 2008) Zhangjiajie, China, November
18-21, 2008. c© 2008 IEEE.

This work was supported by National Natural Science Foundation of
China under Grant No. 60703088.

toys, desktops to rooms, factories and the whole city areas
with integrated processors, sensors, and actuators con-
nected via wireless high-speed networks and combined
with new output devices ranging from projections directly
into the eye to large panorama displays.

Nowadays many efforts are made for pervasive com-
puting [2]–[4], especially in smart spaces, e.g., the smart
home [5], [6], the Aware room [7], and the smart museum
[8]. Smart room acts like an invisible butler. It has
cameras, microphones, and other sensors, and uses these
inputs to understand what people are doing in order to
help them. It can recognize who is in the room and can
interpret his or her hand gesture, and interior that know
when drivers are trying to turn, stop, pass, etc., without
being told. The aware home aims at creating a living
laboratory for research in pervasive computing for every-
day activities, which has two identical and independent
living spaces, consisting of two bedrooms, two bathrooms,
one office, kitchen, dining room, living room and laundry
room. In addition, there will be a shared basement with a
home entertainment area and control room for centralized
computing services. Smart museum is a fertile ground
for studying systems to enhance the visitor’s experience,
and tries to improve on this experience with multimedia
content. In smart museum, static and local contents are
used on a PDA, including a short video clip of the artist
explaining his or her work.

In the smart spaces, users will naturally and trans-
parently interact with each other and with entities in
the space, and the space environment can automatically
and continuously self-adjust to provide the better services
for users. This attractive goal poses a large number of
new challenges for software architecture and middleware
technology. The traditional software infrastructure is no
longer suitable for smart space [9] for lack of adaptation
mechanism. Therefore a novel software middleware archi-
tecture is required to meet the requirements of pervasive
computing.

This paper addresses the middleware platform and its
architecture description language (ScudADL) for dynamic
adaption in smart spaces. We have developed a semantic
and adaptive middleware platform called ScudWare [10],
which is based on semantic information and conformed
to a lightweight CCM (CORBA component model) spec-

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1061

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.10.1061-1068

ification [11].
The rest of the paper is organized as follows. Section 2

presents a ScudWare middleware platform including CCM
specification overview, its architecture, and a smart CAA
space. Section 3 proposes a Scud architecture description
language, consisting of higher-order typed π calculus
overview, the ScudADL framework, and ScudADL for-
mulation semantics. In section 4, we introduce a computer
grade examination of Zhejiang Province, which is an
application of pervasive computing systems in a smart
CAA space. In section 5, we give a case study of cartoon
study program in the smart CAA space. Then some related
work is stated in section 6. Finally, we draw a conclusion
and give the next work in section 7.

II. SCUDWARE MIDDLEWARE PLATFORM

In this section, we give a CCM specification overview
firstly. Then a ScudWare architecture is presented. At last,
we introduce a smart CAA space in pervasive computing
environments.

A. CCM Specification Overview

CORBA (Common Object Request Broker Architec-
ture) is one of software middlewares, which provides
language and operating system independences. CCM is
an extension to CORBA distributed object model. CCM
prescribes the specifications of component designing,
programming, packaging, deploying and executing stages.

CCM specification defines component attributes and
ports. Attributes are properties employed to configure
component behavior. Specially stated, component ports
are very important, which are connecting points between
components. There are four kinds of ports: facets, recep-
tacles, event sources, and event sinks. Facets are distinct
named interfaces provided by component for client inter-
action. Receptacles are connection points that describe the
component’s ability to use a reference supplied by others.
Event sources are connection points that emit events of a
specified type to one or more interested event consumers,
or to an event channel. Event sinks are connection points
into which events of a specified type may be pushed.

In addition, CCM specification defines component
home, which is a meta-type that acts as a manager
for component instances of a specified component type.
Component home interfaces provide operations to manage
component lifecycle. CIF (Component Implementation
Framework) is defined as a programming model for con-
structing component implementations. CIDL (Component
Implementation Definition Language), a declarative lan-
guage, describes component implementations of homes.
The CIF uses CIDL descriptions to generate programming
skeletons that automate many of the basic behaviors of
components, including navigation, identity inquiries, acti-
vation, state management, and lifecycle management. The
component container defines run-time environments for a
component instance. Component implementations may be
packaged and deployed. A CORBA component package
maintains one or more implementations of a component.

One component can be installed on a computer or grouped
together with other components to form an assembly.

