

Research for an Intelligent Component-Oriented
Software Development Approaches

Youtian Qu

College of Information Science & Engineering, Zhejiang Normal University, inhua, 321004, P.R. China,
quyt@zjnu.cn

Chaonan Wang, Lili Zhong, Huilai Zou and Hua Liu

College of Information Science & Engineering, Zhejiang Normal University, inhua, 321004, P.R. China,
Email: {wcn, 04600110, 2008210785, liuhua} @zjnu.net

 Founding information: This work is partially sponsored by the Natural Science Foundation of Zhejiang Province, China (M603245, Y106469), and
National high tech research and development plan (863plan):2007AA01Z105-05

Abstract—Using software agents as next generation flexible
components and applying reuse technologies to rapidly
construct agents and agent systems have great promise to
improve application and system construction. The
increasing complexity of software has made it necessary to
reuse software. Reuse has increased the reliability of
software applications and made it efficient to develop and
maintain current software. An Intelligent component-
oriented software development approach, which emphasizes
the design and construction of software systems by using
reusable components, is an effective approach to the
software development. Combining the advantages of agent-
oriented and component-oriented methods, it aims to create
more flexible, reusable and customizable agent components
in future. An agent component-based architecture is
proposed and a concrete application system is described to
illustrate the method and process of applying the
architecture

Key words—Intelligent component, Agent Component, MAS,
Software Reuse

I. INTRODUCTION

The increasing complexity of software has made it
necessary to reuse software. Reuse has increased the
reliability of software applications and made it efficient
to develop and maintain current software [1]. Software
development needs to progress from handcrafted, line-at-
a-time techniques to methodologies that support reuse of
existing software assets [2]. In order to cope with this
complexity, we need new paradigms to facilitate the
design of distributed and open systems. Traditional
software engineering methodologies are giving way to
new software development paradigms. Component-
oriented software engineering and agent-oriented
software engineering are two paradigms that are
garnering attention. Both of them seem to represent the
evolution of the object-oriented paradigm. However, each
paradigm focuses on different aspects of distributed
applications and so they might be complementary. In the
future, passive software components will be liberated by
the proactive and social nature of agents. In effect agent-

based technologies provide the mechanism for
components to seek work, enter into cooperative
agreements and thus otherwise address the requirements
of dynamic, heterogeneous environments.

Agent technology is a complex software technology.
To make this technology easier to understand, we need to
encapsulate the complex concepts of agent technology in
order to disburden the development of agent systems. We
find the component technology is considered to be more
suitable for distributed system development due to its
granularity and reusability, and it is also a suitable means
to disburden agent software development by making
certain agent concepts customizable and reusable [3]. The
Agent-based programming is emerging as a new
programming paradigm in the next decades. However,
there have been no programming languages to well
support agent programming naturally. To make it worse,
even before we try to implement agents, there is no
proper modeling methodology for agent software
development. The existing software development
methods such as structured modeling and object-oriented
modeling are not well suitable for agent software
development because of the difference of notions in
different paradigms.

Although the flexibility of agent interactions has many
advantages as well as disadvantages which lead to
unpredictability in the run-time system when engineering
systems become complicated. On one side, decisions
about the number, pattern and timing of interactions
depend on a complex interplay of the agent's internal
state and the agent's perception of the environmental and
organizational context that exists when the decision is
made. It is difficult for the agent to make predictions
about the system's interactions. On the other side, there is
a de-coupling, and potentially a considerable degree of
variability between what one agent requests through an
interaction initially and the outcome that eventually
ensues. The request may be immediately accepted,
refused completely or modified through some form of
social interchange [18].

1136 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.10.1136-1144

All in all, to the agent based software development
process, there are still some issues for us to resolve. First,
the issues of performance and efficiency based on agent
software development have not been properly settled
which have been baffling this field for a long time.
Second, it lacks a kind of combination among the mature
models of development, methods and tools to describe the
agents-based analysis and design process. Third, the
“dynamic” and “continually scalable” features in the
process of system development have not been
implemented.

Because the components such as CORBA, DCOM,
JavaRMI are all based on classic Client/Server models,
they have some pitfalls in autonomy, flexibility, initiative
and network environment adaptability. Meanwhile,
because the components determine their connectivity
mechanism prematurely, to some extent, their “dynamic”
and “scalable” features are affected and constrained.

