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Abstract— In this paper, we propose a new parallel clus-
tering algorithm, named Stem-Leaf-Point Plot Clustering
Algorithm (SLPPCA). SLPPCA tends to produce clusters of
different shapes and sizes, and according to our experiments,
it can produces clusters more efficiently than traditional
methods. SLPPCA can fully exploits the data-parallelism of
data objects, and adopts a task decomposition design step to
balance the workloads of multi-core processors to achieve
a high speedup. We implemented SLPPCA to large scale
data base on duo-core processor and quad-core processor
based computer separately and analyzed its performance.
The experimental results show that the clusters it produced
were particularly good either in different density or shapes,
furthermore, with the parallel pattern used in SLPPCA on
multi-core platform, the speedup was almost linear with
the numbers of cores in processor and the number of data
points. Moreover, SLPPCA can generate satisfactory cluster
number automatically in clustering process.

Index Terms— Clustering, SLPPCA, SLPP, Parallel Process-
ing, Performance Analysis, Parallel Pattern

I. INTRODUCTION

Clustering can be considered the most important un-
supervised learning problem in data mining and has
long played an important role in a variety fields such
as molecular biology, geography, information retrieval,
pattern recognition, KDD and etc,. Clustering analysis
can groups data objects based only on information found
in the data itself that describes the objects and their
relationships. The goal of clustering is to determine the
intrinsic grouping in a set of unlabeled data, try to obtain
the best result that objects in a group be similar to one
another and different from the objects in others groups
[1].

In general, Euclidean or cosine distance and density
are used to measure the similarity among objects in
clusters, but some characteristics of high-dimensional data
base, for instance, the inherent sparsity of data objects,
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difference in shapes, size and density of clusters, cause
the traditional clustering algorithms may have a difficulty
in producing meaningful clusters, besides, sometimes the
traditional clustering algorithms need user to provide
some pre-cognitive parameters such as the cluster number
k or the threshold ε of similarity of data objects or density
in advance of the starting of algorithms, but it is impossi-
ble for user to provide those precognitive parameters well
and truth if they lack of sufficient understanding of the
data objects’ distribution characteristic or the relationship
among data objects’ attributes [2].

At the same time, in data clustering area, how to design
a parallel clustering algorithm is becoming a key problem
now because that since 2006 [3] [4], Multi-core area is
coming, Multi-core processors are now the norm, parallel
computers are now the norm, therefor, in the design of
clustering algorithms we are need to think parallel to
dear with large scale data base and to achieve even better
clustering performance [5].

In this paper, we consider parallel data clustering. Our
interest in clustering stems from the need to mine and
analyze heaps of unstructured Chinese text documents.
Clustering has been used to discover ”documents types” in
sets of unstructured Chinese text documents and to sum-
marize and label such collections. Clustering is inherently
useful in organizing and searching large text collections,
for example, in automatically building an ontology like
Sohu!(www.sohu.com). Furthermore, Conceptual struc-
ture generated by clustering is akin to the ”Table-of-
Contents” in front of books [6]. Finally, clustering is
useful for personalized information delivery by providing
a setup for routing new information such as that arriving
from newsfeeds and new scientific publications.

In this paper, as our main contribution, we propose a
parallel clustering algorithm named SLPPCA on shared-
memory multi-core processors. SLPPCA, the abbreviation
of Stem-Leaf-Point-Plot, was derived from Stem-Leaf-
Plot(SLP) [7]. All SLP that was built according to dif-
ferent dimension can integrate into SLPP by each points’
value in each dimension. i.e., each SLP will contains a
dimensional value of every point. And, in the shared-
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memory programming environments such as OpenMP,
if a task-based decomposition has been done, the data
decomposition is only driven by the needs of each task.
For example, in the fist phase of SLPPCA, each process of
building SLP can be seemed as a task. To the best of our
knowledge, a parallel SLPPCA clustering algorithm and
its implementation have not been reported in the literature.