B. ScudWare Middleware Architecture
ScudWare architecture consists of five parts defined as

SCUDW = (ACE, ETAO, SCUDCCM, SVA). ACE denotes
the adaptive communication environment [12], providing
high-performance and real-time communications. ACE
uses inter-process communication, event demultiplexing,
explicit dynamic linking, and concurrency. In addition,
ACE automates system configuration and reconfigura-
tion by dynamically linking services into applications at
run-time and executing these services in one or more
processes or threads. ETAO extends ACE ORB [13]
and is designed using the best software practices and
patterns on ACE in order to automate the delivery of
high-performance and real-time QoS to distributed ap-
plications. ETAO includes a set of services such as the
persistence service and transaction service. In addition, we
have developed an adaptive resource management service,
a context service and a notification service. Specially, the
context service is based on semantic information. SCUD-
CCM is conformed to CCM specification and consists of
adaptive component package, assembly, deployment, and
allocation at design-time. Besides, it comprises compo-
nent migration, replacement, updating, and variation at
run-time. In addition, the top layer is SVA that denotes
semantic virtual agent [14]. SVA aims at dealing with
application tasks. Each sva presents one service composi-
tion comprising a number of meta objects. During the co-
operations of SVA, the SIP(Semantic Interface Protocol)
set is used including sva discovery, join, lease, and self-
updating protocols.

C. Smart CAA Space
CAA is a computer aided assessment, use computing

devices to assess the users’ computer operation ability and
technique. It can increase the frequency of assessment,
increase the range of knowledge assessed and increase
feedback to students and staff. In addition, it can expand
the range of assessment methods, increase objectivity and
consistency, and decrease marking loads.

Smart CAA space shown as figure 1 includes users,
computing devices, management service of computer
knowledge and operation technology , and study and
assessment platform. The users consist of students and
teachers. The computing devices are fixed or mobile,
such as desktop computer,laptop computer, and PDA etc.
CAA management service is responsible for providing
computer knowledge and operation technology in a proper
way on the computing device for users’ requirements.
The study and assessment software platform is a adaptive
software infrastructure that provides a good software
environment for study and assessment.

III. SCUD ARCHITECTURE DESCRIPTION LANGUAGE

In this section, we present a SCUD architecture de-
scription language. Firstly, a overview of high-order typed

1062 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Computer knowledge and operation technology
Management Service

Computing DevicesUsers

组 组 组

Figure 1. Smart CAA Space

π calculus is given. Secondly, we propose a ScudADL
framework. Finally, the ScudADL formalization and se-
mantics are detailed.

A. Overview of high-order typed π calculus

The π calculus is one of formal methods to model and
reason about concurrency and mobility. It extends CCS
[15] with the ability to create and remove communication
links between processes. One extension of the π calculus
is higher-order typed π calculus by D.Sangiorgi [16],
where the objects transmitted can also be processes.
Process, name and abstraction are three parts of the
higher-order typed π calculus. Process is a working unit of
current running entity, and uses name to define channels
and objects transmitted on the channel. Each process
interacts with other process via a shared channel. We use
P, Q, R, ... to range over processes. Name is a reference
of one object. We use a, b, X, Y, ... to range over value
names and object(process) names. Abstraction is a non-
concrete process with some parameters. Thus, the class
of processes is given by the following grammar.

P ::= 0|α(X).P |α(Y).P |P + Q|P |Q|(vX)P |[X =
Y]P |A(K̃)

(1) 0 is an empty process, which cannot perform any
actions.

(2) α(X).P is an input prefix process. It means one
name Z is received along one channel α, and X is a
placeholder for the receive name. After this input, it will
continue as process P and X will be replaced by the newly
received name Z, which is described as P [Z/X].

(3) α(Y).P is a output prefix process. It means the
name Y is sent along the channel α, and thereafter the
process continues as P.

(4) P +Q is a sum process, which represents a process
that can either P or Q.

(5) P |Q is a parallel composition process, which rep-
resents the combined behavior of P and Q executing in
parallel. P and Q can act independently, and may also
communicate if one performs an output and the other an
input along the shared channel.

(6) (vX)P is a restriction process. The process behaves
as P, but cannot use the name X to communicate with
other processes since X is a local name in P.

(7) [X = Y]P is a match process. If X and Y are
the same name, the process will behave as P, otherwise it
dose nothing.

(8) A(K̃) is an abstraction with concrete parameters
process. A is an abstraction, defined as X̃A. X̃ is a set
of process formal parameters, and K̃ is a set of process
actual parameters. So A[(K̃)/(X̃)] is conducted.

In addition, process reduction and transition rules are
defined in π calculus with particular semantics. The
reduction rules consists of R-COM, R-PAR, R-RES, and
R-STRUCT.

