
Simulation in Software Engineering with System
Dynamics: A Case Study

Minghui Wu

1Dept. of Computer Science and Engineering, Zhejiang University City College, Hangzhou, China
2College of Computer Science and Technology, Zhejiang University, Hangzhou, China

Email: mhwu@zucc.edu.cn

Hui Yan
Dept. of Computer Science and Engineering, Zhejiang University City College, Hangzhou, China

Email: yanh@zucc.edu.cn

Abstract—There are many complexities including dynamic
behavior and feedback mechanism as well as various
interacting factors in the practical software development.
Software Engineering education is facing difficulties
because students have limited engineering experience and
they can hardly understand typical phenomena occurring in
software projects. System Dynamics is a continuous
modeling method describing the interaction between project
factors. It forces one to consider system behavior in global
view. The simulation models encapsulate collective
knowledge of software engineering fields. They support the
training that the students can interact with to practice
project control, which will help students understand the key
factors and behaviors in complex scenarios. In this paper,
Brooks’ Law and the effects of Pair Programming in
eXtreme Programming (XP) were used as case study to
demonstrate the basic concepts, analysis and modeling
processes of system dynamics. The simulation results show
the advantages of the approach. Finally, the uses of system
dynamics approach in critical areas of software engineering
are presented.

Index Terms—System Dynamics; Modeling; Simulation;
Software Engineering Education

I. INTRODUCTION
Software development is a dynamic and complicated

process. In the practical development, the software
system usually has the large complexity including system
uncertainty and random, complex dynamic behavior and
feedback mechanism [1]. The behavior of a system is
principally caused by its structure. The structure includes
not only the physical aspects, but also the policies and
processes, both tangible and intangible. There are many
interacting factors throughout the lifecycle that impact
cost and schedule of the development project, and quality
of the developed software product. For example: The
budget, the work strength, the schedule, the personnel
productivity, the defect ratio, the communication

overhead, the number of developers and so on. These
variables have mutual influences, form interactions and
feedbacks.

University education needs to provide their students
majoring in computer not only technology-related skills,
but also a basic understanding of typical phenomena
occurring in industrial software projects [2]. Software
engineering education is difficult because usually
students lack of engineering experiences. Therefore,
using some appropriate methods and tools to help them is
especially important, and the software development
process modeling and simulation is a kind of these
suitable methods. M.I Kellner et al. [1] had clustered the
many reasons for using simulations of software processes
into six categories of purpose: 1) strategic management; 2)
planning; 3) control and operational management; 4)
process improvement and technology adoption; 5)
understanding; and 6) training and learning.

Software development is a complex process, which
usually cannot be accurately understood by a human
being by intuition. Modeling can make people
concentrate on what’s they have interest and ignore
others by abstracting the system. Thus, a simulation is
often the effective way to help them. Common purposes
of simulation models are to provide a basis for
experimentation, predict behavior and answer ‘what if’
questions. Simulation allows a researcher to estimate the
behavior of an existing system under some conditions
and can maintain much better control over experimental
conditions. Simulation also allows study a system with a
long time frame in compressed time, and vice versa.

Software development process simulation models
have been used to capture dynamic interactions inherent
in software development projects as well as process level
issues. Usually, workflow-like discrete event models are
used to describe process steps. However, they may not
have enough events to represent feedback loops
accurately [3]. For instance, the late project progress can
increase developers' pressure, driving them to raise the
productivity. The project group might choose working
overtime to catch up with the schedule. Under high
pressure and working overtime may improve the outputs
in a month generally, but simultaneously may increase
personnel's fatigue, which may lead to increase the error

This paper is based on “System Dynamics Modeling and Simulation

in Software Engineering Education” by Minghui Wu, Hui Yan, which
appeared in the Proceedings of the 9th International Conference for
Young Computer Scientists(ICYCS 2008) Zhangjiajie, China,
November 18-21, 2008. © 2008 IEEE.

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1127

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.10.1127-1135

ratio in high probability. Then the Quality Assurance
works and redo works will be increased. And when the
degree of fatigue reaches certain high level, the
productivity will drop sharply. So the “net effect” of
work overtime to project progress is difficult to make a
conclusion intuitionally. In the software development
these factors which often been neglected have important
effects to project success or failure. Systems Dynamics
(SD) is a continuous modeling method, can solve these
problems well.

The rest of this paper is organized as follows. In the
next section, we provide a background of system
dynamics. As a case study, section 3 firstly presents the
Brooks’ Law and models it with system dynamics,
followed with the simulation result analysis. In section 4,
as another case, a system dynamics model was built to
evaluate the effects of Pair Programming in eXtreme
Programming. The uses of system dynamics in some
critical areas of software engineering domain were
presented in section 5. Finally, we conclude in Section 6.

