
A Novel Approach to Improve Availability of
Massive Database Systems (MDS)

Zhengbing Hu

Huazhong Normal University,Department of Information Technology,Wuhan,China
Email:kievpastor@yahoo.com

Kai Du

National University of Defense Technology, Changsha, China
Email: keyes.du@gmail.com

Abstract—Because of the huge scale and numerous
components, a massive database system’s availability has
become a serious challenge. Many database replication
technologies are used to increase the MTTF, but few are
provided to decrease MTTR in massive database systems
where the traditional backup methods are not feasible for
expensive human cost. Based on analyzing the
characteristics of the data in massive databases, we propose
a novel approach called Detaching Read-Only (DRO)
mechanism and its variation DRO+. It decreases MTTR
through reducing the size of physically changing data in
every database by detaching data on node granularity. The
analysis and experiment results show that our approach can
not only reduce MTTR by an order of magnitude, but also
reduce the expensive human cost without extra hardware
cost.

Index Terms—Database, Massive Database Systems, MTTR

I. INTRODUCTION

Your goal is to simulate the usual appearance of papers
in a Journal of the Academy Publisher. We are requesting
that you follow these guidelines as closely as possible.
The requirements to store and query massive data in
scientific and commercial applications have appeared.
Alexander Szalay and Jim Gray address that the amount
of scientific data is doubling every year and scientific
methods are evolving from paper notebooks to huge
online databases [1]. Until 2000, disk capacity has
improved 1,000 fold in the last 15 years, consistent with
Moore’s law, so storage volume is not the primary
challenge as before [2]. System maintenance, automation
and availability have become the new great challenges [3].

It is a good idea to build a massive database system
with federated databases [4]. Because of the complexity
of management and maintenance of a single
PB(PetaByte)-scale massive database system, partitioning
it into many small federated databases is a feasible way.
However maintaining such a huge system is expensive
due to its low availability caused by its large scale.

There are at least two challenges in gaining the high
availability in massive database systems: the short MTTF
(Mean Time To Failure) and long MTTR (Mean Time To
Recovery) [5] for storage failures. The former is caused

by the number of hardware components. For example, if
the availability of a database of 1TB is 99.99%, the
availability of a database system of 100TB constituted of
100 such databases will only be 99%. The latter is caused
by single database’s size. There are two reasons: 1)
Recovering the data of 1TB needs a long time even if
with fine backup solutions like archived and timely
backup [6]. 2) Finely backuping 100 databases is a huge
DBAs’ cost.

The efficient way to increase the overall MTTF is to
increase the MTTF of single database in a massive
federated system since the number of databases can’t be
decreased. How to increase MTTF has been researched
by those who mainly focus on how to provide efficient
synchronization mechanism between the replicas of a
cluster [8] and care little about the recovery time.

Decreasing the MTTR for storage failure is a great
challenge for the database’s size. Little attention has been
paid to this problem in previous research because it is a
new problem which only comes forth in a massive system.
The idea of reducing MTTR rather than increasing MTTF
has been proposed in the ROC [9] project. How to
decrease the MTTR and human cost will be researched in
this paper.

From the analysis above, we will achieve two
objectives in a massive system:
 To improve the massive database system’s

availability by reducing the MTTR.
 To decrease the MTTR without extra expensive

human cost.
Currently the massive storage system is usually filled

by the high-rate streaming log data, such as science
experiment data [10,11], call detail records, RFID-based
free way tracking [12], network packet traces. All these
data basically have the same features:
 The data are generated high-rate and

continuously (otherwise the information will not
be cumulated into a massive system of TB or PB-
scale).

 The data are just appended into the system and
the old data will not be updated.

We call these features as “insert-once-no-update”.
Leveraging these features, we design a novel mechanism
DRO and its variation DRO+ to separate the insert-once-

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1145

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.10.1145-1151

no-update “read-only” data from the online loading data.
We compare the novel mechanism to the double
replication used in an existed massive system in MTTR,
TCO (Total Cost of Ownership) and performance. The
results show that DRO+ excels others in most cases.