B. ScudADL Framework

ScudADL extends D-ADL [17] and π-ADL [18], which
can describe structure and behavior characters of adaptive
middleware. Different with other ADLs, in ScudADL,
component inner and outer adaptive behaviors are sep-
arated from component functional behavior in an ex-
plicit way. In addition, ScudADL can provide component
resources interfaces describing computing resources re-
quirement, consume, and available information, which is
separated from component port. The component resources
interfaces are attached via resource connecters. The struc-
ture of ScudADL framework is shown in figure 2. As
following, we introduce its functional modules in turn.

In ScudWare architecture, components are essential
software entities. The common components implement
some application logic and can execute special functions
when they are instantiated. The structure properties, func-
tion behaviors, and inner adaptive behaviors are three
important parts of the common components. Specially,
the component inner adaptive behaviors can change com-
ponent resources consumption states to get satisfying
execution effect required from other components in the
ScudWare middleware system. The system components
can provide runtime environments infrastructure such as
context-aware information and adaptive behaviors man-
agements for common components. As a result, the com-
mon and system components are executors of functional
and non-functional behaviors of ScudWare middleware.

Ports are connection points of components communi-
cation. When component A want to send value message
to component B, one port of A and one port of B will
be used to build a communication link called a channel.
Connector is a special component and responsible for
channel management. Therefore, channels are dynamic
built by the connector and conduct components routing
actions. In addition, component A can send adaptive logic

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1063

© 2009 ACADEMY PUBLISHER

Connector

Computing Environments Component

A
d
a
p
ti
ve

C
o
m
p
o
n
en
t

O
u
te
r
B
eh
a
vi
o
rs

C
o
m
p
o
n
en
t

R
es
o
u
rc
es

In
te
rf
a
ce

Component

Function

Behaviors

Internal

Adaptive

Behaviors

Structure

Properties

Port

Resource

Interface Resource

Connector
Component

Port

Resource

Interface

Adaptive Behaviors

Management

 Context-aware Environments

Information Management

channel

channel

channel

channel

Function

Behaviors

Internal

Adaptive

Behaviors

Structure

Properties

Figure 2. ScudADL Framework

process to component B based on the process passing in
higher-order typed π calculus.

Resource interface can communicate with computing
environments component, show and operate its com-
ponent computing resource. After connecting resource
interfaces, it build a resource channel administered by
resource connector, which is a special channel to deal
with component resource requirement and consumption.
In terms of different component resource consumption,
the component will provide different execution quality for
other components. At one period of time, the computing
resources for one component are variable. So the inter-
actions of components will show different effects such
as satisfying or unsatisfying effects. Once the computing
resources cannot satisfy the component minimal resource
requirement, the interactions between this component and
other component will be halted. It brings a bad executing
effect for the middleware system. Via resource channel,
one component transmit a execution model with one
special quality required from another component.

We use higher-order typed π calculus as a foundation,
extending D-ADL and π-ADL, to build a ScudADL
describing dynamic behavior semantics for adaptive mid-
dleware system in pervasive computing environments. In
ScudADL, there are two kinds of types those are base
type and constructed type. The base type consists of any,
natural, integer, real, boolean, string, and action type.
The action type consists of condition, choose, compose,
decompose, replicate, and send or receive object action.
The constructed types consists of channel type, resource

channel type, behavior type, component type, connector
type, resource connector type. Here, behavior type is a se-
quence of the action type, including component functional
behavior, connector routing behavior, and inner or outer
adaptive behavior type. Behavior type corresponds to
process of higher-order typed π calculus. The component
type and connector type correspond to abstraction of
higher-order typed π calculus.

C. ScudADL Formalization

In this section, we use ScudADL to define adaptive
component, describing its structure character and dynamic
behavior.

An adaptive component AC ::= Name| < C̃ap > | <
P̃ort > | < R̃I > | < ˜ExeModel > | < ˜FuncBeha >

| < ˜AdapBeha >, ˜AdapBeha ::=< ˜IAdapBeha > | <
˜OAdapBeha >

1) < C̃ap > denotes a semantic description of
component’s capabilities, including a set of computation
functions.

2) < P̃ort > denotes a set of input interfaces provided
by other components, and a set of interfaces exporting for
other components use.