As the autonomous software entities, agents represent
potential components in a software system. Therefore we
try to use a method combined with agent technique and
component technique to build an agent component (AC).
The method should offset the drawbacks of the single
agent or component development method and meanwhile
it can take full advantage of the features of agent
technique and component technique.

The rest of this paper is organized as follows: The
motivations and methods of combining agent-oriented
and component-oriented are introduced in Sect. 2. The
agent component-based architecture, the agent
component-oriented software construction methods, the
definition of agent component, and the agent component-
oriented MAS general model framework are given out in
Sect. 3. A model application instance and a concrete
software application example are given out in Sect. 4.
Finally, a simple summarize is given out in Sect. 5.

II. AGENT/INTELLIGENT COMPONENT OUTLINE

Software agents offer great promise to build loosely-
coupled, dynamically adaptive systems on increasingly
pervasive message-based middleware. Agents are
specialized kinds of distributed components, offering
greater flexibility than traditional components [4]

A. Motivations
The main difference between agents and components is
the mechanism they use for communication. Agents use
ACLs(Agent Communication Languages), while
components use a metaobject protocol [5].

In the paper [5], Bergenti has given out the comparison
between agents and components starts from table 1. It
shows some important component-oriented abstractions
and associates them with agent-oriented counterparts.
Table 1 compares some of the abstractions that form the
components’ Meta-model with the corresponding
abstractions of the agents’ Meta-model.

The different communication mechanisms influence
how agents and components open themselves to the outer
world. Components use interfaces to enumerate the
services they provide and to tell clients how to get in

contact with them. The agent-oriented approach
eliminates interfaces and provides agents with
capabilities of describing what the agent can do, and how
the agent can interact with other agents, i.e., the
interaction rules it can adopt. By similar comparison in
[5,6,7,8], the two major results can be concluded: 1)
agents are more reusable and more compositive than
components, and 2) agents allow to describe systems at a
higher level of abstractions than components.

TABLE I. COMPARISON BETWEEN COMPONENT-ORIENTED AND
AGENT-ORIENTED ABSTRACTION

Though agent has so many advantages, as we
mentioned in section 1, agent-oriented software
development is short of supporting of methods, tools, etc.
Currently, CBSE (Component Based Software
Engineering) has been a matured development method,
and it has more technical supports, correspondingly.
Therefore, we take the agent component as the next
generation component [9].

B. Combining Agents and Components
Many similarities can be found between agent technology
and component technology [8]. But we are more interested
in the complementary concepts of these technologies,
because these are the concepts that make the profit out of
combining agents and components. We focus on the main
purpose of agents in the communication ability, which
gives us the possibility to process complex tasks by
assigning single task to different agents. Instead,
components focus more on reusability and
parametrisation / customization aspects for the
deployment of a component in different contexts. Fig.1a
illustrates the process of combing components and agents,
and Fig.1b illustrates the concept structure. The agent
component (AC) is comprised of three parts: component,
agent, and connector (Combines).

Component. Component is an independent functional
entity in a system. In general, a component possesses its
interface specification and internal specification by itself.
Interface specification is mostly to describe the message
provided to the user by the component. It can be divided
into two sorts: The first is the functional specification,
which is the exterior user interface provided by the
component; the second is the entry point, which is the
exterior interface used by a component. Internal
specification mostly includes the syntax restriction of the
component architecture of itself (e.g. the dependence of
the functional specification and entry point, namely those

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1137

© 2009 ACADEMY PUBLISHER

exterior interfaces which support a certain functional
demand), semantic models (e.g. the interaction protocol
with the other components) and the other service features
(e.g. thruput etc.) [10]. In the agent component, it presents
as a service entity, namely a service component.

Figure 1. Combines Agents and Components

Agent. The major function of the agent in the model is
to realize the communication based on MAS. It may be
not a concrete computing entity, but a communication
entity. In essence, it can be a concrete computing entity
completely when it needs to provide some particular
function demands (e.g. needs to provide some intelligent,
automatic services). Here, the agent has not only the
ability of communication but also the service ability of
supporting for the outer world. Therefore, in essence, the
agent in the model is an AC. It has both the component’s
services ability and the agent’s communication ability.
We adopt the particular style BDI (Believe, Desire,
Intention) model system to design and implement the
agent.