II. SYSTEM DYNAMICS BACKGROUND
The system dynamics introduced by J. W. Forrester

applies the engineering principles of feedback and control
to social systems [4]. In system dynamics, a system is
defined as a collection of elements that continually
interact with each other or outside elements over time, to
form a unified whole. The two important elements of the
system are structure and behavior. The structure is
defined as the collection of components of a system, and
their relationships. The structure of the system also
includes the variables that have important influences on
the system. The behavior is defined as the way in which
the elements or variables composing a system vary over
time. The fundamental philosophy of system dynamics is
based on the premise that the behavior of a system is
caused principally by its underlying structure [5].

A. Constructs of SD models
System dynamics models describe the system in terms

of “flows” that accumulate in various “levels”, with
“auxiliary” variables and “constant”.

 A “level” is an accumulation over time of “flows”
that come into and go out. The flows increasing and
decreasing a level in the speed called “rates”.

Figure 1. Symbols of system dynamics model

The flows can be dynamic functions of other
“auxiliary” variables and “levels”. As the simulation
advances time in small evenly spaced increments, it
computes the changes in levels and flow rates. As figure
1 shown, it’s natural to image the system dynamics
process as a continuous, fluid-like process of a liquid
accumulating in and flowing out a container. In software

development, for example, the error generation rate may
be treated as a “flow” and the current number of errors
could be treated as a “level”.

Sometimes, when the origin of a flow is out modeler’s
interest, the flow’s origin is called a “source”. Similarly,
when the destination of a flow is not of concern, it is
called a “sink”. For example, where the workforce hired
from is a “source” and where they go after them leaving
the project is a “sink”.

Currently there are many modeling tools available for
software process modeling and simulation, such as
iThink, PowerSim, and Vensim. In our practices,
PowerSim was used in modeling and simulation.

B. Procedure of SD modeling
Based on the recommendations provided in [6], the

general idea of system dynamics can be described in the
procedure with five main steps, and those steps are
expected to be iterated several times.

1) Problem analysis. The first step of SD modeling is
to answer following questions: a) what is intended to be
modeled? b) what is the scope of the model? c) and what
behaviors need to be analyzed in the model? In fact, only
when the scope of the problem is reasonably focused, the
problem can be analyzed deeply.

2) Eliciting key elements. There many factors are
responsible for generating the observed behavior in a
system. In this step, important objects and variables, both
tangible and intangible, that are believed to be
responsible for generating the observed behavior will be
identified.

3) Definition of the cause-effect diagram. After
elicited the key elements of system, the next step is to
identify their cause-effect relationships. The diagram
encompasses and links all cause-effect feedback loops
and can analyze the system as whole.

4) Building a quantitative SD model. The SD mode is
an explicit description including qualitative and
quantitative information. The implementation of the
initial model requires turning the causal diagram into a
set of equations. The model variables must be chosen, the
rate equations are precisely defined, and the initial values
of the chosen variables are set.

5) Model calibration and simulation. After a model
version has passed static verification, dynamic sensitivity
analysis is performed in order to test whether all chosen
factors are essential to reproduce a given behavior model.
By calibrating the simulation model against the data
collected from previous projects and literature, it can be
used to predict the possible outcomes of different
management policies, actions, or decisions through the
observed behavior of system.

III. BROOKS’ LAW
Brooks’ Law was first publicized in Dr. Fred Brooks’

book: The Mythical Man-Month: Essays on Software
Engineering. Brooks’ Law is stated as follows: “Adding
manpower to a late software project makes it later” [7].
The lack of interchangeability between men and months
was recognized by Brooks as being caused by training
and intercommunication overheads.

1128 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

A. Analysis and model for Brooks’ Law
In this study, we will study the influences on the total

productivity (measured by task/day), the total cost
(measured by man-day) and the project duration
(measured by day) of adding manpower to a project
through the systems dynamics modeling and simulation.

With the manager bringing new personnel into the
project, the system dynamic is triggered. Three effects are
considered in here: 1) an increase of communication
overhead, 2) an increase of training overhead, and 3) an
increase of the total manpower available for project
development.

When new staffs joining in the project, they require
training which will cost experienced personnel’s time. At
the same time, more group members require higher
communication overhead. These communication and
training overhead lead to productivity decrease. Another
impact is that more people are available to develop. As a
result, the productivity will increase. The improvement of
the productivity will strengthen the progress, reducing the
backlog. Figure 1 is the causal loop diagram. Note that a
minus (plus) sign on an arrow means that the two entities
connected by the arrow move in the opposite (same)
direction.

Productivity

Communication
and Training

Overhead

Project
Backlog

Progress

Total
Personnel

+

+

+

-

+

-

Figure 2. Causal loop diagram of Brooks’ Law

Through causes loop analysis by figure 2, we found
that adding new personnel will have the positively
influence as well as the negative influence on
productivity and project progress. What is the net impact
on productivity of adding manpower to a late project? It’s
difficult to draw the conclusion directly only by the
qualitative analysis. The detailed influences need further
analysis by simulation through the quantitative model.