3) < R̃I > is component resource interface, denoting
a set of required resources consumptions value (e.g.
computation platform type, CPU computation, network
communication bandwidth, and memory size).

a) CPU Computation Consumption: RCcc : ∀c ∈ Ac ·
∃v ∈ Q+ · (RCcc → v) defines the CPU computation
resource consumption by component c. Q+ is a set of
non-negative real numbers.

b) Communication Consumption: RCcm : ∀c ∈ Ac ·
∃v ∈ Q+ · (

∑
RCcm → v) defines communication

resource consumption by component c.
c) Memory Consumption: RCmm : ∀c ∈ Ac · ∃v ∈

Q+ ·(RCmm → v) defines memory resource consumption
by component c.

4) < ˜ExeModel >::== (< R̃es, ˜ExeQua >
). On the condition of different component resource
consumption, it will provide different execution ef-
fect in the whole middleware system. For example,
((RCi

cc, RCj
cm, RCk

mm), EQω
ac) denotes that if one com-

ponent consume RCi
cc cpu computation resource, RCj

cm

communication resource, and RCk
mm memory resource,

it will provide EQω
ac execution quality.

5) < ˜FuncBeha >::==< ĨO >< ˜FuncBeha >
| < ˜Condition >< ˜FuncBeha > | < ˜Choose ><

˜FuncBeha > |unobservable|inaction. The component
function behaviors include a) input and output operations
via channel and resource channel, b) condition operation
(if ... then ...), corresponding to [X = Y]P in higher-order
typed π calculus, c) choose operation, corresponding to
P |Q, d) unobservable operation, corresponding to τ , e)
inaction operation, corresponding to 0.

a) IO ::=< ˜SMessage > | < ˜RMessage > | <
˜SExeModel > | < ˜RExeModel >. Input operation

consists of send or receive message via channel, and send
or receive execution model via resource channel.

1064 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

b) SMessage ::= via Channel (< P̃ort >) Send
message

c) RMessage ::= via Channel(< P̃ort >) Receive
message

d) SExeModel ::= via ResChannel(< R̃I >) Send
ExeModel

e) RExeModel ::= via ResChannel(< R̃I >) Receive
ExeModel

6) IAdapBeha ::=< ˜ChangeExeModel >
.IAdapBeha. Inner adaptive behavior is to change
the component execution model in terms of vari-
able computing environment or application require-
ments. It can change the component resources con-
sumption and get a new execution quality. The execu-
tion model is from ((RCi

cc, RCj
cm, RCk

mm), EQω
ac) to

((RCp
cc, RCq

cm, RCr
mm), EQµ

ac).
7) OAdapBeha ::= AddAc.OAdapBeha |

RemoveAc.OAdapBeha | UpdateAc.OAdapBeha
| ReplaceAc.OAdapBeha | inaction. In outer adaptive
behaviors, a) AddAc behavior denotes add a new
component into the system dynamically for a new
functionality, b) RemoveAc behavior denotes remove
a old component from the system, which is not
necessary, c) UpdateAc behavior denotes updating
component functionality to a new version, d) ReplaceAc
behavior denotes replacing one component with another
component, continuing to conduct the next operations
between other components.

a) AddAc behavior. When a new component is added
into the system, the component instance, its port, resource
interface, and channel will be built according to applica-
tion requirements. The connector and resource connector
in the system will build a new link to this new component
and adjust the routing behavior.

b) RemoveAc behavior. When a old component is not
needed, it will be removed by the system. The component
instance, its port, resource interface, and channel will be
destroyed in terms of removal rules. The connector and
resource connector in the system will delete the links of
this component.

c) UpdateAc behavior. Ai
c can update to Aj

c after
executing UpdateAc behavior. If the functional behavior
of Ai

c corresponds to process P , and the functional
behavior of Aj

c corresponds to process Q, then P and
Q are strongly bisimilar, which is a strong equivalents
relation (P ∼ Q).

d) ReplaceAc behavior. Ai
c can be replaced with Aj

c

in the system after executing ReplaceAc behavior. If the
functional behavior of Ai

c corresponds to process P , and
the functional behavior of Aj

c corresponds to process Q,
then P and Q are weakly bisimilar, which is a week
equivalence relation (P ≈ Q).

IV. COMPUTER AIDED ASSESSMENT SYSTEM

This section will give a system overview of the com-
puter aided assessment system in smart CAA space.
Then we present some implementation technologies of
the system.

A. System Overview

With the continuous deepening of teaching reform, the
development of modern long-distance teaching , and the
network assisted teaching and examination, which is an
important mean to test the student’s ability and the teach-
ing quality, also should be reformed. At present an effec-
tive measure is the development of distributed computer
ability assessment system. ”Ministry of Finance on the
implementation of schools of higher learning and teaching
quality of undergraduate education reform projects” (the
high education 2007 No.1 file) accentuate that we should
develop the online exam systems, formulate the relevant
standards, progressively realize the on-line examination of
college English and the examination courses for National
Network Education, and create a safe, convenient, and
efficient platform for the examination.

