
The Implementation and Optimization of AMR
on Mobile Device

Jie Yang

 Department of Computer Science, Huazhong University of Sci&Tech, Wuhan, China
Email: youngth98@gmail.com

Sheng sheng Yu and Jingli Zhou

Department of Computer Science, Huazhong University of Sci&Tech, Wuhan, China
Email: { ssyu, jlzhou }@mail.hust.edu.cn

Abstract—Considering the limited resource of mobile device,
the operation complexity of the applications needs to be
reduced. This paper presents the implementation of
Adaptive Multi Rate (AMR) on mobile device and especially
focuses on reducing the computational complexity. AMR is
an algebraic code excited linear prediction (ACELP) based
algorithm which could achieve satisfying speech quality by
using the analysis-by-synthesis method. It has been chosen
by the Third Generation Partnership Project (3GPP) as the
mandatory codec for the third generation (3G) cellular
systems. The optimizations include algorithm and
instruction level. Based on the mobile device i-mate JAMin
which has the ARM processor operating at 195 MHz, one
second speech costs only 0.6 second processing time. So,
more resource is reserved for other applications.

Index Terms—AMR, Speech Coder, Optimization, Mobile
Device

I. INTRODUCTION

There are more and more applications developed on
mobile device, such as audio and video processing
applications. The requirement may be high, such as space,
processing time, energy and so on. But the resource of
mobile device is very limited. So, real-time audio and
video communication needs efficient optimization about
the compression algorithm on power-efficient platform.

Some researchers focus on the implementation and
optimization of video encoder on mobile device.
Optimization strategies are proposed based on the context
of the scenes and reduced more than 40% of
computational complexity of H.264 [1]. Different
optimization techniques in motion estimation, intra
prediction process and other major modules of H.264
encoder were discussed in [2]. Real time encoding with
QCIF (176×144) resolution on the mobile device was
realized on a kind of Personal Digital Assistant (PDA)
which has a 624MHZ frequency processor [3].

This paper presents the implementation and the
optimization of Adaptive Multi-Rate (AMR) on mobile
phone which has the ARM processor, including algorithm
and instruction modification. The experiment have
demonstrated that the methods reduced the complexity of
computation greatly with little sacrificing of speech
quality.

The rest of this paper is organized as follows: In
Section Ⅱ, the AMR standard and the system is briefly
reviewed. Sections Ⅲ presents the optimization methods
in details. Experiment and evaluation results are shown in
Section Ⅳ and the conclusion is drawn in Section Ⅴ.

II. OVERVIE OF AMR AND THE SYSTEM

The AMR speech is based on Code Excited linear
prediction (CELP). It supports 8 encoding modes with bit
rates between 4.75 and 12.2 kb/s [4].The AMR speech
coder operates for each speech frame of 20ms (160
samples) at the 8 kHz sampling frequency. Two pre
processing functions are applied prior to the encoding
process: high pass filtering and signal down scaling. After
linear prediction (LP) analysis, the LP parameters are
converted to line spectrum pairs (LSP) and jointly
quantized. The open-loop pitch search is performed once
per frame for the 4.75 and 5.15 kbps modes. While for all
other modes, it is performed twice per frame. The frame
is then divided into 4 subframes. An open loop pitch lag
is estimated in every other subframe based on the
perceptually weighted speech signal and used for the
adaptive codebook search. Closed loop pitch analysis is
performed by searching around the open loop pitch lag.
The gains of the adaptive and fixed codebook are
quantified. Finally, the filter memories are updated for
finding the target signal in the next subframe [4].The
encoding scheme of each speech mode is almost the same,
while bit frame is a little different. In each 20ms speech
frame, 95, 103, 118, 134, 148, 159, 204 or 244 bits are
produced, corresponding to each bit-rate from 4.75 to
12.2 kb/s [5]. The encoding block diagram is shown in
Fig. 1.

Right now, many mobile phones and personal digital
assistants adopt ARM processor which is designed
specifically for limited memory and low power
consumptionl [6]. The ARM architecture is generally a
32-bit RISC processor architecture developed by ARM
Limited that is widely used in embedded designs. ARM
uses the techniques like variable execution time, subword
parallelism, digital signal processor-like operations,
thread-level parallelism, exception handling and
multiprocessing to enhance its performance [7].