The system dynamics model of Brooks’ Law is shown
as figure 3 which is established by PowerSim tool. The
equations and variables initial values were set as follows:

requirements =5000<<task>>
developed software = 0<<task>>
nominal productivity = 1<<task/(man*day)>>
training overhead % = 25
assimilation delay = 20<<day>>
average daily manpower per staff =1<<day/day>>
new project personnel = 0<<man>>
experienced personnel = 20<<man>>

software development rate = 'nominal productivity'*(1-
'communication overhead %'/100)*'total nominal
manpower'
total nominal manpower = 0.8*'new project
personnel'+1.2*('experienced personnel'-'experienced
personnel needed for training')
communication overhead % = GRAPH(('experienced
personnel' + 'new project personnel'), 0<<man>>,
5<<man>>, {0,1.5,6,13.5,24,37.5,54})
experienced personnel needed for training = 'new project
personnel' * 'training overhead %' / 100
personnel allocation rate= PULSE(5<<man>>,
STARTTIME + 100 <<day>>, 999<<day>>)
assimilation rate = 'new project personnel' / 'assimilation
delay'
man-day rate = ('experienced personnel' + 'new project
personnel')*'average daily manpower per staff'

developed software

software development
rate

nominal productivity

experienced personnel
needed for training

communication
overhead %

training overhead %

new project personnel experienced personnel

personnel allocation
rate

assimilation rate

assimilation delay

total norminal
manpower

stop condition

total man-dayman-day rate

average daily
manpower per staff

requirements

Figure 3. System Dynamics model of Brooks’ Law

The ‘requirements’ will be developed to the software
product gradually. Therefore with the time passing, the
‘requirements’ will decrease and ‘developed software’
will increase. In the model, the develop productivity is
dependent on many factors, including the ‘nominal
productivity’, the ‘communication overhead’ and the
‘total nominal manpower’. The ‘communication
overhead’ fits a nonlinear function of total number of
personnel, here uses the data (0.6*n*n) in Abdel-Hamid’s
model [5]. In additional, supposes one experienced
personnel can train 4 new personnel, so the value of
‘training overhead’ is 25%. ‘Assimilation delay’
expressed how many days that a new personnel can be
trained to be an experienced one, in our model the value
is set to 20 days. Standard productivity ‘nominal
productivity’ is 1, which expresses that developing one
task of requirements will cost one normalized personnel
to work one day. In the model, new personnel's
productivity is 0.8 time of nominal productivity and the
experienced personnel's productivity equals 1.2 times of
nominal productivity.

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1129

© 2009 ACADEMY PUBLISHER

B. Simulation result analysis
In the simulation run, the hypothesis initial condition

is 20 experienced staffs to develop 5000 requirements’
tasks of the project, the result of project duration and total
man-days are shown by the reference curves in figure 4
and figure 5. The total duration is 278 days and costs
5500 man-days. As figure 4 shown, the productivity is a
parallel line which value is 18.24 tasks/day.

Suppose that the Project Manager increases 10 new
staffs at the 100th day to speed up the project progress.
The simulation results are demonstrated in the ‘current’
curve of figure 4 and figure 5. Then it will cost 299 days
together with 7870 man-days. The productivity curve has
a remarkable drop at the 100th day, then it will rise
gradually, finally it will stay at 16.56 tasks/day stably.
When analyzing the reasons, it is not difficult find that
because of sharp rising loses due to communication and
training overhead, the productivity dropped sharply. The
final result is the total duration of the project has not been
shortened, but the development cost actually rises sharply.

1st qt 2nd qt 3rd qt 4th qt

14

15

16

17

18

tsk/da

Current

Reference

s
o
f
t
w
a
r
e

d
e
v
e
l
o
p
m
e
n
t

r
a
t
e

Non-commercial use only!
Figure 4. Software productivity diagram

1st qt 2nd qt 3rd qt 4th qt
0

2,000

4,000

6,000

da*man

Current

Reference

t
o
t
a
l

m
a
n
-
d
a
y

Non-commercial use only!
Figure 5. Total man-days diagram

Figure 4 and figure 5 demonstrate this model’s
simulation run in some scenes, and the Brooks’ Law is
accuracy in some extent. In fact, we may adjust new
staff’s quantity or change the entraining time of new
personnel’s joining the project to predict the project
result under other conditions. For instance, if we increase
5 new staffs instead of 10 at the 100th day, the project
duration can be slightly shortened, which needs 275 days,
but total costs 6295 man-days which is still higher than

original 5500 man-days. Table 1 lists different scenarios
simulation results.

The above described a simplified Brooks’ Law model,
but it serves our original purposes. When it comes to
practical software development, we need to refine it and
consider more factors. For example, the product defect
ratio of new staffs is usually higher than experienced
staffs and this will increase the workload of QA and
redoing it. Certainly, the productivity can be affected by
schedule pressure, the process maturity of organization
and other factors. Some researchers have done deep study
about using SD to simulate Brooks’ Law and get some
interesting conclusions, the details can be found in [5].