Today the network-based examination as a new form
of modern education reform gradually shows its potential
advantages. Because the system is in a smart CAA space
that is a large-scale heterogeneous distributed environ-
ment, it should be continuously improved its functionality,
security and stability characteristics according to the
changes.

We have developed a computer aided assessment sys-
tem based on the ScudWare middleware, which has a
comprehensive ability to analyze the different exami-
nation types, questions and environments. It can also
abstract the semantic information expression for the ex-
amination, and then establish CAA(Computer Aided As-
sessment) [19] evaluation integration language. For the
characteristics of the wide region and the large-scale in
the distribution node of the examination, we present a sep-
aration of concerns method, and use the semantic virtual
agents to monitor the examination nodes. The examination
stream is used in the system, which is combined with
the examination results and the problem-solving process,
and shows the tracking of the examination process. In
addition, we propose an intelligent examination fusion
algorithm for the examinees’ operation process, which
can evaluate the examinees’ operation ability. In order
to evaluate the examinees’ mental results in design ex-
amination, we use a reconstruction technology, which
is based on pattern recognition and virtual environment
information. We also present a comprehensive evaluation
method according to the implementation correctness, the
correctness of code and the correctness of output [20]
[21], then establish a comprehensive evaluation system.

B. Implementation Technologies

In the system, many implementation technologies are
used to support the large-scale heterogeneous distributed
environments, include distributed concurrent processing,
online real-time monitoring, and intelligent examination
evaluation.

1) Distributed Concurrent Processing: During the
computer grade examination, each school should arrange
computer rooms, and organize students for examination.
Each school is an examination unit, As a result, there

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1065

© 2009 ACADEMY PUBLISHER

must be at least one high performance computers used
as the servers, which can be centralized as the main
servers for online testing for multiple terminals at the
same time. The server must be able to deal with large
number of large-scale data from terminal’s request or
response. Meanwhile the server must be able to process
timely and real-time information. The system uses a
distributed concurrent processing technology to handle
the large-scale information. By this, the system has some
characteristics. 1) The distributing range expends from the
narrow space of the computer frame to a bigger space of
the local area network. 2) The global operating system
can control each networking computers. Each networking
computer’s user can see a distributed computer system
that supports the distributed multi-user in the distributed
environments.

2) Online Real-time Monitoring: The system can mon-
itor the examinees’ activities by socket real-time connec-
tion. Examiners and the examinees can two-way exchange
information. Once the network interrupts abnormally,
examinees can continue testing in the case that resumption
of network can automatically restore your connection. In
addition, the online real-time monitoring technology can
conduct lock-on examinees, mandatory paper submitted,
dissemination of information, the re-examination, and
other managements.

Furthermore the server can monitor examinees’ vio-
lation of regulations. For example, once the examinee
copy the files on different computers, this information is
monitored by the server. In addition, through monitoring
examinees’ screens, the examiners are all in control of
examinees’ every activity. As a result, examiners may at
any time monitor the relevant actions of examinees by
screen monitor.

To prevent duplication of examinations, exchange,
inter-copy, and modified examination results have been
fully taken into account in the system. By perfect exami-
nation room invigilators logic, the system can effectively
eliminate fraud behavior in the examination room, and
maintain examination fairness.

3) Intelligent Examination Evaluation: At present, the
question types in the computer grade examination consist
of blank-filling, program modify and program design
questions. In order to achieve intelligent examination
evaluation, we use two evaluation methods. 1) For Blank-
filling questions, a statement similarity evaluation mech-
anism is proposed to achieve automatically correcting
technology strategy. Statements similarity is used to eval-
uate students answer with the standard answer to the
close of its main consideration in semantics between
the two on the degree of similarity, but the grammatical
structure does not make too much consideration to their
specific ideas are as follows. a) Using a technology
similar to compiled technology to morphology and syntax
analysis for the answers that will be broken down into its
individual identifier, constant and operator, and semantics
by partially as a whole. b) After generation semantic
equivalence class for standard answers, the programming

language in a phrase or expression may have more than
one form of equivalence. c)After morphology, grammar
analysis and optimization for examinees’ answers, the
answer can be viewed as a correct answer if the answer
matching degree is more than 95 percents. 2) For program
modify and design question, most of the current processes
those are smart markers by running candidates prepared
by generating a corresponding output file, and then to
compare documents and standards. According to results
of this comparison, a corresponding scores is given.
However, this method could not give a reasonable score
for actual programming ability of the examinees. As a
result, our system use residual frame algorithm, taking
into account the implementation confidence, credibility
and the output code credibility, to assess the examinees’
programming abilities.