We now brief outline the rest of paper. In section II
we’ll discuss the clustering types and cluster types, and
some parallel clustering algorithms; Section III presents
the SLPPCA carefully, from its data structure to paral-
lelism design; By implementing this parallel algorithm,
in Section IV we analytically show that the speedup and
the scalability of our algorithm approach the optimal as
the number of data points increase or the number of cores
increase. In Section V we’ll make a conclusion mark and
include a brief discussion on future work.

II. RELATED WORKS

Cluster analysis is related to other techniques that are
used to divide data objects into groups and is some-
times referred to as unsupervised classification [8]. There
are several types of clusterings , here we usually call
clustering an entire collection of clusters [9]. The most
commonly discussed distinction among different types of
clusterings is whether the set of clusters is nested or
unnested, i.e., hierarchical or partitional [10]. A partitional
clustering is simply a division of the set of data objects
into non-overlapping subsets such that each data objects is
in exactly one set - one cluster. Commonly, a hierarchical
clustering permit clusters to have subclusters and these
nested clusters are organized as a tree. Another classifi-
cation of clustering types is whether a data objects can be
assigned to a single cluster or multiple clusters: Exclusive,
Overlapping or Fuzzy. Especially in fuzzy clustering,
every object belongs to every cluster with a membership
weight that is between 0 and 1, from absolutely does’t
belong to absolutely belongs, here clusters are treated as
fuzzy sets.

Furthermore, there are also some different types of
clusters. A mostly used type in data cluster is well-
separated type. For this type of clusters, a cluster is a
set of data objects in which each object is closer to
every one in the cluster than to any object not in the
cluster, in order to separate the clusters, sometimes a
threshold ε is used. Well-separated clusters do not need to
be globular, but can be have any shape. The second type of
cluster is Prototype-based [11], the objects in a cluster are
closer to the pre-defined prototype. We commonly refer
to prototype-based clusters as center-based clusters, which
tends to be globular. Another commonly used cluster type
is density-based, such as DBSCN, here a cluster is a dense
region of objects that is surrounded by a region of low
density, this type of cluster is often employed when the
clusters are irregular or intertwined, and when the noise
objects and outliers are present. Also, there still exists
an important cluster type – Shared-property [12], in this

cluster type, we can define a cluster as a set of data objects
that share some property.

Lots of clustering algorithms such as K-Means [13],
DBSCAN [14], CURE [15] and so on have been proposed
in the past years, however, most of these algorithms
require user to pre-define some parameters such as the
cluster number k or the distance threshold ε or the density
threshold δ, unfortunately it is difficult or impossible for
users to set up these parameters, and an improper prefer-
ence sometimes will lead to wrong or bad result. Therefor,
it is very important to set up these parameters just rely
on data set itself, without any artificial interference.

In the past years there has been an increasing interest
in parallel implementations of data mining algorithms.
several authors also have proposed some parallel clus-
tering algorithms. Reference [16] discuss parallel imple-
mentations of the single link clustering method on an
SIMD array processor. Their parallel implementation of
the SLINK algorithm does not decrease the O(n2) time
required by the serial implementation [17], but a signifi-
cant constant speedup factor is obtained. Reference [18]
describe parallel partitioning clustering (the k-means clus-
tering algorithm) and parallel hierarchical clustering (sin-
gle link clustering algorithm) on an n-node hypercube and
an n-node butterfly. Their algorithms run in O(n log n)
time on the hypercube and O(n log2 n) on the butterfly.
Reference [19] has described several implementations of
hierarchical clustering algorithms. His implementation of
hierarchical clustering algorithm achieves (n)time on a n-
node CRCW PRAM and O(n log n)time on n

n log n node
butterfly networks or trees. All these parallel clustering
algorithms have the following drawbacks [20]:

1) They assume that all objects can reside in main
memory at the same time.

2) They need a large number of processors (about
the size of the data set) to achieve a reasonable
performance.

In the literature, several parallel algorithms for mining
association rules have been proposed recently [16] [21]
[22] [23]. However, for many applications, especially
for mining in large spatial databases, scalable parallel
clustering algorithms are still in great demand.

In this paper, we present a parallel clustering algorithm
SLPPCA which is based on SLPP for knowledge discov-
ery in very large spatial databases. We use the shared-
memory architecture, with multi-core processor based
computers.