Combines. The combining part is a core part in the AC,
it combines the basic features of agents and components,
and it is the token entity, which is to realize the
communication with the other ACs and to provide the
services for the outer world. It combines the
communication ability of agent, the interface
specification of component, the internal specification and
the service features to endow itself with the service
ability and to provide or request service to the outer
world. The concrete implementation of service is
achieved via the BDI model based on agent. The
combining parts in Fig.1 are designed and realized by
agent. Therefore, in modality, the combining part is taken
as a connector, which is realized by agent. The combining
part is a gluing body, by gluing the agent and component,
it conceals the interfaces, properties and relations which
the component directly provides to the outer world.
Substituting the endowed service ability by the
component for the inherited communication ability by the
agent, It serves as a service component to support the
assemble service for application system development, and
it also serves as an agent to support the dynamic
interaction with the other agent components in the
runtime.

After examining its basic properties, it is possible to
create a single, comprehensive definition of an AC: An
AC is a language-neutral, independently implemented
package of software services, delivered in an
encapsulated and replaceable container, accessed via one
or more published service interfaces (service ability of
AC). An AC is not platform-constrained or application-

bound. An AC should be autonomous, reactive, pro-
active and has social competence [11].

An AC has communication abilities (the agent’s
features) and it can be reused and parametrized (the
included component features) for different contexts. In
the Fig.1, if we take the “Agent” as a component or an
agent component and take the “combines” as an agent or
an agent connector, the flexible and scalable software
architecture can be achieved. With our approach we want
to disburden agent software development. The component
technology is a suitable instrument for this task by
making certain agent concepts customizable and reusable.
Here “reusable” means to have an AC that can be
instantiated for every agent we need. And “customizable”
means to connect AC instances, add/remove certain
ontologies and add/remove behaviours graphically. In
general, the AC has all agent properties like autonomy,
reactivity, proactivity and interaction and adds
component features like reusability and customizability.
An AC is a generic component that describes general
services that every agent must provide and so an AC can
be instantiated/ reused for every agent one wants to build.

Combining agents and components into reusable
software components provides several advantages:1)
Applications are developed by selecting and assembling
the appropriate components. 2) Integration and inter-
operability among agents, standard component-ware
technology and supporting tools are assured. 3)
Developers who are unfamiliar with agent concepts and
notations may choose agent-based components to fulfil
specific functionality of their applications. This enables
agent technology to be easily assimilated into current
engineering practice[6]. Anyway, it is worth noting that
the very naive approach of encapsulating an agent into a
component so as to run it in an application server has
some drawbacks. The most remarkable one is that the
threading model that the application server imposes to
components may not be compatible with agents.
Basically, the developer must choose between loosing
some enterprise feature, e.g., fault tolerance and
transparent scalability, and implementing only reactive
agents. Some middleware providing a reasonable
compromise are already available now, e.g., Caribbean
and EJB 2.0 allow asynchronous messaging in EJBs [5].

Ⅲ. THE AC-BASED ARCHITECTURE AND THE AC-
ORIENTED MAS MODEL

Developing good software architecture for a complex
system is a critically important step for insuring that the
system will satisfy its principal objectives [12]. The
software architecture is widely recognized as one of the
most fundamental concepts in software engineering,
because of the fact, that today's software systems are
assembled from components with different characteristics:
for example, heterogenous, legacy or distributed systems.
At the software architecture level, designers combine
subsystems into complete systems using different
techniques [13]. The architectural design plays a key role
in software engineering. The software architecture is the
backbone of the design solution, it has the functional