The organization of this paper is as follows: Section II
describes a massive database system CDRMDB. Section
III describes our novel replication mechanisms. Section
IV and Section V analyze the MTTR and cost of the
novel mechanism; Section VI is the experiment; Section
VII is the related work and Section VIII is the conclusion
and future work.

II. A MASSIVE DATABASE SYSTEM: CDRMDB

In this section, we will illustrate a massive database
system CDRMDB (Call Detail Records Massive
DataBase) which stores high-rate and massive call detail
records. It is built up with 86 database nodes and every
node’s volume is 500GB. CDRMDB has the following
features which are classic to many massive streaming
data storage systems: 1) Store high-rate and massive
streaming data. 2) Provide query access interface to the
massive data. 3) The scalability and availability are two
key system features.

In CDRMDB, the simple Primary Backup mechanism
[13] is adopted in terms of efficient loading performance.
One primary and backup replica constitute one cluster. So
it is constituted by 43 database clusters.

The cause of too long MTTR is database size and
recovery mechanism. In CDRMDB, one database’ size is
500GB. During the recovery period, all the 500GB data
must be loaded into the recovered database from the
correct database through logical export and import
mechanism. The size and logical recovery mechanism
lead to the long MTTR. In addition, double replication
may cause the failure cluster to be the bottleneck of the
query process when the recovery is being done because
the exporting data operation will dramatically decrease
the system’s performance.

In order to eliminate the query bottleneck in Double
Replication, Treble Replication is a better choice with
more half cost of the former. When a cluster has three
replicas and one of them fails, one normal database is
used to recover the data and the other can process the
query as before. Another benefit of the treble replication
is that the cluster’s availability is higher because the
probability of three databases failing is lower by an order
of magnitude than two.

III. NOVEL REPLICATION MECHANISMS: DRO & DRO+

In this section, firstly we uncover the inherent reasons
of too long recovery time in massive database systems in
Section III.A. Then we propose a novel replication
mechanism DRO and its variation DRO+ in Section III.B
and III.C.

A. Why So Long Recovery Time
In Section II we show the conflict of decreasing the

MTTR and decreasing the maintenance cost. The

essential reason of the conflict is that the system’s scale is
so large that the traditional backup can’t be done because
the DBAs’ cost is high.

The main idea of shortening the recovery time stems
from the feature of insert-once-no-update which is
described in section I. We can explain this idea clearly in
Fig.1. In Fig.1 (a) and (a1), it shows the current state of
CDRMDB --all data is in an online changing database.
The databases’ data is always changing and all loading
and query requests are issued to the total database. If a
database fails for storage failures, it needs to recover all
data whose size can reach 500GB in CDRMDB. It will
take several days.

However this can be avoided by leveraging the insert-
once-no-update feature. We can periodically detach the
history data which will not be updated. This idea is
shown in Fig.1 (b) and (b1). Fig.1 (b) means to logically
detach the history data from a database. Fig.1 (b1) means
to divide the system into two parts from the system’s
view. One part processes loading and query requests as
an OLTP database. The other stores history data and it is
consolidated as an OLAP database. In addition, in order
to eliminate the IO contention between detaching and
loading, it is sound to detach data based on node.

B. Detaching Read-Only Data Replication
To detach history data based on node granularity can

be implemented by dynamically deploy nodes to different
usages. We call this as “Detaching Read-Only (DRO)
Replication”. The idea stems from three basic facts: 1) a
read-only database can have an extremely short recovery
time comparing to a changing database. 2) The smaller
the scale of a write-read database, the shorter the
recovery time.3) some research about read-only
compressed database [14] has proved that compressed
databases will likely do better.