984 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.9.984-991

windowing
and

autocorrelation
R[]

Levinson-
Durbin

R[] A(z)

A(z)

LSP
quantization

compute target
for

innovation

update filter
memories for
next subframe

Open-loop pitch search Adaptive codebook
search

Innovative codebook
search

Filter memory
update

interpolation

subframes
LSP A(z)

LSP

compute
weighted
speech

(4 subframes)

find
open-loop pitch

find best
innovation

fixed
codebook

gain
quantization

A(z)^

x(n)

pitch
index

code
index

frame subframe

s(n)
compute target
for adaptive
codebook

To
find best delay

and gain

x(n)

compute
impulse
response

A(z)^

A(z)
h(n)

h(n)

A(z)

LPC analysis
(twice per frame)

A(z)

(twice per frame)

x (n)
2

quantize
LTP-gain

compute
adaptive

codebook
contribution

LSP
indices

LTP
gain

index

gain index
fixed codebook

interpolation
for the 4

subframes
LSP A(z)^

for the 4

Pre-processing

Pre-processing

compute
excitation

Fig. 1. Simplified block diagram of the adaptive multi-rate encoder

The ARM instruction set differs from the pure RISC

definition in several ways that make it suitable for
embedded applications [8], such as:

 Variable cycle execution for certain instructions.
 Inline barrel shifter leading to more complex

instructions.
 Thumb 16-bit instruction set.
 Conditional execution.
 Enhanced instructions.

The mobile phone we use is i-mate JAMin. The main
processor of the phone is OMAP 850 produced by
Texas Instruments (TI) which combines an ARM926
and ARM7 general-purpose RISC processor. The
processor operates at 195 MHz, for high performance
with low power consumption.

We focus on development environment (IDE)
packages: Microsoft’s Visual Studio .NET2005 for
developing WinCE applications. To synchronize the
phone with personal computer (PC), the software
ActiveSync is installed. The information could be
exchanged between the mobile phone and PC in this
way.

Ⅲ. IMLEMENTATION AND OPTIMIZATION

The codec from the 3GPP has been used as the
foundation model of the encoder. We transplanted the
codec with Microsoft’s Visual Studio.NET 2005. The
screenshot of the mobile phone is shown in Fig. 2.

Fig. 2. Hospital system screen

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 985

© 2009 ACADEMY PUBLISHER

Since the computation complexity of the original
codec is high, it needs to be optimized to get high
performance. Firstly, we measure the execution time of
every module. Different modes of AMR have different
degrees of complexity, in which 12.2 kb/s mode has the
maximum complexity. The execution time of each sub-
block is listed in TableⅠ. From Table Ⅰ, we can see
that the fix codebook search is the most time-consuming
part. Linear predictive coding, close-loop pitch analysis
and open-loop pitch analyses also take a certain amount
of time. The optimization includes the following
aspects:

A. Algorithmic Optimization
1) Open loop pitch analysis: Open-loop pitch analysis

is performed in order to simplify the pitch analysis and
confine the closed-loop pitch search to a small number
of lags around the open-loop estimated lags [5]. During
the search process, the maxima of the correlations

()R k are calculated:
79

0
() () () (1)w w

n
R k s n s n k

=

= − ∑

While the range of k has been divided into three
parts: 1) =72,...,143k , 2) =36,...,71k ,

3) =18,...,35k . The three maxima ()iR t where it is
the lag value corresponding to the maxima of each part
are normalized by dividing

2 () (2)w in
s n t− ∑

The value it that maximizes the equation (3) will be
regarded as the pitch lag.

'

2

()() (3)
()
i

i

w in

O tR t
s n t

=
−∑

Among the three pith lags in different range, the
lower clause one is selected as the final values in order
to avoid choosing pitch multiples. From the above
analysis, we can see that the searches one by one of the
whole scope would take considerable amount of
computation.

To reduce the complexity, we can modify the search
process into two steps. In the first step, the weighted
speech signal ()ws n is re-sampled in accordance with

TABLEⅠ
THE DETAILED EXECUTION TIME OF EACH SUB-BLOCK (12.2 kb/s)

Function block Processing time(ms)

Pre_process 337
Linear predictive coding 1122

Line spectral pair processing 5622
Open-loop pitch analysis 4981

SubframePreProc 4120
Close-loop pitch analysis 5415

Fix codebook search 12178
Gain_quant 1211

Memory update, etc. 2307
Total 37293

the ratio of 4:1 to get ()w news n− and the search scope of

it changes from 5 to 35. The ()w news n− is searched one

by one to find the value maxt that maximize equation

(3). In the second step, ()ws n is searched among the

new range max max[4 * 3, 4 * 3]it t t∈ − + , and the

value it that maximize equation (3) will be regarded as
the final pitch lag. In this way, the scope of the search is
reduced and the times of searching are greatly
decreased.