Our experimental results provide insight into Brooks’
Law. Adding more people to a late project always causes
it to become more costly, but it does not always cause it
to be completed later.

TABLE I. SIMULATION LISTS OF DIFFERENT SCENARIOS

Scenario
No.

New Staff
Joining
Time

New Staff
Number

Project
Duration

(Day)

Total
Man-Day

1 - - 278 5500
2 50 5 274 6520
3 50 10 305 8520
4 100 5 275 6295
5 100 10 299 7870

IV. EFFECTS OF PAIR PROGRAMMING IN XP
Lightweight development is continuously gaining its

popularity in recent years. Now, it seems to be a common
view that current methodologies of lightweight
development are especially fit to a medium sized project
and team [8]. Extreme programming (XP) is the most
famous one among them. XP comes from a real project (a
project at Daimler Chrysler called C3) led by Kent. It
indicates that XP succeeded first in practice rather than
theoretical analysis. It’s so close to the real application
that Kent described XP as a “humanistic discipline of
software development” [9]. After some refinement and
abstraction, Kent lays out a set of 12 core practices that
serve as a starting point for an XP team [1]. The 12
practices are: The Planning Game, Short Releases,
Metaphor, Simple Design, Testing, Refactoring, Pair
Programming, Collective Ownership, Continuous
Integration, 40-Hour Week, On-Site Customer and
Coding Standards. The 12 practices are along with the 4
values of XP (named Communication, Simplicity,
Feedback, and Courage) and the 5 basic principals
(named Rapid feedback, Assume simplicity, Incremental
change, Embracing change and Quality work) [8] have
made XP more acceptable and applicable.

Now more and project managers are convinced that
XP will be at least a substantial help to their project. The
12 practices are the most important guidelines to
implement XP. Some items of the 12 practices are
obvious positive to a successful project, for example:
Metaphor and Coding Standards. Some items are
“double-edged swords”, for example: Collective
Ownership and Continuous Integration, but if properly
applied, they can be positive factors in all. These two

1130 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

groups of practices are the practices accepted by most of
the people and applied if XP is adopted. They take up 11
out of the total 12 practices. The only one that is under
suspicion greatly is Pair Programming. It’s natural to
think that letting two programmers to do the work that’s
formerly done by only one will waste time nearly by
100%. As a result, lots of people are reluctant to accept
the practice of Pair Programming, though the rest 11
practices are more or less applied. More over, some
objectors have done researches on the topic and
published papers to illustrate that solo programming
outperforms pair programming [10].

As the most controvertible item of the 12 practices,
pair programming also has some advocators. They
believe that pair programming is an essential part of XP
and helps to improve the overall performance of the
development. Researchers have done a lot of exploration
on pair programming. Some of the researches are based
on theoretical analysis [11][12], some are based on
statistic results [13]. But all these kinds of research are
not very suitable for evaluate pair programming. Because
software development, even lightweight, is a complicated
process or system, just from theoretical analysis on some
aspects or statistic results on some crucial data is far to
enough. Besides the above methods, controlled
experiment is an effective and credible way [14][15]. But
the cost confines the experiment and we cannot change
some of the variables in the experiment and redo it to see
how it will affect the result.

So we built a SD model to evaluate the effects of pair
programming in XP.

A. SD Model for Pair Programming in XP
XP process is a complicated system, whose factors

affect each other in different causal loops. Simulation is
well suit for dealing with causal loops. Some researchers
have been working on the field: S. Kuppuswami et al. [16]
use simulation model to explore the XP issues, but not for
pair programming. P. Wernick and T. Hall [17] use
system dynamics model to investigate the impact of pair
programming on evolution of software systems, but it’s
not about pair programming in the whole development
process.

In order to investigate the impact of pair programming
on XP development, we create an XP model. The thought
of modeling comes from Abdel-Hamid’s book [5].
Considering the trait of XP, we change some elements
and make some simplification of Abdel-Hamid’s
description. In Abdel-Hamid’s model, the workload is
measured as “task”. In our XP model, the workload is
measured as ‘story’, because in XP process, the
developing unit is story. In Abdel-Hamid’s model, there
are 8 sub-models. In our XP model, there is only one
integrated model, because Abdel-Hamid describes a
heavyweight software development process, but XP
process is a lightweight one, some sub-models in Abdel-
Hamid’s model can be combined, others can be omitted
to fit the characteristic of XP.

The high level of our model is shown in figure 6.