III. THE ALGORITHM SLPPCA

SLPPCA aims to find out each boundary points set
{BPj,i} of each arbitrary shape cluster by SLPP and label
each BPs in the SLPP as boundary point of a cluster,
here j stands for the jth point, and i represents the ith

cluster, then connect the points of each {BPj,i} set in turn
and create some contour lines if the DB is 2-dimensional,
furthermore, a contour plane or hyperplane will be pro-
duced for 3-d(dimensional) or even high dimensional DB.
Finally, the points contained in ith contour line will be
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marked as Inner Points of ith cluster and represented
as {IPk,i}, k being the total number of inner points
of ith cluster. So, every arbitrary shape clusters can be
represented with its BPs and IPs as Formula (1) . i is the
number of clusters, which is automatically computed out
when each contour line is produced. For simply connected
data objects, the number of contour lines is the number
of clusters; otherwise the cluster number is depended on
the number of outer contour lines for complex connected
data objects. Completely, the i is worked out by SLPPCA
itself and need none any transcendental parameters to be
imputed all through the algorithm procedure.

{Ci} = {BPj,i} ∪ {IPk,i} (1)

In order to visually illustrate the SLPPCA, we use a
two-dimensional data points set as example to explain
what SLPP is and how it is constructed and works.

A. SLPP

The data objects contains n = 24 points as Table 1,
and each point was labeled as Pn according to the input
order.

TABLE I.
DATA BASE 1

P 1 2 3 4 5 6 7 8 9
x 1.0 1.2 1.2 1.3 1.4 1.7 1.9 2.0 2.2
y 2.5 2.6 2.5 2.3 2.7 3.7 3.5 3.6 3.5
P 10 11 12 13 14 15 16 17 18
x 2.7 2.8 2.8 3.1 4.5 4.7 4.7 4.7 4.8
y 3.3 2.9 3.1 3.2 3.3 3.3 3.1 2.6 3.5
P 19 20 21 22 23 24
x 4.8 4.9 5.0 5.4 5.6 5.7
y 2.7 2.5 2.6 2.7 2.8 2.6

Stem-and-Leaf Plot (SLP) [7] is a display that organizes
a set of data to show its shape and distribution. In deed
the SLPP is extended by SLP with each point’s attributes
value added to the leaf. In a SLPP, each data value is split
into a ”stem” and a ”leaf-point pair” which also contains
points no. A SLPP for a specified data base include x-
dimensional SLPP (x is the number of dimensions) and
all SLPP inter-connected by the point no information. For
instance, the stem of point P9(2.2, 3.5) of 1st-dimensional
is 2, the leaf-point pair will be displayed as (2, 9), in the
same way the stem of the 2nd-dimensional SLPP is 3
and leaf-point pair is (5, 9). Let’s use DB1 as example to
illustrate the procedure of constructing SLPP.

Firstly, we use EDA (Explored Data Analysis) [7]
method to eliminate the outliers and determine the dimen-
sion the data scattered more as the main dimensional of
SLPP. For instance, as DB1 shows, max(x)−min(x) =
5.7 − 1 = 4.7 > max(y) −min(y) = 3.6 − 2.3 = 1.3,
so x dimension is feasible.

The second step is to determine the stem granularity, a
stem contains too many data of its leaf will enlarge the
difference of stems, so we must divide a stem to 2 or 5
intervals if the leaf value contains (1, 3, 5, 7), (0, 2, 4, 6,
8) or (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Here 1-stem contains
(0, 1, 2, 3, 4, 5, 6, 7), we divide 1-stem into 2 parts and

labeled with ”∗, •”, here ”∗” and ”•” represent the scope
of (0, 1, 2, 3, 4) and (5, 6, 7, 8, 9).
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Figure 1. Bias Value

Finally, build the 2-d SLPP as Table 2 for the given
DB, and computer out the bias value of each dimension.
it means that the adjacent points at one stem should be
attached to different clusters if the bias is bigger than
the threshold ε. As Figure 1, the abscissa in a plane
Cartesian coordinate system is the bias value and the y-
axis is the times of the bias value appears, we choose the
first minimized data as the threshold, here the x-bias is
0.4, the y-bias is 0.4, here we choose the max bias as the
threshold and in this example, ε = 0.4. Note that here the
threshold ε was set by data itself, without any artificial
interference.