1. Tasks in DRO
Now let’s illustrate the DRO mechanism in Fig. 2. In

Fig.2, the system’s running time is divided by cycles. In
every cycle, two works will be done parallelly: loading

Loading

Query

OLTP

Loading

Query

OLTP OLAP

(a) All data on
changing state

(b) Detaching history data
to consolidated state

(a1) All data in OLTP

(b1) Detaching history data
dynamically to OLAP

Figure 1. Online detaching history data

1146 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

data into the write-read database clusters and
compressing read-only database clusters. In cycle 1, three
database clusters which are called as Loading Database
Cluster (LDC) (marked as “Loading”) provide query and
data loading functions. In cycle 2, the three database
clusters become read-only, and at the same time another
three clusters are added into the system as LDCs. The
three read-only database clusters are compressed and all
the data is collected into one database cluster which is
called Query Database Cluster (QDC) marked as
“Compressed & Query” with black color. The two free
database clusters which are released after data
compressing (boxes with dashed frame in Fig.2) will be
added into the third cycle for next cycle’s data loading
task. In cycle 3, one fresh database cluster which is newly
added into the system (boxes with solid frame in Fig.2)
and two free database clusters from cycle 2 make up the
new data LDCs. Just like in cycle 2, two free database
clusters come out after compressed and are added into
cycle 4. In cycle 4, the procedure is continued and the rest
may be deduced by analogy.

2. Two Types of Database Clusters
In a LDC, all the database nodes save the same data

but the data are not stored in the absolutely same physical
files. For example, when a tuple R is loaded into the three
databases d1, d2, d3 in a cluster, it may be saved in file1
in d1, file2 in d2, file3 in d3 while it is saved logically in
the completely same way. So when one database node
breaks down for a media failure, the database needs to be
built from the blank and imports the data which are
exported from another normal node.

However, in a QDC, all database nodes save absolutely
the same physical data. When a compressed database
node has been created, it can be copied into another node
through a disk copy: copying all the files with the same
directories and files. This mechanism profits from the
data’s no-update-after-insert property. Its advantage is
that when a database node breaks down for media failures,
only the fault files need to be copied from the normal
node. It shortens the recovery time and tinily affects the
normal node.

C. DRO+: improved DRO
DRO has decreased the MTTR without increasing

DBAs’ backup and recovery work. However it loses
much loading performance because too few nodes are
used to load data in every cycle. In DRO, all database
nodes have the same storage volume and the storage
resources are wasted since its volume is designed for all
online time which is larger than one cycle. So we can
save the budget for storage to buy more Loading
Database nodes. The procedure of DRO+ in Fig. 4 is like
DRO except that one compressed and read-only database
cluster is added in every cycle whose storage size is
larger than LDCs and in every cycle the number of LDCs
is equal to the treble replication. What is the economical
benefit of DRO+ over DRO will be illustrated in Section
IV.

IV. MTTR ANALYSIS

In Section III, we have illustrated four database
replication mechanisms. In this section, we will analyze
MTTR, performance, economic cost of the four
mechanisms.

A. MTTR in DRO
In order to analyze the system’s MTTR in DRO, we

define the following variables: The number of database
clusters is NS. The data’s online time is T. The time of
every cycle is C. The number of LDC in every cycle is NL.
The storage volume of one LDC is S. The requested
average data loading rate is V. The overall performance
of the data loading is PL. The compression ratio is R1. The
space utilization ratio of every database node is R2 after it
becomes a query-only database and before it is
compressed.

In Table 1, the number of various types of database
clusters in every cycle is shown. The value of every
column in Table 1 is calculated based on the volume
usage. The number of fresh database clusters should be
an integer which is not less than the float value NL *R1 *
R2, and the number of free database clusters should be an
integer which is not greater than NL * (1 - R1 * R2).