Project Requirements User Story

Story Generation
Rate

Schedule

Schedule Creation
Rate

Designed User Story

User Story Design
Rate

Coded User Story

Programming and
Testing Rate

Refractored Story

Refractoring Rate

Integrated Story Story Integrating
Rate

Accepted Story Story Acception
Pass Rate

Story Accception
Fail Rate

On site customer
capability

XP Experience

Complexcity

Spike percentage

Whether pair
programming

adopted

Work force number

XPPractices

Figure 6. High level of SD model for XP

Here, for brevity, we explain only “Programming and
Testing Rate” to give an idea of our model.
‘Programming and Testing Rate’ is one of the key rates
in XP process, it represents the velocity of coding and
testing. This rate is affected by several factors:

WF – Work force number;
XP Practices – some of them: Short Release Cycles,

Pair Programming, 40 Hour Week, Code Standards,
Simple Design.

Every XP Practice that is related to “Programming and
Testing Rate” has an impact scale on the rate, and each
has its own performance boost. The impact scale is how
much this practice can be applied during the XP process,
the more difficult it is to be applied, the lower impact
scale it will be. The performance boost means how
helpful the practice is to the XP process. For example,
Short Release Cycles has an application difficulty 4.4%,
and Pair Programming has an application difficulty of
15.6%, the relative application scale of Short Release
Cycle is 1/4.4%=22.7, and that of Pair Programming is
1/15.6%=6.4. That means using the same effort,
implementing Short Release Cycles is 3.5 times
(22.7/6.4=3.5) easier than implementing Pair
Programming. The calculation of performance boost is
the same as application scale. Each practice has a rate of
helpfulness in percentage so we can get its relative
performance boost. All the data we need here comes from
B. Rumpe’s paper [18]. Getting the required data, we can
make our “Programming and Testing Rate”.

Programming and Testing Rate = (‘Scale1’*’Boost1’

+ ‘Scale2’*’Boost2’ + ‘Scale3’*’Boost3’ +
‘Scale4’*’Boost4’ + ‘Scale5’*’Boost5’)*’NPATR’*(1-
‘CO’)*’RNWL’*’RAL’

Here:
Scale1 to Scale5 means the application scale of the 5

practices related to Programming and Testing Rate
mentioned above.

Boost1 to Boost5 means the performance boost of the
5 practices.

NPATR means Nominal Programming and Testing
Rate.

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1131

© 2009 ACADEMY PUBLISHER

CO means Communication Overhead.
RNWL means Reduced Non-working Loss. Two

people working as a pair will have less slack time than
one working along.

RAL means Reduced Assimilation Loss. Pair
Programming, especially with rotation helps to reduce
assimilation time by one learning the other while pairing.

Our simulation model does not differentiate the
complexities of different stories.

B. Simulation and Results
The simulation investigates how pair programming

will affect the XP process. Concretely, it helps to
determine whether pair programming outperform solo
programming when other XP practices are applied.

To achieve this goal, we make controlled simulations.
We set a switch variable in our model to charge the on
and off of pair programming. Some parameters are set
and changed to see the different result: project story
number and work force number. First, we display the
situation of a 100-story project. We set work force
number from 2 to 20 to see the results. No matter how
many programmers we assign to the project, pair
programming will outperform solo programming, with a
little advantage. Figure 7 illustrates that.

Then, we change the story number to 150 and 200 to
see the results for larger projects. In order to make the
results clearer, we use “Man day reduction” to represent
the improvement of pair programming. Figure 3 shows
the simulation results.

From figure 8, we can see that in all the situations,
pair programming is better, and especially for the 150-
story project. Different story number and work force
number have different impact on the improvements of
pair programming.

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Pairs

Da
ys

Sol o Progr amming

Pai r Progr amming

Figure 7. Simulation of 100-story project with work force number

form 2 to 20

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

1 2 3 4 5 6 7 8 9 10

Pairs

Ma
n
da
y
re
du
ct
io
n

Story Number = 100

Story Number = 150

Story Number = 200

Figure 8. Man day reduction of 100, 150 and 200-story projects with

force number from 2 to 20

Any way, in all the situations we simulated, pair
programming always outperforms solo programming. But
the improvement will not be very significant, at about

3.5% reduction of development time in average. This
result is quite close to K.M. Lui and Keith C.C. Chan’s
result in their paper [19]. They investigated by two
methods. Method 1 indicated a reduction of time by 4.2%
and method 2 a reduction of 5.3%.

The reasons for the time reduction are manifold. Here
are the reasons we summarized: reduced communication
overhead, less assimilation time, higher morale, less slack
time, better code quality, better design and so on. To
illustrate how these reasons perform on the model, we
use our formerly introduced “Programming and Testing
Rate” to give out an explanation. In that rate, reduced
communication overhead, less assimilation time and less
slack time are considered. All of these are converted to
factors:

Reduced communication overhead – 1.05 ;
Less assimilation time – 1.51 ;
Less slack time – 1.48.
All these data come from [5][11][18].
With the positive simulation results we get, we can

say with certainty that pair programming will perform a
little better than solo programming in XP development
process. It’s worthy point out that pair programming will
help to escalate the overall developing ability of the team
by letting programmers learning from each other by
pairing and rotation, this advantage is not considered in
our simulation. More details about the SD model for XP
please refer our previous work in [20].