By this time the SLPP of DB1 is produced, the right
column contains the points of the same stem and points
were set in ascend order with y-value, for example the
leaf-point pair of (3.3, 10) stem means the y-value of
point P10 is 3.3. From Table 2, we can see that the SLPP
do reflect the data distributions of the DB well and in
truth.

B. SLPPCA

The flowchart of SLPPCA is described as Figure 2.
After constructing the SLPP, the initial boundary points
which labeled as boldface in Table 2 can obtained directly
from SLPP and are put into {BPj} with repeated ele-
ments were eliminated out. The initial boundary points
include the points in the first and the last positions
of each leaf, and the adjacent points whose bias is
big than threshold ε just as P19 and P16 are labeled
as IBP also. So, the IBP set of DB1 is IBP =
{P1, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13,
P14, P20, P19, P16, P18, P21, P22, P23, P24}.

Each cluster is surrounded with BPs that are contained
in IBP set, we must eliminate the points out if those
points are not the really BP. Each IBP item has at least
2m (m being the dimensions, m=2 in DB1) adjacent ob-
jects, we define the most adjacent points Pj(j = 1− 2m)
of Pi are the points around Pi in 2m regions, e.g., for
2-d DB, the 22 = 4 regions of Pi(xi, yi) are showed as
Formula 2. Suppose that {Pj}(j = 1−4) are the adjacent
points set of Pi, if at least one point of {Pj} were unfit
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TABLE II.
IP SET OF DB1

x Stem x:Leaf-Point Pair y:Leaf-Point Pair (y-value, point no)
1∗ (0, 1)(2, 2)(2, 3)(3, 4) (2.3, 4)(2.5, 1)(2.5, 3)(2.6, 2)(2.7, 5)
1• (7, 6)(9, 7) (3.5, 7)(3.7, 6)
2∗ (0, 8)(2, 9) (3.5, 9)(3.6, 8)
2• (7, 10)(8, 11)(8, 12) (2.9, 11)(3.1, 12)(3.3, 10)
3∗ (1, 13) (3.2, 13)
3•
4∗
4• (5, 14)(7, 15)(7, 16)(7, 17)(8, 18)(8, 19)(9, 20) (2.5, 20)(2.6, 17)(2.7, 19)|(3.1, 16)(3.3, 14)(3.3, 15)(3.5, 18)
5∗ (0, 21)(4, 22) (2.6, 21)(2.7, 22)
5• (6, 23)(7, 24) (2.6, 24)(2.8, 23)

Input Data Base

Construct SLPP

Seek IBP

Determine BP

Obtain IP

Find Clusters

Output Clusters

Choose the Best Main Dimension

Determine the stem granularity

SLPP Form

Computer  

Figure 2. The Flowchart of SLPPCA

for Formula (3), then Pi is the BP of a cluster. Formula
(3) can help to determine which point is a BP of IBP set.

R1 :
{

x ≥ xi

y ≤ yi
R2 :

{
x < xi

y > yi

R3 :
{

x ≤ xi

y < yi
R4 :

{
x ≥ xi

y ≤ yi

(2)





F1(Pj) = xj − (xi + ε) ≤ 0
F2(Pj) = yj − (yi + ε) ≤ 0
F3(Pj) = −[xj − (xi − ε)] ≤ 0
F4(Pj) = −[yj − (yi − ε)] ≤ 0

, j = 1˜22 (3)

When BPs are decided, the algorithm try to divide BP
into k groups and labeled with BPi(i ∈ [1, k]) , i.e., the
objects in DB1 will finally divided into k clusters, and
the rest of the paper will prove that the k value is correct
and the best.

Obviously,a cluster has more than 3 BPs, so we
suppose that each BPi set contains at least 3 points. From
the 1st object of {BP} the SLPPCA try to search out the
next most adjacent BP in one-way and this process will
not stop until the BP is empty. When next adjacent BP
back to P1st, a BPi set was produced and then took out
from BP set, and a next search process will start form the
1st object of BP. For DB1, the final BP set is described
as Table 3. Then from SLPP, the IPs can be directly dug
up as Table 4 shows. At each leaf or adjacent leaves,, the
points between any pair of BPs which are belongs to the
a same cluster are the Inner Points.