1138 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

requirements of the system and satisfies the quality
requirements[14]. The concrete implementation of service
is achieved via the BDI model based on agents (Fig.2).
Agent Component. The “Agent Component” is
composed of “component” and agent or agent component.
This component represents the component features in the
deployment of design or in the assembly of components,
and in the runtime, it represents as a component-based
agent, which possesses all characteristics of an agent.
Connector(Agent). Connector was introduced in
software architectures as a first-class entity representing
component interactions. The basic idea is that application
components contain only the application business logic,
leaving the component interaction- specific tasks to
connectors. However, such a characterization is too vague,
since it does not strictly draw a line between component
and connector responsibilities [15,16]. The connectors
described in Fig.2 are realized by agents, which take full
advantage of the ability of the communication interaction
of agents, and use the apperceiving and message
communication mechanism of agents to complete the
assembly combination of components. In the proposed
architecture, connectors coordinate protocol execution.
Connectors accept and interpret protocol descriptions at
run-time. Therefore interaction protocols do not need to
be pre-coded in the connectors. Protocol descriptions
include the definition of the messages exchanged, as well
as the internal actions carried out by the agent during
protocol execution. The interaction protocol is linked or
connected in this way with the agent’s functionality. In
essence, the architecture style is similar to the
architecture style of message bus-based or message
router-based.

Figure 2. Agent Component Based Architecture

In the design and implementation, using the
communication mechanism of agent to achieve the
function of connector makes the architecture more
flexible, reusable, configurable and combinable.
Agent Component Assemble. Each A, B, C is presented
as an AC in Fig.2. In essence, an AC looks like a
subsystem. It may be realized by combining agents and
components. It may be realized by combining agents and
ACs.
Communication Style. The communication style
introduced in this paper is based on MAS communication
mechanism, and realized by multi-agent.

Especially, in the architecture, if the agent connector
which combines A, B and C is taken as a MAS, and then
a general agent component-oriented MAS model can be

achieved (Fig.3). In Fig.3, all components/agent
components are out of the dashed circle and all the
connectors are in the dashed circle. As we have
mentioned above, the connector is designed as an agent,
and all of the agents make up of a multi-agent
circumstance, thus we can take those agents in the dashed
circle as a MAS. In the center of the circle, there is a
virtual agent /social agent which realizes the
communication between agents (connectors). Each
connector has concealed the features of a component
instead of the service ability of an agent component. This
model indicates that an agent component can present an
application service, an application system or subsystem.
An application system is composite of MAS (or agents),
components, and application subsystems (ACs).
Therefore, the result of the model applying is also an AC.
It makes the software development process easier to the
ordinary development methods.

Figure 3. An Agent Component-Oriented MAS General Model

Ⅳ. BASIC CONCEPTS AND CONCEPTUAL PROCESS MODEL

A. Basic Concepts
An object is something that combines the related data
with the associated operations on the data. A structured
data object means the data information which can be
stored in relation database and can be operated by DBMS
operations. The form of structured data is one of the most
normal data types which are applied in a wide area in the
real-world. An agent is a concurrent, autonomous,
intelligent and self-contained object. An agent describes
its behaviors by itself, which we called self-contained.
The goals to achieve and the behaviors to implement are
based on the current environment. An agent component is
a component as well as an agent. It synthesizes the
advantages of the agent technique and component
technique and it overcomes the pitfalls of the method of
the single agent or component development.

A requirement for an agent-based system can be
described in both static requirement and runtime
requirement. Static requirement can be extracted from the
user requirement specification statically defined. Runtime
requirement can be specified by assumption of runtime
behavior, and the different behaviors of the system should
be assumed and designed in that way.

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1139

© 2009 ACADEMY PUBLISHER

Decomposition is to decompose a complex problem
into relatively small and manageable components.
Decomposition level in structured programming is
functions and processes. Decomposition level in object-
oriented programming is object. We use this method
mainly in requirements analysis phase and system design
phase to simplify a complex problem.

B. The Conceptual Process Model
As mentioned above, an agent component-oriented
system should be designed in the highly flexible manner.
Agents should be independent and autonomous. Agents
may be cooperative. However their cooperation should be
designed in the highly flexible manner. So we can
describe the conceptual process model as Figure 4.

Figure 4. Conceptual process model

 Analysis: In the requirement analysis, we gather the
customer’s requirements from the user requirement
specification and use the BDI (Belief-Desire-Intention)
model to construct the agent diagram. [19,20].