V. SYSTEM DYNAMICS USING IN CRITICAL AREAS OF
SOFTWARE ENGINEERING

Simulation can be applied in many critical areas of
software engineering. It enables one to address issues
before they become problems. Simulation is more than
just a technology, as it forces one to consider system
behavior in global terms [21]. So it is easy to make
student understood in software engineering education.

A. Project management
The Abdel-Hamid and Madnick’s software project

system dynamics model represents one of the first efforts
in this area [5]. The model is divided into four major
parts: human resource management, software production,
controlling, and planning. The human resources
subsystem focuses on the view of the personnel who
participates in the software development. It includes
hiring, training, dismissal, transferring personnel during
different projects. Software production subsystem
focuses on different development activities, for instance
design, code, test, redo and quality assurance. This
subsystem also processes the team motivation; the
development personnel fatigue degree, as well as
communication and so on. The software control
subsystem describes in view of management measure.
This subsystem control overtime, progress pressure etc.
The software plan subsystem provides the software
project the initialization parameter values, for instance
project scale, initial team scale, anticipated closure time
etc.

1132 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Work Force
Available

Effort Remaining

Tasks
Completed Schedule

Work Force
Needed

Progress
Status

Human
Resource

Management

Software
Production

Controlling

Planning

Figure 9. Abdel-Hamid’s Subsystem Model of Software Project

Management

The model was used as an experimentation vehicle to
study an array of managerial policies and procedures.
Three areas were studied: software cost and schedule
estimation, the economics of quality assurance and
staffing.

B. Software cost estimation
Traditional cost estimation models such as COCOMO

/ COCOMOⅡ [22] contain dimensionless parameters
used to indicate the productivity and technology level of
a software organization. Such kind of static models are
designed to provide point estimates. However, the project
resources, project scope, and schedule may go through
many changes during the development life cycle. They
fail to capture management decision-making dynamics
and their impact on project behavior [23]. One of
disadvantages of those models is that they attempt to map
the correlation among the various project variables based
upon their statistical patterns without looking into the
internal structural correlation among the project variables,
which inevitably will generate unrealistic results [24].

Madachy introduced the Dynamic COCOMO in [22],
which is an extension based on the cost parameters
varying over time versus traditional static assumptions. It
is necessary to re-calculate the effort estimation equation
of COCOMO II because of the external volatility and
feedback from user-driven change requests. He applied
the concept of Dynamic COCOMO to a spiral life-cycle
model to estimate the cost and schedule for multiple
increments [25].

K. Choi proposed a simulation method for dynamic
project performance in terms of effort, schedule, and
defect density changes in a dynamic project environment
by combining COCOMO II with system dynamics [26].
The approach can be an alternative measure for
organizations having not enough project data. They
combine COCOMO II with system dynamics as follows:
First, derive a small-time incremented development rate
of each phase to bring dynamics to COCOMO II by using
the effort and schedule distribution data. Second,
integrate the effort, schedule, and defect density
estimation models to analyze the trade-offs among them.
Finally, incorporate additional project factors to represent
the effects of the dynamically changing project
environment.

C. Concurrent software development
Concurrent software engineering exploits the potential

for simultaneous performance of development activities
between projects, product deliveries, development phases,
and individual tasks. The problems of incremental
development arise from the complex interdependencies
between development activities and their effect on
process behavior. These dependencies exist from their
reliance on common resource or shared work-products in
time [27].

To optimize the performance of the process as a whole
it is necessary to effectively balance the levels of
concurrency and iteration. In paper [27], they developed
a model to highlight the trade-off within concurrent and
iterative lifecycles. They use four basic elements of
structure common to system dynamics models of
production process structure, namely resource, time,
effort, and work. The proposed model of incremental
development focuses on the predicted deviation of a
process from the measured process capability. This
evaluation is used as a basis for the formulation of robust
plans, definition of acceptable limits on control, and
identification and evaluation of improvements.

Focused on concurrent software development, C.T.
Hsu have classified different types of Concurrent
Software Engineering (CSE) practices and identified the
specific benefits, potential risks, and the dynamic cause-
effect implications of different types of them. Based on
analysis, he developed a SD model named CSE-SD [28].
The model is an economic and effective management
policy exploration tool for pre-assessing the benefits and
potential risks of future projects.

D. Software process improvement
When software development organizations attempt to

shorten their cost and cycle time without decreasing
quality, they will adopt some process improvement
technologies to incorporate into their newly reengineered
development process. But the process improvements do
not exist in isolation. The impact an improvement has
may be negated by other factors at work in the particular
development organization [29]. Thus, software
development organizations need to know the impact they
can expect to see before committing to the process
improvement technology.