R2

N6 N5 N4

R1

N3N2N1

Time

n

Cycle 1 Cycle 2 Cycle 3

fresh database

compressed & read-only large database

N3N2N1

n

free database cluster

N7N3N2

N6N5N4

N6 N5N4

N3 N2N1

N3 N2 N1

Time

n

Cycle 1 Cycle 2 Cycle 3

fresh database cluster compressed & read-
only database
cluster

Figure 2. Online detaching history data

Figure 3. Online detaching history data

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1147

© 2009 ACADEMY PUBLISHER

For example, in Fig.2, the value of every variable is
like the following: NL = 3, R1 * R2 = 1/3, NL *R1 * R2 = 1,
NL * (1 - R1 * R2) = 2.

In every cycle one or more QDC is created after the
database clusters in the previous cycle are compressed.
Because a QDC can only be written once with the
compressed data and will not allow to be updated, the
following two points should be guaranteed:
1) To make the best of the storage space, a QDC

should be filled up as much as possible since the
QDC can only be written once.

2) The cycle should be long enough that the volume of
the data which is loaded in this cycle in the NL
LDCs is large enough to fill up the storage space of
one or more QDCs after the data is compressed.

According to the above analysis and Table 2, we can
educe the following equations:

NS = NL + NL + (T/C - 2)*NL *R1 * R2 = (2 + (T/C - 2)

*R1 * R2) NL. (1)
The data loading performance is generally thought as

relative to the number of the data loading clusters, so we
have this: (f1, f2 is a constant factor.)

PL= f1* NL. (2) V= f2*PL. (3)
The system’s MTTR is classified as two types:

MTTRQ, the MTTR of one QDC; MTTRL, the MTTR of
one LDC. Since the recovery operation of a QDC is only
to copy one or more data file, the recovery time is a
constant time t0. So the system’s MTTR is determined by
the MTTRL. In order to simplify the discussion about the
MTTRL, we assume that it is linear to the data size of one
node of the LDC: (f3 is a constant factor.)

MTTRL = f3*V*C/NL.
Referring to (2), (3), we can get:
MTTRL = f1* f2* f3* NL *C/NL = f1* f2* f3 *C.

(4)
From (1), (4), we can find the relation between MTTRL,

C and NL:
MTTRL = f1* f2* f3 * T *R1 * R2 /(2* R1 * R2 -2 + NS /

NL). (5)
Theorem 1. In DRO and DRO+, assuming that the

data loading performance is proportional to the number of
data loading clusters and the MTTR of one database is
proportional to its size, the MTTR is proportional to the
cycle C.

Proof. As discussed above.
□

Theorem 1 indicates that C determines the MTTR.

B. MTTR and Performance Comparison
Theorem 2. In Treble, DRO and DRO+, assuming that

the data loading performance is proportional to the
number of LDCs and the MTTR of one database is
proportional to its size, the MTTR of DRO+ is smallest
and the loading performance of DRO+ is best.

Proof. We mark the MTTR of treble, DRO and DRO+
as MTTRT, MTTRD and MTTR+. In fact, the double and
treble replication mechanisms are a special case of DRO
from (4). In (4), the treble replication means R1=R2 = 1, T
= C, so the NS = NL, MTTRT = f1* f2* f3 *C= f1* f2* f3 *T.
From (4), we also get that MTTRD = MTTR+= f1* f2* f3
*C. So MTTRD:MTTR+:MTTRT =C:C:T (6). If we
assume the loading performance is linear to the number
of Loading Clusters, obviously we can get the
comparison of Performance of Treble, DRO and DRO+:
PT: PD: P+= NS : NL:NS. (7) From (6) and (7), we can infer
that DRO+ has the smallest MTTR and the best
performance.

V. MTTR ANALYSIS

In Section IV.B we have concluded that DRO+ has the
smallest MTTR and the best performance. The cost may
be higher than the other two. In this section we will show
that the total cost of DRO+ is not always more than the
other two.

A. Original Cost Analysis
The original hardware cost includes CPU, memory,

storage, network switch, and so on. In order to simplify
analyzing the cost of the three replication mechanisms,
we assume that every node has the same number of CPU
and memory and the storage’s cost is proportional to its
volume.