 Design: In the phase of design, we describe the system
in details by the models constructed in the phase of
analysis. Relationship diagrams show the relationships
among agents, such as inheritance, dependency,
visibility and logically and physically structured
organization. Interaction diagrams show the
interactions among several agents, such as local,
partial and global agents. Component diagrams show
useful information of packaging the related agent
components when coding. Component diagrams
indicate the implementation group as packages in most
programming languages.

 Implementation: The next phase is implementation of
the models constructed in the previous phases. In the
implementation phase, we can select a programming
language to code the agent component one by one.
In the previous content, we have simply discussed the

method of the agent-oriented software process and then
we will discuss the crucial issues for agent component-
oriented software process.

Ⅴ. STRUCTURED DATA OBJECT-BASED AGENT
COMPONENT (SOAC)

A. Agent Component-based Development Technology
Agent component-based development technology
(denoted as “ACBD” in the following) is based on
building complex software systems by reusable and

simpler agent components [21,22]. The ACBD is expected
to be capable of reducing development costs and
improving the reliability of the entire software system.
An agent component is a reusable unit of composition
with contractually specified interfaces, which can be used
by the outside of the agent component via the interfaces.
The ACBD is composed of its two major elements: the
agent component architecture and the agent component-
based development process. The agent component
architecture serves as a standard rule for reusing software
agent components. The agent component-based
development process is a model of the software
development process which emphasizes the central role
of the reuse of agent components in the entire
development process.

B. Extended the Data Object Control Component
Most of development tools based on components have
key and special data object control components (DOCC),
such as Data-Grid, TDBGrid [23] etc. A TDBGrid is one of
the most important visual data control components
provided by Borland Company in a component
development tools of Delphi, which can save/restore data
from a database conveniently and display the data in the
window visually. These kinds of components
technologies are provided by so many component-
oriented programming languages. They are very useful
for developers.

The DOCC has extended features, including the
capability of displaying multi-line word wrap column
titles, a convenient selection of records from the
keyboards, an opportunity to exclude inserting and
deleting of records in the Data grid, own standard Popup-
Menu, fixing of columns, saving/restoring of a column
state, and processing of additional events etc.

In order to make use of the properties and advantages,
we should modify or extend the functions of the DOCC
easily. Figure 5 illustrates the process of extending.
Through the combination with the intelligent agent
technology, we can obtain an agent-based data control
component, which is visualized, intelligent, common and
structured data object-based.

Figure 5. Agent-Based Data Control Component

The extended agent-based data control component has
the following features which are different from those of
usual DOCC.

1140 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

 Data source choice: Developers or End-Users only
need to choose the data object (a table or a view),
which will be displayed in window and denote the
related SQL statements.

 Agent Interface: An Intelligent Agent component is
in charge of checking the SQL statements. Through
the index from data dictionary, it converts and sets up
the related Title, Caption of each data object column.

 Several data operation: It implements some data
operations like browse and update of the dataset
displayed in the data control component in order to
update the database.

 Data format conversion component: In order to ease
the data management and operation for the users, a
data file conversion component is specifically
designed, which can convert the data of SQL server
into those of DBF or Excel.

 Print & print setting component: To print out the
data of data object, the QuickReport component has
been designed, which can automatically draw lines of
a table in a report form, set the height of row manually
or automatically, and make the column width
automatically set in accordance with the length of data
or the width of the data-grid displayed in the window.

C. Defining a SOAC
After examining its basic properties, it is possible to
create a single, comprehensive definition of SOAC: A
SOAC is a language-neutral, independently implemented
package of software services, delivered in an
encapsulated and replaceable container, accessed via one
or more published interfaces. A SOAC is not platform-
constrained or application-bound. A SOAC should be
autonomous, reactive, pro-active and social competent.

A SOAC is considered to be language-neutral. This
does not mean that all agent components are universally
written in a single language. It means that they are
specially designed and deployed so that agent
components written in different languages can work
together, which effectively makes them language -neutral.

A SOAC may be implemented independently. This is
possible because agent components are encapsulated --
each one has its own self-contained small unit of
development and testing.

A SOAC is not constrained to a single platform. It is
possible to create different settings for a SOAC so that it
can be operated on any platforms.