V. CASE STUDY

In this section, we will give a case study of smart CAA
space in computer aided system, and using ScudADL to
describe the component structure and dynamic behavior,
as shown in figure 3

In a cartoon design study program, one student use a
PDA to communicate with the knowledge study server
via wireless network. On the one hand, there is a cartoon
video component called Ac

c in the student’s PDA, which
can get cartoon video information from the server, and
show them in real time to achieve a satisfying effect.
On the other hand, there is a cartoon source generator
component called As

c in the knowledge study server,
which can provide the cartoon video information for a
identity valid user.

During the period of 0 to t1, all computing resources
for Ac

c and As
c are satisfied. Ac

c consume RCi
cc, RCj

cm,
and RCk

mm computing resources, and acquire a good
quality cartoon video information from As

c. And the
execution model is ExeModelhq that is with high qual-
ity. However, at time t1, the wireless network band-
width decrease, and the power of the PDA decrease
to 40%. In order to continue this communication and
finish the cartoon design study program, during the
period of t1 to t2, the As

c will be replaced by As1
c

that sends low quality cartoon video information for the
client after an OAdaptBeha(ReplaceAc) behavior is
conducted. In addition, the Ac

c will adjust to consume
RCp

cc, RCq
cm, and RCr

mm computing resources, and
change its execution model that shows the cartoon video
on a dark screen for lower power consumption after an
IAdapBeha(ChangeExeModel) behavior is conducted.
And at t2, the execution model is ExeModellq that is
with low quality and can continue the application. By
these methods, the system can continue running well to
need the dynamic computing environments.

VI. RELATED WORK

In recent years, many efforts have be made to design
the new middleware architecture capable of supporting
smart spaces in ubiquitous computing.

1066 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Connector

Resource

Connector

c

cA

t
1t 2t

s

cA

Connector

Resource

Connector

c

cA

0

Computing Resources is

satisfied

c

cA Execution Model

hqExeModel =
((, ,),i j k

cc cm mmRc Rc Rc

)hqExeQua

Computing

Resources is

unsatisfied

Perform

Adaptive

behaviors

IAdapBeha

(change

Exemodel)

OAdapBeha

(ReplaceAc)

Computing Resources is

satisfied

c

cA Execution Model

1s

cA

lqExeModel =
((, ,),p q r

cc cm mmRc Rc Rc

)lqExeQua

Figure 3. Case Study

The Stanford Interactive Workspaces project [22] aims
at exploring new possibilities for people to work to-
gether in technology-rich spaces with computing and
interaction devices on many different scales. This project
concentrates on task-oriented work such as brainstorming
meetings and design reviews. They have developed iROS
[23] , a middleware platform for a class of ubicomp
environments, through the use of three guiding principles
- economy of mechanism, client simplicity and levels
of indirection. RCSM [24](Reconfigurable Context- Sen-
sitive Middleware) is designed to facilitate applications
that require context awareness or spontaneous and ad hoc
communication. RCSM is built on an object-based devel-
opment framework, having application-specific adaptive
object containers, and a context-sensitive object request
broker. This middleware is used in a smart classroom.
The Gaia project [25] at UIUC seeks to bring the same
concept to computing. Gaia creates an environment to
bridge the gap between virtual and physical objects. The
goal of Gaia is to design and implement a middleware
operating system that manages the resources contained
in an active space. Gaia [26] is a component based
distributed meta operating system that runs on existing
operating systems and is implemented on top of existing
middleware platforms. It includes the Unified Object Bus
and the Gaia OS services. Georgia Institute of Technol-
ogy has built an Aware Home [7]. This project design
interactive experiences appropriate for people in an aware
home environment, and address the software construction
challenges of engineering a robust and reliable bridge

between the designer’s intent for interactive experience
and the technology itself. They developed and refined
the ”Context Toolkit” [27] to support rapid prototyping
of home applications that leverage knowledge sensed
from the environment. Project Aura [28] is intended
for pervasive computing environments involving wireless
communication, wearable or handheld computers, and
smart spaces. Aura provides a human distraction-free
software platform. Aura spans every system level: from
the hardware, through the operating system, to applica-
tions and end users. Aura applies two broad concepts. 1)
It uses proactivity, which is a system layer’s ability to
anticipate requests from a higher layer. 2) Aura is self-
tuning: layers adapt by observing the demands made on
them and adjusting their performance and resource usage
characteristics accordingly.