Theorem 3. If the ratio of the storage cost to the
computation cost is more than some value, the original
cost of DRO+ is not more than Treble and DRO.

Proof. The original hardware cost of Treble, DRO and
DRO+, CT, CD, C+ is:

CT=CD=3*NS*(CPU+S) (8)
C+ = 3*(2* NS *(CPU+SW) + (T/C - 1)*(CPU+SR)) (9)
CPU is one node’s cost except its storage cost. The

other variables are defined in Section IV.A. In (9), one
loading node’s storage size is SW= (C/T)*S, one read-
only node’s storage size is SR= NS * SW * R1. So if we
expect the cost of DRO+ is not more than the other two,
that is C+ <=CT = CD, we should keep the following
inequality:

S/CPU >= (NS + T/C - 1))/(NS *(1- R1+(C/T)*(R1-2)))
(10)

From (10), we can conclude that if the ratio of storage
to CPU cost is larger than f(C)= (NS + T/C - 1))/(NS *(1-
R1+(C/T)*(R1-2))), the original cost of DRO+ will not
overspend the other two. □

Through simple analysis of f(C), we can find that it has
a min value when R1>0.1 and T/C>3 are true which is
really true in most cases. In Section VI.B we can find it
really true.

TABLE I.
NUMBER OF VARIOUS TYPES OF DATABASE CLUSTERS IN EVERY CYCLE

Cycle
No

of fresh database
clusters

of free database
clusters

1 NL 0

2 NL NL * (1 - R1 * R2)

3 NL *R1 * R2 NL * (1 - R1 * R2)

4 NL *R1 * R2 NL * (1 - R1 * R2)

… NL *R1 * R2 NL * (1 - R1 * R2)

1148 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

0

5

10

15

20

25

0 20 40 60

Cycle(day)

M
T

T
R

(d
ay

) Double

Treble

DRO

DRO+

 Figure 4. Performance and Cycle

0
5

10
15
20
25
30
35

0 20 40 60

Cycle(day)

N
L
(N

um
be

r
of

 C
lu

st
er

s)

Double

Treble

DRO

DRO+

Figure 5. MTTR and Cycle.

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

Cycle(day)

P
r
i
c
e

R
a
t
i
o NS=15,R1=0.4

NS=30,R1=0.4

NS=15,R1=0.1

NS=30,R1=0.1

Figure 6. Ratio of S/CPU in DRO+

B. TCO Analysis
The total cost of ownership (TCO) [15] of an

information system can be divided into two parts: original
hardware cost and management cost. The former is
discussed in Section V.A and the latter mainly is human
cost. As G. Weikum points out, TOC in a mission-
critical system becomes more and more dominated by the
money spent on human staff [16].

The human cost in recovery can be calculated as the
total recovery time: failure count*MTTR. Since the
system storage scale is the same, the failure count is the
same. So the ratio of the human cost of DRO+ to Treble
is CH+:CHT= MTTR+: MTTRT = C:T. The cost of
transforming online data to offline is difficult to analyze
in quantity, but at least it is clear that it is zero cost in
DRO+ or DRO discussed in Section III.C.2. In Treble, it
is expensive for it needs huge extra human operation such
as exporting and deleting old online data and it will
sharply degrade the performance of a 24*7 running
system.

VI. SIMULATION AND CASES ANALYSIS

In this section, we will show the differences of MTTR
and cost in the four mechanisms which are described in
section V through simulating several massive systems.

A. MTTR and Performance
In this section we pay attention to MTTR and NL.

Fig.4 shows the value of NL with different cycle. NS =
30, T = 150 days, R1 =0.4, R2 =0.5, f1= f2 =1. For treble
and double replication, C=T=150 days; for DRO,
C=10,15,30,50 days, NL is calculated from (1). In Fig.5,
MTTR is calculated from (4) in Section IV.A. For Treble
and DRO, f3 = 0.1 and for Double, f3 = 0.13. For Double
and Treble, C=T=150 days. For DRO, MTTR varies with
the cycle. From Fig.4 and 5, we can conclude that the
shorter the cycle is, the shorter the MTTR is, but the data-
loading performance the worse may be. MTTR can be
decreased to one-tenth when the cycle is 15 days.