2) Fix codebook search: The traditional fix codebook
search is to get the impulse code which maximizes the
following equation (4):

2 2() () (4)
k

t
k k

k t
D k k

C d cA
E c c

= =
Φ

where 2 ()td H x n= is the correlation between the

target signal 2 ()x n and the impulse response ()h n .

H is a lower triangular Toepliz convolution matrix
with diagonal (0)h and lower diagonals

(1),..., (39)h h , and tH HΦ = is the matrix of
correlations of ()h n . The vector d (backward filtered
target) and the matrix Φ are computed prior to the
codebook search [5].

We still take the 12.2 kb/s mode as the example. For
this mode, 40 positions in a subframe are divided into 5
tracks, where each track contains two pulses, as shown
in Table Ⅱ . AMR adopts the depth first tree search
method. The first pulse 0i is always set at the position
corresponding to the global maximum value and the
pulse 1i is set as the local maximum of one track. The
search is performed in five nested loops, where in each
loop the contribution of a new pulse is added. For
example, T2–T3 is searched for the next two pulses,
followed by T4–T5, T6–T7, T8–T9, T10–T11 searches
consequently. The final 8-pulse code vectors are
determined with (8 × 8) × 4 searches. Later, the starting
positions of the 9 pulses are cyclically shifted. During
the process, the local maximum of a different track is
always set as 1i . So, the whole search times are (8 × 8)
× 4× 4=1024. The disadvantage of two-track-based
sequential search is that once a certain pulse is selected,
the second pulse will be restricted in the search loop and
results in redundant computation complexity.

TABLE Ⅱ
POSITIONS OF PULSES FOR THE TRACKS IN THE ALGEBRAIC

CODEBOOK (12.2 kb/s)

Track Pulse Positions

1 i0, i5 0, 5, 10, 15, 20, 25, 30, 35
2 i1, i6 1, 6, 11, 16, 21, 26, 31, 36
3 i2, i7 2, 7, 12, 17, 22, 27, 32, 37
4 i3, i8 3, 8, 13, 18, 23, 28, 33, 38

5 i4, i9 4, 9, 14, 19, 24, 29, 34, 39

986 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

The implementation of the AMR speech coder on the
16 bit fixed-point DSP was described in [9]. A modified
depth first tree search method used in algebraic
codebook search was also referred to. We adopt that
method and each pulse is searched in the track
separately to avoid the nested layers of the cycle. The
times of searching by the new method are
(8+8)*4*4=256 and reduced 75% computation
complexity.

For other modes of AMR, the search method could be
modified with the same approach and the computation
load reduces from 2()O n to ()O n .

B. Code Optimization
1) ARM instruction optimization: We also optimize

the system by using ARM instruction since the mobile
phone has the ARM processor core. The enhanced
instructions of ARM could perform some functions
more efficiently.

For example, L_add is the function that used for the
addition of the two 32 bits variables with overflow
control. In the original system, it is written in C
language. The code contains a number of judgment
processes and is relatively time-consuming [10].

We use
 0, 0, 1 (5)QADD r r r

to realize the function and this avoids the requirement
for any additional code to check for possible overflows
[6].

For other functions, such as add, sub, div_s, L_add,
L_mac,L_msu, L_mult, L_sub, norm_l, norm_s,
saturate, we have also replaced them by using ARM-
based instructions to save running time. Some are listed
below:

L_mac:
2, 1, 2
0, 0, 2

(6)

SMULBB r r r
QDADD r r r
BX LR
END

L_msu:

2, 1, 2
0, 0, 2

(7)

SMULBB r r r
QDSUB r r r
BX LR
END

L_mult:

1, 0, 1
0, 1, #1

(8)

SMULBB r r r
MOV r r lsl
BX LR
END

L_sub:

1,
1, #0x80000000
0, 1, 0, #31
x

(9)

CMP r
MVNEQ r
SUBEQ r r r asr
SWINE
BX LR
END

 #0

 0 06000

Saturate:
1, 0x00007
2, 0, #15
2, 0, #31
0, 1, 0 #31

(10)

LDR r FFF
MOV r r ASR
TEQ r r ASR
EORNE r r r ASR
BX LR
END

 =

2) Remove Redundant Operations: We find that some

operation in the loop could be moved outside. The
amount of calculation can be reduced while the result
would not be affected. For example, assuming

_L CODE is a constant and Eq. (11) could be
replaced by Eq. (12). The subtraction operation in the
loop can be avoided. :

(; ;)
{...

_ 1;
(; ;)

11

for

j L CODE
for j

 = −
 − −
 {...
 }
 ...
} ()

_ 1;
(; ;)

{...
;

(; ;)

(12)

s L CODE
for

j s
for j

= −

 =
 − −
 {...
 }
 ...
}

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 987

© 2009 ACADEMY PUBLISHER

There are many functions containing loop part. In
some cases, the counter increases to some arbitrary limit
when the loop stops. It is suggested that the loop
counter count down to zero [7]. This is because the
comparison with zero is free since the result is stored in
the condition flags.