Finally, according to Formula (1), the cluster result
is de-scribed in Scattered Plot as Figure 3. The result

TABLE III.
BP SET OF DB1

Set Item
BP {BP1, BP2, BP3, BP4, BP5, BP6}
BP1 {P1, P4, P5}
BP2 {P6, P7, P8, P9}
BP3 {P10, P11, P12, P13}
BP4 {P14, P16, P18}
BP5 {P19, P20, P21}
BP6 {P22, P23, P24}

TABLE IV.
IP SET OF DB1

Set Item
IP1 {P2, P3

IP2 φ
IP3 φ
IP4 {P15, P17}
IP5 φ
IP6 φ

contains 6 clusters in DB1. Suppose that k value equals
to 2, 3 or 6 with K-Means clustering algorithm and the
result is the best even that may be affected by the initial
seeds selected at the beginning, the sum of squared error
(SEE, Formula (4)) is described as Figure 4. When k equal
to 6 the SSE = 0.79 is minimal, this result testify that
the k number produced by SLPPCA is correct and the
best.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6

C1

C2

C3

C4

C5

C6

Figure 3. The clustering result of DB1(24P) by SLPPCA

SSE =
k∑

i=1

∑

x∈Ci

dist(ci, x)2 (4)

C. Clustering Performance

One obvious way to determine if a data set has clusters
is try to cluster it. The clusters may be in arbitrary
shape or different size or un-uniform density, furthermore,
whether the result produced can reflect the natural number
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Figure 4. SSE versus k by K-means

Figure 5. The Clustering Result of DB2 by SLPPCA

of clusters in a data set is still a big problem for most of
the clustering algorithms, the SLPPCA whose idea and
the process were presented in the previous sections can
automatically find the best clusters number and fits for
the clusters in different size and shapes. Since the main
procedure of SLPPCA is to determine the boundary points
sets only by SLPP and we need not to computer the
Euclidean distance, the SLPPCA has a time complexity of
O(m) which was small than K-means algorithm, note that
the m is the boundary points number while in K-Means,
m is equal to the total objects number.

DB2 contains 70 points and the clustering result by
SLPPCA is displayed as Figure 5, in the process the
threshold ε = 0.5, and the clusters number is 3 which
were coincident with the natural number of clusters com
from the graph-based view. From this example we can
find that the SLPPCA can fit for non-globular cluster well
just as C2 in Figure 5. We compare K-means algorithm
and SLPPCA use another data sets whose scatter plots are
showed as Figure 6 and 7. DB3 as Figure 6(a) contains
205 points with clusters of different shape, DB4 as Figure
7(a) has 760 objects with clusters of different shape and
density, and from the clustering result by K-means as
Figure 6(c) and Figure 7(c) we can see that the K-
means fails to identify clusters of non-spherical shapes
(e.g., elongated), or clusters of different sizes for the
reason that K-means can only be used for data that has a
well-defined centroid such as a mean while the size and
density can not affect the SLPPCA’s result, the K-means
uses a prototype-based notion of a cluster and SLPPCA
uses graph-based concept, SLPPCA makes no assumption
about the distribution of the given data and leave the
data deliver the truth by SLPP, seeks BPs and IPs of
each cluster from SLPP and finally produce k clusters
automatically. The clustering result by SLPPCA for DB3

(a) original Database

(b) K-Means  Result (c) SLPPCA  Result

Figure 6. The cluster result of DB3 by SLPPCA(205P).

(a) original Database

(b) K-Means  Result (c) SLPPCA  Result

Figure 7. The cluster result of DB4 By SLPPCA(760P).

and DB4 presented in Figure 6(b) and 7(b) show that the
SLPPCA perform well.

D. Automatically determination of k

For most of clustering algorithms, some parameters
need to be specified in advance, e.g., the number of
clusters k in K-means, distance threshold Eps and points
numbers threshold MinPts in DBSCAN [14], shrink
factor α in CURE [15], and etc., while SLPPCA uses
SLPP to discovery the distribution of data set and acquire
some parameters without any interference by user all the
time.