A SOAC is not bound to any particular application.
Although many agent components are created to meet the
needs of a particular application, once they have been
built and deployed, it is possible to use them for different
applications. As long as the interfaces of the agent
component meet the consumer’s needs, the same agent
component can be used to develop or enhance other
applications. With some basic features of an agent, a
SOAC is an agent as well as a component. A SOAC is
based on a structured data object and is agent component-
oriented.

D. An Agent Component Architecture Model
A component assembly framework supports a variety of
visualization and programming tools for developing
component connections [24]. Most of the current systems
assume that the user has medium for advanced computers
and programming experience. Moreover, the user is
required to have the information about the details of each
software component [25]. However, the trend is that users
will be domain specialists other than necessary computer
experts. Further, the End-Users have become more
involved in the application development. The component-
based software development will let the domain
specialists-- End-Users-- use specific domain components
and integrate them. Therefore, common software
architectures for reusable software components should be
developed into such an architecture that can implement
the functions of effective design and development in such
an environment.

Reuse of components cannot be achieved if there are
no standard software architectures. The agent technology
is employed in the architecture to satisfy the specified
user requirements. The agents are not only interfaces;
they are knowledgeable on process and specialized in a
certain area. Furthermore, an agent acquires the
knowledge to decide when to help the user, know what to
do to help the user and how to help. Although they are
autonomous entities in the system, they will work
together with the user and for the user. In order to satisfy
the user’s requirements listed above, the following
architecture shown in figure 6 is proposed. In the
proposed architecture, each agent has three parts:
 Attributes: They identify the agent. Among them are

the specialization of the agent, owner, success level,
life cycle, and implementation environment. This list
is not exhaustive.

 Behavior model: It specifies how the agent operates
and when it terminates. Here, the rules for security, the
relationship among the agent, the user and/or other
agents is set. These rules also determine how to
evaluate the performance of the agents. The agents are
autonomous and independent. It is very important to
have trustworthy agents. Therefore, the behavior
model will ensure that the only agents would be well-
behaved and can continue to operate usefully.

 Inference Engine: It operates the agent-based
components on the behavior model.

According to the content introduced above, we can
construct an agent component design and implementation
model as it is shown in Figure 6.
 User Agent interface hides the complexities of the

system operations. It allows the user to define his/her
one-time queries as well as long term, relatively static
needs.

 Domain Agent works on behalf of the user. It is
responsible for representing user's requirements. It
formulates the component specifications from the user
requirements and delegates the authority to the domain
agent mediator to find the matched software
components. It evaluates the performance of domain
agent mediator based on how to satisfactorily find the

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1141

© 2009 ACADEMY PUBLISHER

software components. Furthermore, it can learn from
the executing instance and communicate with other
domain agents through domain agent mediator to
complete its work for the user.

 Domain Agent Mediator provides communication
service to domain agents since they can be
implemented and placed in a heterogeneous distributed
environment.

 An agent component is a software implementation that
can be executed on a physical or logical device. An
agent component implements one or more interfaces
that are imposed upon it. All components must satisfy
certain component contracts. In the architecture, it
contains universal component and domain component.
The universal component is the basic component and
the domain component is a professional component. It
usually needs some special knowledge for the domain
specialist to develop an application system.

 Component contracts ensure that independently
developed components obey certain rules so that
components can interact in predictable ways, and can
be deployed into standard build-time and run-time
environment.

 Coordination service is supported by the architecture
so that the domain specialist could master less
software developing skills. Furthermore it provides
several coordination services such as the transaction
service and persistence service.

 Component interface provides the execution methods
for the users.

 Component repository has contained all kinds of
components and a catalog mechanism should be
provided by it.

Figure 6. An Agent Component Architecture Model

All of the agents should be self-contained and
encapsulated so that security can be achieved to a certain
extent although more security measures are needed to
avoid the unauthorized uses.

Besides this, a formal specification mechanism should
be provided so that a developer can provide some

parameters in a formal specification or can do a query
operation to a table or a view, he or she would obtain a
visualized result or generate a piece of executable code
for this application. In the model, the domain component
is a special component, which is fit for domain experts to
solve some particular problems. It’s difficult to solve all
the problems arising from different domains in the same
way. So, in this kind of component, we only provide a
framework for the domain expert, and we hope the
domain expert only does some particular jobs with it and
writes the results in a database table in the end.