3) Reduce the complexity of operations: The left or
right shift operation can be used instead of
multiplication or division. Usually, divided or
multiplied by two could be completed by the shifted to
right or left.

 In fact, multiplied by any integer can be used to
replace by addition shift and multiplication. The
implementation time of shift and addition is less than
multiplication instructions. For example, Eq. (13) could
be replaced by Eq. (14).

×9 (13)i i=
Could be replaced by

3)i i i= << + (14)（
4) Loop unrolling: For ARM7 or ARM9 processors,

the subtract takes one cycle and the branch three cycles,
giving an overhead of four cycles per loop [7]. We can
unroll some loops to reduce the computation cycles.
Parallelism can be exploited by using pipelined access
to such data structures. We need to mention that if
cycles of the loop take a very small proportion, the
effect of loop unrolling will not be effective.

C: Complier Optimization
We have exploited Visual Studio 2005 compiler. It

provides 32-bit C/C++ compiler used to compile and
link 32-bit ARM C, and C++ programs [11]. The
complier option includes:

 /Od: turns off all optimizations in the program
and speeds compilation.

 /O1: creates the smallest code in the majority of
cases.

 /O2: creates the fastest code in the majority of
cases. (default setting for release builds)

 /Ox: combines optimizing options to produce
code that favors execution speed over smaller
code size.

 Ob0: Disables inline expansion, which is on by
default.

 /Ob1: expands only functions marked as inline,
__inline, __forceinline or__inline or, in a C++
member function, defined within a class
declaration)/ob2(Expands functions marked as
inline or __inline and any other function that the
compiler chooses.

 Ob2: Expands functions marked as inline or
__inline and any other function that the
compiler chooses (expansion occurs at the
compiler's discretion, often referred to as auto-
inlining).

 /Oi: replaces some function calls with intrinsic
or otherwise special forms of the function that
help your application run faster. Programs that
use intrinsic functions are faster because they do
not have the overhead of function calls, but may
be larger because of the additional code created.

 /Ot: maximizes the speed of EXEs and DLLs by
instructing the compiler to favor speed over size.
(This is the default.) The compiler can reduce
many C and C++ constructs to functionally
similar sequences of machine code.

 /GL: enables whole program optimization.
Since we hope to achieve faster speed, so /O2, /Ob2,

/Ot, /GL are selected from relative options.

Ⅳ. SYSTEM TEST AND ANALYZE

The testing speech materials we use are 30 seconds
long, 8000 sample rate, mono channel and 16-bit word
signals.

The processing time with different optimization
strategy for all modes is presented in TableⅢ and the
comparison of time is shown in Fig. 3. If we use the
complier optimization only, the 30 seconds speech cost
about 35 seconds processing time on the mobile device.
While with all the methods, the time have reduced to
nearly 18 seconds and save nearly half time.

TABLE Ⅲ
THE COMPARISON OF PROCESSING OF ALL MODES

Mode

Time(ms)
With compiler

 optimization only
Adding algorithmic

optimization

With all optimizations
MR122 37293 24613 18675
MR102 35651 23748 18222
MR795 35986 23917 18240
MR74 33502 22244 17380
MR67 35349 22267 17384
MR59 30700 20705 16053
MR515 27892 19176 14908
MR475 34151 25066 19217

988 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

Fig. 3. The comparison of processing time of different modes

Sometimes, in the audio domain, the simple signal-to-

quantization-noise ratio (SQNR) could not reflect the
complexity of human hearing [12].For subjective test, we
use MOS (Mean Opinion Score) to evaluate speech
quality. A listener is required to evaluate the speech
quality according the standard that 5 score represents
excellent while 1 score stands for very annoying. Table
Ⅳshows the result.

Fig. 4 shows the waveform and spectral view of the
test speech, of which we can see litter difference. The
original and the speech processed by eight modes are all
presented.

The processing time of some modules is also
measured. We take mode 12.2kb/s as the example. Since
we have mainly modified the open-loop pitch analysis
and codebook search parts, we focus on the time of these
two functions. The running time is shown in Table. Ⅴ.
The percentages of each part before and after the
optimization are shown in Fig. 5.