B. Cost Analysis
Fig.6 is the curves of the right expression of (10). Fig.7

is the human cost ratio of DRO+ to Treble in recovery
calculated from Section V.B. In Fig.6, T=150 days, the
curves show that the larger NS is and the smaller R1 is, the
smaller the ratio is. That is to say the larger the system is
and the higher the compression ratio is, the more possibly
the hardware cost in DRO+ is not more than the others.

When C=15, NS =30 and R1=0.1, the minimum ratio
reaches 1.8 and the human cost in recovery is only one-
tenth in DRO+. The value of 1.8 can be easily reached in
data-intensive applications like TPCC. The NO.1 in
TPCC’s Price/Performance column until 27-May-2006 is
Dell’s PowerEdge 2800 whose S/CPU is 1.95 [17]. This
is evidence that the original cost of DRO+ is quite
probable to be not more than Treble or DRO.

VII. RELATED WORK

In the research community of database availability,
database replication is a primary technology. The eager
approach may easily lead to deadlocks and be hard to
scale for its block mode [18]. So many lazy approaches
are proposed to improve the overall performance and
scalability [19]. However, all of them discuss little about
the recovery of a replica from other replicas in a massive
scale background.

Another novel research point is to build a high
availability system based on share-nothing database
clusters. RAIDb [7] aims to build a high available system
like the commercial system based on multiple open-
source databases. It implements the high availability and

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1149

© 2009 ACADEMY PUBLISHER

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35

Cycle(day)

H
u
m
a
n

C
o
s
t

R
a
t
i
o

Figure 7. Human Cost Ratio of DRO+ to Treble.

load schedule through building the middleware tier,
caches all the sql operations in the management node and
redoes them on the fault database replica. This recovery
way is not feasible when the data arrives at a high rate
because the cache size is too large and the traditional
backup mechanism is not useful to each replica.

Oracle RAC [20] adopts another way to gain high
availability on massive systems. It provides high
availability through a multiple instances fault-tolerance
mechanism in the query processing tier and can’t
continue working when encountering media failures. So it
can’t easily provide high availability for the high media
fault ratio in a massive system.

Google is a successful massive system. It is constituted
by about ten thousand nodes. About one hundred nodes
break down every day [21]. Its data scale is 40-80TB.
The method to gain high availability is data replication.
All data and metadata is replicated double or treble. It
focuses on the high availability of a massive file system
and its recovery granularity is physical files. Thus the
difficult problem of data consistency in database recovery
doesn’t exist.

The replication mechanisms proposed in this article
focus on quick recovery from the media failure node
which is not covered enough in the above research work.
Especially the view of taking the total cost of recovery
into account is not addressed earlier.

VIII. CONCLUSIONS

The development of computing technology in several
decades has made it possible to store massive data like
web-log, call detail records, sensor data. However, the
short MTTF and long MTTR of massive systems caused
by the massive scale becomes a new challenge. Much
work has been done to increase MTTF but little attention
has been paid to decrease MTTR which is a severe
problem in running product systems. Based on the
experiences of our product system CDRMDB, we
propose a novel mechanism DRO and its variation DRO+
from a systemic and economical view. The simulation
shows that our approach can sharply decrease the MTTR
by an order of magnitude without any performance loss
and need no extra hardware or human cost.

ACKNOWLEDGMENT

The authors wish to thank Prof. V.P. Shirochin.This
research was supported by China Postdoctoral Science
Foundation(20070420908) and by the Project-sponsored
by SRF for ROCS, SEM (2008890).

REFERENCES

[1] Jim Gray, Alex Szalay. Science in an exponential world.
Nature,V.440.23, 2006.