The project ArchWare [29] developed by Europe Unite
aims to construct a evolvable system centered with archi-
tecture mode. ArchWare has proposed a dynamic architec-
ture Description Language π-ADL [18] that is a formal
language that based on higher-order π calculus, which
is supporting modeling dynamic architectures, analyzing
architectures and checking constraints. In addition, D-
ADL [17] explicitly defines two dynamic behavior op-
erations symbols ’new’ and ’delete’, which is easier to
describe and comprehend dynamic behaviors. Therefore,
D-ADL implements the description of architecture dy-
namic behavior, and provides an indirect supporting for
architecture evolution.

Compared with the above projects, our work focuses on
the smart spaces for intelligent transportation system. We
emphasize the semantic-integration and adaptive method
for middleware platform, and have built the ScudWare
middleware platform for pervasive computing systems.
Different from the previous work, we present a Scu-
dADL to describe the middleware dynamic adaptation,
which has the dynamic re-configuration characteristic.
The component-based run-time recomposition provides
adaptability and scalability of the ScudWare. Moreover,
we expend D-ADL and π-ADL and present a ScudADL
framework with its specification semantics. It can de-
scribes dynamic entity structure characters, and dynamic
behavior adaptation. Different from D-ADL and π-ADL,
the computing resources consumption is concerned in
ScudADL, and the component inner and outer adaptive
behaviors are separated from component functional be-
haviors in an explicit way.

VII. CONCLUSIONS AND NEXT WORK

In this paper we propose a semantic and adaptive
middleware platform called ScudWare for pervasive com-
puting system in a smart CAA space. The ScudWare
middleware is based on the adaptive communication en-
vironment and a extended TAO service, which includes
adaptive components, and semantic virtual agents. The pa-
per describes ScudWare component structure characters,
and dynamic behavior adaptation by using a ScudADL
framework and its specification semantics. The ScudADL

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1067

© 2009 ACADEMY PUBLISHER

is based on higher-order typed π calculus theory. It
achieves to separate component inner and outer adaptive
behaviors from component functional behaviors in an
explicit way. In addition, we introduce an application
of ScudWare architecture, which is a computer aided
assessment system in a smart CAA space, and give a case
study to show its adaptation.

Tue further work includes 1) extension of ScudWare to
other smart spaces; 2) development of more applications
in smart CAA space using ScudWare platform.

ACKNOWLEDGMENT

We thank Li Changyun for numerous discussions con-
cerning this work, and the reviewers for their detailed
comments.

REFERENCES

[1] Weiser M, The Computer for the 21st Century, Scientific
American, pp. 94-100, 1991.

[2] Nigel Davies, Hans-Werner Gellersen, Beyond Prototypes:
Challenges in Deploying Ubiquitous Systems, IEEE Perva-
sive Computing, pp.26-35, January-March 2002.

[3] Tim Kindberg, Armando Fox, System Software for Ubiq-
uitous Computing, IEEE Pervasive Computing, pp.70-81,
January-March 2002.

[4] Alastair Beresford, Csaba Kiss Kall, Ursula Kretschmer,
Friedemann Mattern, and Martin Muehlenbrock, The First
Summer School on Ubiquitous and Pervasive Computing,
IEEE Pervasive Computing, pp.84-88, January-March 2003.

[5] MIT Media Lab, Smart Rooms, http://vismod.www.media.
mit.edu/vismod/ demos/smartroom/

[6] MIT Media Lab, KidsRoom, http://vismod.www.media.mit
.edu/vismod/ demos/kidsroom/

[7] Georgia Tech, Aware Home Project, http://www.cc.gate
ch.edu/fce/ahri/

[8] Margaret Fleck, Marcos Frid, Tim Kindberg, Eamonn
OBrien-Strain, Rakhi Rajani, and Mirjana Spasojevic, From
Informing to Remembering: Ubiquitous Systems in Interac-
tive Museums, IEEE Pervasive Computing, pp.13-21, April-
June 2002.

[9] Anand Tripathi, Next-Generation Middleware Systems
Challenges Designing. Communications of the ACM, 45(6),
pp. 39-42, 2002.

[10] Zhaohui Wu, Qing Wu, Hong Cheng, Gang Pan, and
Minde Zhao, SCUDWare: A Semantic and Adaptive Mid-
dleware Platform for Smart Vehicle Space, IEEE TRANS-
ACTIONS ON INTELLIGENT TRANSPORTATION SYS-
TEMS, VOL. 8, No. 1, pp. 121-132, 2007.