TABLE Ⅳ

AVERAGE MOS SCORE

Modes Score
MR122 3.95
MR102 3.88
MR795 3.62
MR74 3.57
MR67 3.52
MR59 3.40
MR515 3.20
MR475 3.04

TABLE Ⅴ
THE COMPARISION OF PROCESSING

TIME OF FUCTIONS (12.2 kb/s)

Functions

Time (ms)
The

original time
The

optimized time

Open-loop pitch analysis 4931 512
Codebook search 12178 6091

Total 37293 18675

Ⅴ. CONCLUSION

This paper describes the implementation and

optimization of the AMR speech coder on mobile device.
Due to the high complexity and the constraint of
computation resource of mobile device, it is a
challenging work to achieve a real time codec on
embedded processor. We have adopted some efficient
algorithms to reduce the computational load. The
instruction optimization has also been considered. The
experiment result shows that nearly 50% of processing
time is saved while maintained the speech quality. It is
helpful to achieve high-efficiency when implementing
multimedia application on the mobile devices.

ACKNOWLEDGMENT

We thank Tao Xia,Yi Gao, Weifang Han for their
suggestions on structuring the paper.

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 989

© 2009 ACADEMY PUBLISHER

Fig. 4. The waveform and spectral view of speech
(a) The original; (b) 12.2kb/s; (c) 10.2kb/s; (d) 7.95kb/s; (e) 7.4kb/s; (f) 6.7kb/s; (g)5.9kb/s; (h) 5.15kb/s; (i) 4.75kb/s.

990 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

Fig. 5. Time rate of different parts

REFERENCES

[1] Sahafi L, Randhawa T.S, Hardy R.H.S. “Context-based
complexity reduction of H.264 in video over wireless
applications,” IEEE 6th Workshop on Multimedia Signal
Processing, Oct. 2004, pp.23 – 26,.

[2] Rao G.N, Prasad R.S.V, Chandra D.J, Narayanan S.
“Real-Time Software Implementation of H.264 Baseline
Profile Video Encoder for Mobile and Handheld Devices,”
IEEE International Conference on Acoustics, Speech and
Signal Processing, May 2006,vol 5, pp.14-19.

[3] Zhenyu Wei, Kai Lam Tang, Ngan, K.N. “Implementation
of H.264 on Mobile Device,” IEEE Transactions on
Consumer Electronics. vol 53, issue 3, pp.1109-1116 ,Aug
2007.

[4] 3GPP TS 26.071, “AMR speech codec; general
description.”

[5] 3GPP TS 26.190, “AMR wideband speech codec
transcoding functions”.

[6] H J. Kim, D.G. Jee, M. H. Park, B. S. Yoon, and S. I.
Choi, “The Real-Time Implementation of Multi-channel
AMR Codec Using TMS320C62xx DSP”, Lecture Notes
in Computer Science, Springer Berlin / Heidelberg,
Volume 2524/2003,pp 373-378,2003

[7] Andrew N Sloss. ARM System Developer's Guide:
Designing and Optimizing System Software, Elsevier,
2005, pp.79-82.

[8] Goodacre J, Sloss A. N, “Parallelism and the ARM
instruction set architecture”, IEEE Transactions on
Computer, vol 38, issue 7, pp. 42 – 50, July 2005.

[9] Kyung Jin Byun, Hee Bum Jung, Minsoo Hahn, Kyung
Soo Kim. “Computationally efficient implementation of
AMR speech coder,” Proceedings of the 3rd International
Symposium on Image and Signal Processing and Analysis,
Sept.2003. vol 1, pp.528 – 531.

[10] 3GPP TS 26.073, “ANSI-C code for the Adaptive Multi
Rate (AMR) speech codec”

[11] [Online]. Available:http://msdn.microsoft.com
[12] R. Chamberlain, E. Hemmeter, R. Morley, and J. White.

“Modeling the power consumption of audio signal
processing computations using customized numerical

representations”. Proceedings of Conference on the 36th
Annual Simulation Symposium. April 2002, pp.249-255.

Jie Yang was born in 1981. He received the B.S. degree

from Huazhong University of Science and Technology (HUST)
in 2004.He is currently pursuing the Ph.D. degree at HUST.

His main interests include signal processing, speech and
video compression.

Shengsheng Yu was born in 1944, and received the B.E.
degree in 1967.

He had been a visiting scholar in Germany from 1982 to
1983. He is currently a Professor at Huazhong University of
Science and Technology. His main field of research includes
computer network and storage, discrete signal processing and
communication.

Jingli Zhou was born in 1946. She received the B.E. degree
in 1969.

She visited USA from 1995 to 1996 as a scholar and has
been honored of the State Department Special Allowance since
1999. She is a professor at Huazhong University of Science and
Technology. Her main field of research includes computer
network and multimedia signal processing.

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 991

© 2009 ACADEMY PUBLISHER