[2] Jim Gray, Prashant Shenoy. Rules of Thumb in Data
Engineering. ICDE2000.

[3] Jacek Becla, Daniel Wang. Lessons Learned from
Managing a Petabyte. CIDR2005.

[4] Boris Gelman. V2LDB. CIDR2005.
[5] K. Nagaraja , X. Li and B. Zhang, R. Bianchini, R. Martin

and T. Nguyen. Using Fault Injection and Modeling to
Evaluate the Performability of Cluster-Based Services. In
Proceedings of the Usenix Symposium on Internet
Technologies and Systems, Mar. 2003.

[6] Abraham Silberschatz, Henry F. Korth, S. Sudarshan.
Database System Concepts. 4th edition. China Machine
Press. P461-470.

[7] Emmanuel Cecchet. C-JDBC: a Middleware Framework
for Database Clustering. IEEE Computer Society
Technical Committee on Data Engineering 2004.

[8] Yuri Breitbart, Raghavan Komondoor, Rajeev Rastogi, S.
Seshadri, Avi Silberschatz.Update Propagation Protocols
For Replicated Databases. SIGMOD 1999.

[9] Patterson D. A., A. Brown, P. Broadwell, G. Candea, M.
Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M.
Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J.
Traupman, N. Treuhaft. Recovery-Oriented Computing
(ROC): Motivation, Definition, Techniques, and Case
Studies. UC Berkeley Computer Science Technical Report
UCB//CSD-02-1175, March 15, 2002.

[10] Y. Dora Cai, Ruth Aydt, Robert J. Brunner. Optimized
Data Loading for a Multi-Terabyte Sky Survey Repository.
In Proc.Supuer Computing 2005.

[11] A. Szalay, P. Kunszt, A. Thakar, J. Gray, R. Brunner.
Designing and Mining Multi-Terabyte Astronomy
Archives: The Sloan Digital Sky Survey. In Proc.
SIGMOD2000.

[12] http://www.511.org/fastrak
[13] Matthias Wiesmann, Fernando Pedone, Andr′e Schiper,

Bettina Kemme,Gustavo Alonso. Transaction Replication
Techniques: a Three Parameter Classification. SRDS 2000.

[14] Daniel J. Abadi, Samuel R. Madden, and Miguel C.
Ferreira. Integrating Compression and Execution in
Column-Oriented Database Systems. Proceedings of
SIGMOD 2006.

[15] Hitt, Ellis F. Total ownership cost use in management.
Digital Avionics Systems Conference 1998.

[16] Gerhard Weikum, Axel Moenkeberg, Christof Hasse, Peter
Zabback. Self-tuning Database Technology and
Information Services: from Wishful Thinking to Viable
Engineering. VLDB2002.

[17] http://www.tpc.org/tpcc/results/tpcc_result_detail.asp?id=1
05092601

[18] Jim Gray, Pat Helland, Patrick O’Neil and Dennis Shasha -
The Dangers of Replication and a Solution.ACM SIGMOD
1996.

[19] A. Sousa,J. Pereira, L. Soares, A. Correia Jr., L. Rocha, R.
Oliveira, F. Moura.Testing the Dependability and
Performance of Group Communication Based Database

1150 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Replication Protocols. Dependable Systems and Networks
(DSN) 2005.

[20] Building Highly Available Database Servers Using Oracle
Real Application Clusters. An Oracle White Paper May,
2001.

[21] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The Google File System. The ACM Symposium on
Operating Systems Principles (SOSP) 2003.

Zhengbing Hu was born in 1978. He received B.E.,

M.E. and P.h.D degree in National Technical University
of Ukraine. His current research interests include

Network Security, Intrusion Detection System, Artificial
Immune System, Data Minging etc..

Kai Du was born in 1978. He received B.E. and M.E.

PhD degree in National University of Defense
Technology, China. His current research interests include
large-scale data management, data reliability, distributed
computing.

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1151

© 2009 ACADEMY PUBLISHER