In the conventional way, how to change the software
process is mainly depended on manager experience,
which combined with high risk and expensive. Modeling
and simulation is possible to provide a certain extent
foresight of a process before its true realization. This kind
of insight can help the process designer to appraise the
candidate plan. M. Ruiz et al. according to CMM’s
different ranks proposed a correspondence level dynamic
integration framework named DIFSPI in [30, 31] to
support a qualitative and quantitative assessment for
software process improvement and decision making, so
helps the management team to define, to appraise and
realizes the different rank process improvement. There
are some other important works in this area, for example,
Madachy [32], Tvedt [33] and Burke [34].

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1133

© 2009 ACADEMY PUBLISHER

E. Risk management
One purpose of system dynamics modeling and

simulation is the management of software development
risks. An approach to modeling risk factors and
simulating their effects as a means of supporting certain
software development risk management activities is
proposed by Houston et al. [35]. In the study, qualitative
and quantitative surveys were used to study the factors
and their potential effects. Six common and significant
software development risk factors out of 150 risk factors
were studied. A base model was then produced for
stochastically simulating the effects of the selected risk
factors. The model has following sectors: Planned
staffing, Actual staffing, Effort allocation, Project
planning, Project control, Adjustment of job effort,
Productivity, Work flow, and Quality management. The
model is designed specifically for the risk management
activities of assessment, mitigation, contingency planning,
and intervention.

VI. CONCLUSIONS
In the practical software development, because of the

complex dynamic and feedback in development process,
there are many interacting factors throughout the
lifecycle which led to some phenomenon violating the
intuition. The Brooks’ law is a classical instance of this
phenomenon. The traditional education method is
difficult to discover the underground reasons, while
simulation can be used to impart information in a more
meaningful and dynamic way compared to traditional
methods. System dynamic modeling and simulation can
describe the system characteristics and represent some
dynamic behaviors. It is an inexpensive way to gain deep
insights when the conditions of manipulating the real
system are prohibitive. With system dynamics, students
can easily build the model, change parameters, and repeat
the simulation. So it’s possible to analyze the result under
different conditions, which enforce and enhance them to
get understanding of typical phenomena occurring in
software projects.

ACKNOWLEDGMENT
This work is partially supported by ZUCC Education

Foundation (No. PP0601, No. JG0801) and Zhejiang
Province Education Science Planning Project (No.2009-
SCG196)

REFERENCES
[1] M.I Kellner, R.J. Madachy, D.M. Raffo, “Software process

simulation modeling: why? what? how?”. Journal of System and
Software, 1999; 46: 91-105

[2] D. Pfahl, M. Klemm, G. Ruhe, “A CBT module with integrated
simulation component for software project management education
and training”. Journal of System and Software, 2001; 59: 283-298

[3] R.H. Martin, D.Raffo, “A Model of the software development
process using both continuous and discrete models”. Software
Process Improvement and Practice, 2000; 5: 147-157

[4] J.W. Forrester, Industrial dynamics, Cambridge, MA: MIT Press,
1961

[5] T. Abdel-Hamid, S.E. Madnick, Software project dynamics: an
integrated approach. Englewood Cliffs, NJ, Prentice Hall. 1991.

[6] D. Pfahl, K. Lebsanft, “Knowledge acquisition and process
guidance for building system dynamics simulation models: an
experience report from software industry” . International Journal
of Software Engineering and Knowledge Engineering, 2000;
10(4): 487-510

[7] F.P. Brooks, The mythical man-month. MA: Addision-Wesley
Publishing, 1978

[8] K. Beck, Extreme programming explained, Addison-Wesley, 1999
[9] K. Beck, “Extreme Programming: A uumanistic discipline of

software development”, in: Proceedings of International
Conference Fundamental Approaches to Software Engineering
(FASE 98), 1998

[10] M.M. Muller, “Are reviews an alternative to Pair Programming?”,
Empirical Software Engineering, 2004 , 9, 335-351

[11] W. C. Wake, Extreme programming explored, Addison-Wesley,
2001

[12] L. Williams, “Integrating Pair Programming into a software
development process”, in: Proceedings of International
Conference Software Engineering Education and Training ,2001,
27-36

[13] A. Cockburn, L. Williams, The costs and benefits of pair
programming, Extreme programming examined, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, 2001

[14] G. Canfora, A. Cimitile, C. A. Visaggio, “Empirical study on the
productivity of the pair programming”, Extreme Programming and
Agile Processes in Software Eng.—Proc 6th Int’l Conf. XP 2005,
LNCS 3556, Springer, 2005, 92–99.