One of the novel aspects of SLPPCA is to determine
boundary point sets by SLPP from graph-based view and
find clusters rather than use the objects similarity (e.g.,
distance, density) as the evaluation principle to discovery
clusters. i.e., the SLPPCA try to search out the contour
lines of DB and produce clusters according to those
contour lines found. The second contribution of the paper
is to use SLPP to discovery the data attributes, SLPP is
a extend form of Stem-and-leaf plot, which can reflect
directly some characteristics include data congregation,
dispersion (normal or skewness), outliers, spread and the
cluster shape.

To study the effectiveness of SLPPCA for clustering
data sets, we conducted extensive experiments and our
result confirm that the quality of clusters produced by
SLPPCA s much better than those found by some other
existing algorithms, and with more lower time complexity.
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IV. PARALLELISM ANALYSIS OF SLPPCA
The key to parallel clustering algorithm design is

exploitable concurrency. Concurrency exists in a compu-
tational problem when the problem can be decomposed
into subproblems that can safely execute at the same
time [26]. In order to finding these potential concurrency,
the parallel pattern language should be used to help in
designing the parallelism of SLPPCA. As shown in Figure
8, the pattern language [24] is organized into four design
space-Finding Concurrency, Algorithm Structure, Support
Structure, and Implementation Mechanisms, which form a
liner hierarchy, with Finding Concurrency at the top and
Implementation Mechanisms at the bottom.

Finding Concurrency

Algorithm Structure

Supporting Structure

Implementation Mechanisms

Figure 8. Overview of the pattern language.

Commonly, the Finding Concurrency design space is
concerned with structuring the problem to expose ex-
ploitable concurrency. This is the most important level of
parallelism design, at this level, we should focus on high-
level algorithmic issues and reason about the problem to
expose potential concurrency. Only concurrency has been
found at this level, the rest levels can have works to do –
how to tale advantage of these potential concurrency. i.e.,
the Algorithm Structure will focus on how to use these
concurrency, and the Support Structure design space and
the Implementation Mechanisms design space will focus
on the programming pattern and how the patterns of the
higher-spaces are mapped into particular programming
environments.

A. Finding concurrency in SLPPCA

The Finding Concurrency design space will help us
identify and analyze the exploitable concurrency in clus-
tering problem. As shown in Figure 9, we will focus on

Task Decomposition

Data Decomposition

Decomposition
Group Tasks

Order Tasks

Data Sharing

Dependency Analysis

Design Evaluation

Finding Concurrency

Figure 9. Overview of the Finding concurrency design space.

the decomposition. There are two decomposition patterns,
Task Decomposition and Data Decomposition, are used to

decompose the target problem into subproblems that can
safely execute currently. We can think of this decompo-
sition as occurring in two dimensions.
• The Task-decomposition dimension views the prob-

lem as a steam of instructions that can be broken
into sequences called tasks that can execute simulta-
neously.

• The Data-decomposition dimension focus on the data
required by the tasks and how it can be decomposed
into distinct chunks.

Indeed, our SLPPCA are inherent parallelism. Since
the SLPPCA is designed based on the SLPP, and all
SLPP forms are interconnected by each points, therefor,
we can build each SLPP (note that the number of SLPP
forms is the dimensions of the data objects) separately.
To find clusters, SLPPCA starts with the constructing of
SLPP forms, as shown in Figure 10, we can see that the
SLPPCA process can be designed well in parallel: the
task of constructing SLPP can be paralleled, the tasks of
seeking IBP, determining BP and obtaining IP can also be
paralleled well. From the analysis before, we know that
all these tasks are with high computation, are the ”hot
spots” in the algorithm, so the parallel programming of
these tasks will improve SLPPCA clustering performance
efficiently.

Input Data Base

Output clusters

Construct SLPP Construct SLPP Construct SLPP...

Seek IBP Seek IBP Seek IBP...

Determine BP Determine BP Determine BP...

Obtain IP Obtain IP Obtain IP...