[11] http://www.omg.org/technology/documents/formal/compon
ents.htm, 2005.

[12] http://www.cs.wustl.edu/ schmidt/ACE.html, 2005.
[13] http://www.cs.wustl.edu/ schmidt/TAO.html, 2005.
[14] Qing Wu and Zhaohui Wu, Semantic and Virtual Agents in

Adaptive Middleware Architecture for Smart Vehicle Space,
In proceeding of the 4th International Central and Eastern
European Conference on Multi-Agent Systems, Springer
LNAI 3690, pp. 543-546, 2005.

[15] R.Milner, J.Parrow, D.Walker, A Calculus of Mobile Pro-
cesses. Infromation and Computation, VOL.100, No.1, pp.1-
40, 1992.

[16] D.Sangiorgi, Expressing Mobility in Process Algebras:
First-Order and Higher-Order Paradigms. PhD Thesis, Uni-
versity of Edinburgh, 1992.

[17] Li Changyun, Li Gansheng, he Pinjie, Formal Dynamic
Architecture Description Language D-ADL, Journal of Sot-
ware, VOL.17, NO.6, pp. 1349-1359, 2006.

[18] F.Oquendo, π-ADL: an architecure description language
based on the higher-order typed π-calculus for specifying
dynamic and mobile software architecture, ACM SIGSOFT
Software Engineering Notes, VOL. 29, NO. 3, pp.1-14,
2004.

[19] Qing Wu, Inteligent CAA theory model and application,
Master thesis, Hangzhou Dianzi University, 2003.

[20] Zhoubishui, Li jun and Wojunjun, Proof of Program Cor-
rectness based on Syntax Trees, Computer Applications and
Software, VOL.24, NO.4, 2007.

[21] Zhou bishui, Zhang Yan-Hong, and Zhao Jing, Model and
Algorithm Designing of the Proof of Program Correctness
on XML Syntax Trees, Journal of Hangzhou Dianzi Uni-
versity. VOL.26, NO.1, 2006.

[22] Stanford Interactive Workspaces Project. http://iwork. stan-
ford.edu/

[23] Shankar R. Ponnekanti, Brad Johanson, Emre Kiciman and
Armando Fox, Portability, Extensibility and Robustness in
iROS, Proc. IEEE International Conference on Pervasive
Computing and Communications, March 2003.

[24] Stephen S. Yau, Fariaz Karim, Yu Wang, Bin Wang,
and Sandeep K.S. Gupta, Reconfigurable Context-Sensitive
Middleware for Pervasive Computing, IEEE Pervasive Com-
puting, pp.33-40, July-September 2002.

[25] University of Illinois at Urbana-Champaign, Gaia Project,
http://choices.cs.uiuc.edu/ActiveSpaces/

[26] Manuel Romn, Christopher Hess, Renato Cerqueira,
Anand Ranganathan, Roy H. Campbell, and Klara Nahrst-
edt, A Middleware Infrastructure for Active Spaces, IEEE
Pervasive Computing, pp.74-83, October-December 2002.

[27] Daniel Salber, Anind K. Dey and Gregory D. Abowd.
The Context Toolkit: Aiding the Development of Context-
Enabled Applications. In proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems, 1999.

[28] David Garlan, Daniel P. Siewiorek, Asim Smailagic, and
Peter Steenkiste, Project Aura: Toward Distraction-Free
Pervasive Computing, IEEE Pervasive Computing, pp.22-
31, April-June 2002

[29] F.Oquendo, B. Warboys, R.Morrison, et al. ARCHWARE:
Architecting Evolvalble Software, EWSA 2004, LNCS
3047, pp. 257-271, 2004.

Wu Qing received the BS and MS degrees both in Computer
Science from Hangzhou Dianzi University in July 2000 and
March 2003, respectively. In June 2006, he received the Ph.D.
degree in computer science from Zhejiang University. Since
July 2007, he serves as an associate professor of computer
science at Hangzhou Dianzi University. His major interests
include Pervasive Embedded Computing, Software Middleware,
Context-aware Computing, CORBA Component Model, CAA,
and Multi-Agent Theory.

Hu Weihua is a professor of computer science at Hangzhou
Dianzi University. His major interests include Distributed Com-
puting, Software Middleware, and CORBA Component Model,
and CAA Theory.

Ding Wen is an associate professor at Zhejiang Education Ex-
amine. His major interests include CAA, Distributed Computing
and Software Middleware.

1068 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