[15] S. L. Syed-Abdullah, J. Karn, M. Holcombe, T. Cowling, and M.
Gheorge, “The positive affect of the XP methodology”, Extreme
Programming and Agile Processes in Software Eng.—Proc 6th
Int’l Conf. XP 2005, LNCS 3556, Springer, 2005, 218-221

[16] S. Kuppuswami, K. Vivekanandan, P. Rodrigues, “A system
dynamics simulation model to find the effects of XP on cost of
change curve”, in: Extreme Programming and Agile Processes in
Software Engineering, XP 2003, LNCS, vol. 2675, Springer-
Verlag, 2003, 54-62

[17] P. Wernick and T. Hall, “The impact of using pair programming
on system evolution a simulation-based study”, Proceedings of the
20th IEEE International Conference on Software Maintenance,
ICSM’04, 2004: 422-426

[18] B. Rumpe and A. Schroeder, “Quantitative survey on extreme
programming projects”, in: Proceedings of the 3rd International
Conference on eXtreme Programming and Agile Processes in
Software Engineering, XP2002, 2002. 95-100

[19] K.M. Lui, K.C.C. Chan, “When Does a Pair Outperform Two
Individuals?”, in: Extreme Programming and Agile Processes in
Software Engineering, XP 2003, LNCS, vol. 2675, Springer-
Verlag, 2003, 225-233

[20] Minghui Wu. Xuejian Luan, HKN Leung, etl, “Using system
dynamics model to simulate the effect of pair programming in
XP”. WEASE Transactions on Computer, 2007; 10: 1111-1115

[21] A.M. Christie. “Simulation - an enabling technology in software
engineering”.
http://www.sei.cmu.edu/publications/articles/christie-
apr1999/christie-apr1999.html.

[22] B.W. Boehm, C. Abts, A.W. Brown, et al., Software cost
estimation with COCOMO II, Prentice-Hall, 2000

[23] C.Y. Lin, T. Abdel-Hamid, J.S. Sherif, “Software-engineering
process simulation model (SEPS)”, Journal of Systems and
Software, 38(3), 1997, 263-277

[24] Z.Y. Ma, “Intelligent system dynamics modeling and decision
analysis for software schedule slippage recover”. Ph.D.
dissertation, Arizona State University, 2000

[25] R. Madachy, B. Boehm, J. Lane, “Spiral lifecycle increment
modeling for new hybrid processes”. in: Proceedings of the
International Software Process Workshop and International
Workshop on Software Process Simulation and Modeling
(SPW/ProSim 2006), China, LNCS, vol. 3966, Springer-Verlag,
2006, 167-177

[26] K. Choi, D.-H Bae. “Dynamic project performance estimation by
combining static estimation models with system dynamics”.
Information and Software Technology 51 (2009): 162–172

1134 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

[27] A. Powell, K. Mander, D. Brown. “Strategies for lifecycle
concurrency and iteration – A system dynamics approach”.
Journal of System and Software, 1999; 46: 151-161

[28] C.T. Hsu. “A system dynamics model for concurrent software
engineering”. Phd dissertation, The University of Texas at
Arlington, 1999

[29] J.D. Tvedt and J.S. Collofello. “Evaluating the effectiveness of
process improvements on software development cycle time via
system dynamics modeling”. in: Proceedings of the Computer
Software and Applications Conference (COMPSAC 95), 1995;
318-325

[30] M. Ruiz, I. Ramos, M. Toro. “A dynamic integrated framework
for software process improvement”. Software Quality Journal,
2002, 10, 181–194

[31] M. Ruiz, I. Ramos, M. Toro. “An integrated framework for
simulation-based software process improvement”. Software
Process Improvement and Practice, 2004; 9: 81-93

[32] R.J. Madachy. “A software project dynamics model for process
cost, schedule and risk assessment”. Phd dissertation, University
of Southern California, 1994

[33] J.D. Tvedt. “An extensible model for evaluating the impact of
process improvements on software development cycle time”, Phd
dissertation, Arizona State University , 1996

[34] S. Burke. “Radical improvements require radical actions:
simulating a high-maturity software organization”. 1997, Software
Engineering Institute Report CMU/SEI-96-TR-024.

[35] D.X. Houston, G.T. Mackulak, J.S. Collofello. “Stochastic
simulation of risk factor potential effects for software
development risk management”. Journal of System and Software,
2001; 59: 247-257

Minghui Wu received the BS degree in Computer Science and
Engineering from Nanchang University in July 1997 and MS
degrees in Computer Science and Engineering from Zhejiang
University in March 2000. Now he is the Ph.D. candidate in
Computer Science of Zhejiang University. Since Dec 2006, he
serves as an associate professor of Computer Science at
Zhejiang University City College. His major interests include
Software Engineering, System Dynamics Modeling, Model-
Driven Development, Semantics Web, and Model Checking.

Hui Yan received the BS and MS degrees both in Computer
Science and Engineering from Zhejiang University in July 1986
and March 1991, respectively. Since Dec 2005, she serves as a
professor of Computer Science at Zhejiang University City
College. Her major interests include Software Engineering, and
Embedded System.

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1135

© 2009 ACADEMY PUBLISHER