Ⅵ. AN APPLICATION EXAMPLE

Using the method we have introduced above, we formed
a software process model in Figure 4, and we have built
an application system in a university information system.

Figure 7. Agent Component-Oriented Software Development

Process

According to the methods we have introduced in Sect.
2 and Sect. 3, the architecture of educational management
system of ZNU has been established (Fig.8). The system
consists of four subsystems, named as management
system of status of students, subject achievement
management system, elective management system,
curriculum schedule management system. Each
subsystem is an AC.

Figure 8. The Architecture of Educational Management System

of ZNU

1142 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

As an example, to illustrate the detail implementation
of AC which we have introduced above, we have
developed a subject achievement management system in
ZNU. The architecture is illustrated as Fig.9.

Figure 9. The Architecture of Subject Achievement

Management System

In Fig.9, AC1 and AC2 are results refined from the
architecture-based analysis and design. AC1 is a data
operation agent component, it implements some data
operations like browse and update of the data set
displayed in the Window Grid component in order to
update the database. It consists of three ACs and two
agents (connectors); AC2 is a print & print setting AC, it
consists of one AC, one report form component and one
agent (connector). The detailed description about AC1
and AC2 can be found in [11,17] respectively.

In Fig.9, there are six general components and they are
all combined via agent connectors.

Ⅶ. CONCLUSION

Combining agents and components into an AC
component is a new method in the domain of software
engineering. In this paper, we propose an AC-based
software architecture, and an AC-oriented software
development method is introduced. Using the method, we
can effectively improve the flexibility, reusability,
composability etc. for the complex and large-scale
software development.

REFERENCES

[1] Eunjoo Lee, Byungjeong Lee, Woochang Shin, and Chisu
Wu: Toward Component-Based System: Using Static
Metrics and Relationships in Object-Oriented System,C.V.

[2] PA Buhler, JM Vidal, Toward the Synthesis of Web
Services and Agent Behaviors, AAMAS, 2002,
http://jmvidal.cse.sc.edu/papers/buhler02a.pdf

[3] Ladislau B¨ol¨oni, Majid Ali Khan, Xin Bai,Guoqiang
Wang, Yongchang Ji, and Dan C. Marinescu: Software
Engineering Challenges for Mutable Agent Systems .In: C.
Lucena et al. (eds.): SELMAS 2003(2004)149–166.

[4] ML Griss, RR Kessler, Achieving the Promise of Reuse
with Agent Components ,SELMAS, 2002,
http://martin.griss.com/pubs/selmas2002.pdf

[5] Federico Bergenti,FRAMeTech: A Discussion of Two
Major Benefits of Using Agents in Software Development.
In: P. Petta et al. (eds.): ESAW 2002(2003)1-12.

[6] Richard Krutisch, Philipp Meier, and Martin Wirsing: The
AgentComponent Approach, Combining Agents, and
Components. In: M. Schillo et al. (eds.): MATES
2003(2003)1–12.

[7] M. Griss: “Software Agents as Next-Generation Software
Components,” Component-Based Software
Engineering:Putting the Pieces Together. In: G. Heineman
and W. Council(eds.):Addison Wesley Longman, Reading,
Mass., (2001).

[8] Hrishikesh J. Goradia and José M. Vidal: Building Blocks
for Agent Design. In: P. Giorgini, J.P. Müller, J. Odell
(eds.): AOSE 2003(2004)153–166.

[9] Paolo Falcarin and Gustavo Alonso: Software Architecture
Evolution through Dynamic AOP. In: F. Oquendo et al.
(eds.): EWSA 2004(2004)57–73, 2004.

[10] MEI Hong, CHEN Feng, FENG Yao-Dong, YANG Jie,
ABC:An Architecture Based, Component Oriented
Approach to Software Development. Journal of Software,
Vol.14, No.4(2003)721-732.

[11] Qu Youtian,Chen Tianzhou,Xu Hong: An Agent
Component-Oriented Software Process.In: IEEE/WIC/IAT
2005(2005). 459-462

[12] David Garlan:Formal Modeling and Analysis of Software
Architecture :Components.In:Connectors, and Events,M.
Bernardo and P. Inverardi (eds.): SFM 2003(2003)1–24.