Find clusters

R
u
n

n
in

g
 in

 S
e

q
u

e
n

tia
l

Running

in Parallel

Figure 10. Parallelism in SLPPCA

Furthermore, we can see from Figure 11, the task of
constructing SLPP can be paralleled in depth. This kind
of nested parallel can help archive even high speedup.

Compute dimensional

difference

Compute dimensional

difference

Compute dimensional

difference
...

Choose the best main dimension

Construct SLPP

Build SLPP of a

dimension

Build SLPP of a

dimension

Build SLPP of a

dimension
...

Running

in Parallel

Figure 11. Parallelism in constructing SLPP.

The algorithm SLPPCA is sketched in Figure 12.
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Algorithm SLPPCA (D)

//Precondition: all objects in D are unclassified.

//Note that there are none any more parameters needed to input.

Do Parallel

{

    Do Parallel

{

     Construct SLPP forms for each dimension.

}

    Seek IBP;

    Determining BP;

    Obtain IP;

}

Find Clusters and label every objects;

Output Clusters;

END;

Figure 12. Algorithm SLPPCA.

B. Experiment

In this section, we evaluate the performance of SLP-
PCA with respect to its scaleup, speedup and sizeup. We
run our SLPPCA clustering algorithm on duo-core and
quad-core processor based platform separately to evaluate
the parallelism efficiency. The program was coded in C++
and Intel Threading Building Blocks (Intel TBB) [25] –
which is the C++ template library for parallelism that
extends C++ by abstracting away thread management and
allowing straightforward parallel programming. And with
TBB used in the experiments, we only need to focus on
how to specify tasks and let the library map these tasks
onto threads automatically.

Firstly, we’ll compare the efficiency of SLPPCA be-
tween sequential version and parallel version program
with objects as shown in Figure 7, on duo-core and quad-
core based platform respectively.

Sequential program on

duo-core platform

Sequential program on

quad-core platform

Parallel program on

duo-core platform

Parallel program on

quad-core platform

ms

Figure 13. Comparison between sequential and parallel version program

Secondly, with the same data base, the parallel version
program will be run on different platform to evaluate the
speedup.

Thirdly, according to quad-core platform, we increase
the data object number of the data base to check the
parallel version program’s scaleup.

From Figure 13 we can find that:
1) According to the same data base and same comput-

ing platform, the parallel version program will gain
better performance than sequential version program.

ms

Numbers of data objects

Figure 14. Scaleup of parallel version program

It is undoubtable that this gains come from the tasks
decomposition and the concurrency of these tasks.

2) According to the same computing platform and
parallel version program, the program running on
quad-core processor based platform will achieve
better performance than duo-core platform linearly.
Obviously, in a sense, this is a good scaleup per-
formance for numbers of cores.

Also, according to our experiments result as shown in
Figure 14, we can find that with the increase of data
objects number in data base, the executing time increase
linearly, the speedup is linearly. Therefor we can draw
a conclusion that this kind of clustering algorithm -
SLPPCA, with parallel version of program, can gain good
scaleup performance. However, someone may argue that,
along with the increase of data objects, the executing
time should increase even larger than now, surely it is
reasonable to think so, but in SLPPCA, because that even
the number of objects increase, the bound points may
unconverted or change so little, the algorithm just need
to scan these increased objects to determine whether it is
a bound point or not in the step of constructing SLPP,
and in the rest of phases, these increased objects will not
increase the computation much more.

V. CONCLUSION

In this paper, we proposed a parallel cluster algo-
rithm SLPPCA for shard-memory multi-core processor
based platform. By comparing with traditional cluster
algorithms, SLPPCA not only can determine the cluster
number k automatically, but also it can produce clusters
with different density and shapes, more over, SLPPCA
use EDA technology to set up some parameters totally
rely on data itself, without any artificial interference. The
clusters it produced can reflect the nature attribute of data
in much better manner.

With the parallel pattern design language used in
SLPPCA parallel version program design, we find that
SLPPCA is parallel inherently. most of steps of SLP-
PCA can be paralleled well and the nested parallel help
achieve even better performance. From the analysis and
experimental results, a conclusion can be made that the
SLPPCA can obtain good speedup and scaleup.
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