[13] Asuman Sunbul:Abstract State Machines for the
Composition of Architectural Styles.In: D. Bj rner, M.
Broy, A. Zamulin (eds.): PSI'99(2000) 54-61.

[14] DannyWeyns, Kurt Schelfthout, and Tom Holvoet:
Architecture-Centric Development of an AGV
Transportation System.In:M. Pechoucek, P. Petta, and L.Z.
Varga (eds.): CEEMAS 2005(2005)640–644.

[15] Tomas Bures and Frantisek Plasil: Communication Style
Driven Connector Configurations,C.V. Ramamoorthy.In:
R.Y. Lee, and K.W. Lee (eds.): SERA 2003(2004)102–116.

[16] Rikard Land: A Brief Survey of Software
Architecture,Mälardalen Real-Time Research Center
(MRTC) Report:Department of Computer Engineering,
Mälardalen University, Västerås, Sweden(2002).

[17] You-Tian Qu, Bing-Yao Jin Hong Xu,Xiao-Tong Ye: A
Structured Data Object Based Agent Component Oriented
Approach to Software Development,ICMLC2005,270-275.

[18] Griss, M.L. and Pour, G. (2001). Accelerating
development with agent components, IEEE Computer,
May 2001, 37-43

[19] Jo, Chang-Hyun, A Seamless Approach to the Agent
Development, ACM SAC 2001, Las Vegas, March, 2001,
641-647.

[20] Chang-Hyun Jo, Jeffery M.Einhom, A Process for BDI
Agent-based Software Construction,IMCSE 2003-
SERP’03 Las Vegas, Nevada, USA, June 23-26,2003

[21] Larman, Craig, Applying UML and Patterns: Second
Edition, Prentice-Hall, 2002.

[22] Hironori Washizaki ， A Study on Realization of
Component-based Software Development Technology，
March 2003, Thesis for the Degree of Doctor Graduate
Waseda University

[23] The Delphi Companion Component sets,
http://www.xs4all.nl/~dgb/comset.html

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1143

© 2009 ACADEMY PUBLISHER

[24] Padmal Vitharana,Fatemah “Mariam” Zahedi,Hemant
Jain,Component-based Software Development: Design,
Retrieval,and Assembly,Revised April 2002

[25] Hironori Washizaki ， A Study on Realization of
Component-based Software Development Technology，
March 2003, Thesis for the Degree of Doctor Graduate
Waseda University

 Youtian Qu was born in Henghu, Jiangxi
Province of China in 1962. In 1986, he received the bachelor's
degree in the architecture of Computer science from Nanjing
University at Nanjing, Jiangsu province. In 1997 and 2005, as a
visiting scholar, he was studying in Zhejiang University and
Peking University respectively.

He is a professor and master supervisor at Zhejiang Normal
University. His research interests include Component
techniques, Agent-Oriented Software engineering, Intelligent
Database techniques.

Prof. Qu is the member of IEEE, ACM and senior member of
CCF (China Computer Federation).

Chaonan Wang was born in Ningbo, Zhejiang
Province of China in 1983. In 2007, she received the bachelor’s
degree in computer science and technology from Zhejiang
Normal University at Jinhua, Zhejiang province.

She is a postgraduate student of Zhejiang Normal University.
Her research interests include trusted computing, Web learning.

Lili Zhong was born in Huzhou, Zhejiang
Province of China in 1985. In 2008, she received the bachelor’s
degree in computer science from Zhejiang Normal University at
Jinhua, Zhejiang province.

She is a postgraduate student of Zhejiang Normal University.
Her research interests include trusted computing, Intelligent
Database techniques.

Huilai Zou was born in Tianmen, Hubei
Province of China in 1986. In 2008, he received the bachelor’s
degree in computer science from Huainan Normal University at
Huainan, Anhui province.

He is a postgraduate student of Zhejiang Normal University.
His research interests include Software Engineering, Artificial
Intelligence.
Hua Liu was born in Lishui, Zhejiang Province of China in
1986. In 2008, he received the bachelor’s degree in computer
science from Zhejiang Normal University at Jinhua, Zhejiang
province.

He is a postgraduate student of Zhejiang Normal University.
His research interests include Software Engineering, Artificial
Intelligence.

1144 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

