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Abstract—In this paper, we develop a novel clonal algorithm 
for multiobjective optimization (NCMO) which is improved 
from three approaches, i.e., dynamic mutation probability, 
dynamic simulated binary crossover (D-SBX) operator and 
hybrid mutation operator combining with Gaussian and 
polynomial mutations (GP-HM operator). Among them, the 
GP-HM operator is controlled by the dynamic mutation 
probability. These approaches adopt a cooling schedule, 
reducing the parameters gradually to a minimal threshold. 
By this means, they can enhance exploratory capabilities, 
and keep a desirable balance between global search and 
local search, so as to accelerate the convergence speed to the 
true Pareto-optimal front. When comparing NCMO with 
various state-of-the-art multiobjective optimization 
algorithms developed recently, simulation results show that 
NCMO evidently has better performance. 
 
Index Terms—multiobjective optimization; immune 
algorithm; clonal selection; hybrid mutation 
 

I.  INTRODUCTION 

In some real world problems, there exist many 
multiobjective optimization problems (MOPs) in practical 
engineering and scientific applications. Without any 
further information about the relationship among the 
objectives, it is possible to obtain a set of optimal 
solutions in which each solution is equally preferable 
when regarding all criteria considered. As a result, in 
order to provide multiple candidate selections for 
different applications, we aim at as many representative 
optimal solutions as possible.  

Evolutionary algorithms have the ability to process sets 
of solutions in parallel and explore big search spaces in 
reasonable time. Therefore, Evolutionary algorithms have 
been recognized to be well suited to MOPs. The ability to 
handle complex problems, involving features such as 
discontinuities, multimodality, disjoint feasible spaces 
and noisy function evaluations, reinforces the potential 
effectiveness of evolutionary algorithms in MOPs [1]. In 
the last few years, numerous competent Evolutionary 
algorithms have been proposed as the state-of-the-art 

algorithms for MOPs. For example, NSGA-II [2] was 
proposed with a fast nondominated sorting technology, 
elitism and crowding-distance assignment. SPEA-II [3] 
was proposed with a fine-grained fitness assignment 
strategy, an enhanced archive truncation method and a 
new density estimation technique. The pareto archived 
evolution strategy (PAES) [4] was proposed with simple 
(1+1) evolution strategy. All of them tried to design 
effective and efficient technologies to improve the 
abilities of the convergence and the diversity.  

On the other hand, Artificial Immune Systems (AIS) 
have been developed since 1990s as a new branch in 
computational intelligence, which simulate the defense of 
the human immune system against bacteria, viruses and 
other invaders [5]. A number of AIS models have been 
found applications in various fields such as machine-
learning and pattern-recognition tasks [6], network 
security [7], scheduling [8], data mining [9] and others 
[10, 11]. In recent years, AIS are also applied in MOPs 
and studies show their remarkable performances. For 
example, Coello Coello and Cortes [12] presented a 
multiobjective immune system algorithm (MISA) based 
on the clonal selection principle. Freschi and Repetto [13] 
proposed a vector artificial immune system (VAIS) based 
on the artificial immune network. Gong and Jiao et al. [14] 
proposed a nondominated neighbor-based immune 
algorithm (NNIA), by using a novel nondominated 
neighbor-based selection technique, proportional cloning, 
heuristic search operators and elitism.  

For MOPs, one of the key points is to find a uniformly 
distributed approximation set that is as close as possible to 
the Pareto-optimal front. Based on the notion that the 
preservation of representative solutions can effectively 
drive the algorithm toward the Pareto-optimal front [15], 
most of current studies pay much attention to fitness 
assignment and population maintenance such as 
crowding-distance [2], grid mechanism [16] and clustering 
technology [17]. However, rare studies pay attention to 
search operators, which can obviously accelerate the 
convergence speed.  

In this paper, we propose a novel clonal algorithm for 
MOPs (NCMO) based on the improvement of search 
operators, aiming to speed up the convergence. Three 
novel approaches, i.e., dynamic mutation probability, 
dynamic simulated binary crossover (D-SBX) operator 
and hybrid mutation operator combining with Gaussian 
and polynomial mutations (GP-HM operator), are 
proposed in this paper. Similar to the temperature 
parameter in simulated annealing, these approaches also 
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adopt a cooling schedule [17], reducing the parameters 
gradually to a minimal threshold. When NCMO is 
compared with various multiobjective optimization 
algorithms developed recently, simulation results 
illustrate that NCMO has evidently remarkable 
performance. 

The remainder of the paper is organized as follows. 
Section 2 briefly describes the definition of MOPs and 
some important terms used in MOPs. In section 3, we 
describe NCMO in details and introduce some important 
operators. Besides that, complexity analysis is also given 
in this section. Section 4 shows the simulations of NCMO 
comparing with various multiobjective optimization 
algorithms. Finally, we present some conclusions. 

II.  MULTIOBJECTIVE OPTIMIZATION PROBLEMS 

In general, taking minimization problems for example, 
the purpose of multiobjective optimization is to find a 
parameter set P that satisfies the following equation. 

 P 1 2Min ( ) ( ( ), ( ), , ( ))T
mF x f x f x f x∈Ω = L  (1) 

where Ω  is set of the decision vector and m is the 
number of the function objectives. 

For better understanding MOPs, the following four 
concepts are important [18]: 

1. Pareto dominance: A vector  0 0 0 0
1 2( , , , )nx x x x= L  is 

said to dominate another vector 1 1 1 1
1 2( , , , )nx x x x= L  

(noted as 0 1x xf ) if and only if 

 0 1 0 1: ( ) ( ) : ( ) ( ), [1, ]i i i ii f x f x i f x f x i m∀ ≤ ∧∃ ∈p (2) 

2. Pareto-optimal: A solution 0x  is said to be Pareto-
optimal if and only if  

 1 1 0:x x x¬∃ ∈Ω f  (3) 

3. Pareto-optimal set: the set P includes all Pareto-
optimal solutions:  

 0 1 1 0{ | : }P x x x x= ¬∃ ∈Ω f  (4) 

4. Pareto-optimal front: The set PF includes values of 
all objective functions corresponding to the solutions in 
P: 

 1 2{ ( ) ( ( ), ( ), , ( )) | }T
mPF f x f x f x f x x P= = ∈L  (5) 

Because the Pareto-optimal set may be infinite, so it is 
unpractical to find out all solutions in Pareto-optimal set. 
In general, the aim of multiobjective optimization 
algorithms is to find a set of some representative 
solutions, which are distributed uniformly and 
approximate the Pareto-optimal front as close as possible. 

III.  A NOVEL CLONAL ALGORITHM FOR MOPS 

It is well known that multiobjective optimization 
algorithms have two fundamental goals: one is to 
minimize the distance of the generated solutions to fit the 
Pareto-optimal set; the other is to maximize the diversity 
of the archive Pareto-set approximation [19]. In this 
study, in order to accelerate the convergence speed, the 
proposed algorithm uses three novel approaches, i.e., 
dynamic mutation probability, D-SBX operator and GP-
HM operator. Besides that, the main operators of NCMO 
also include proportional cloning operator and population 
selection operator. Moreover, elitism mechanism is used 
here and an archive is used to preserve nondominated 
solutions in order to prevent the loss of elitists. Firstly, 
we give the corresponding pseudo-code of NCMO in 
Fig.1. In this figure, our novel approaches are marked 
with boldface. 

 
Figure 1.  the pseudo-code of NCMO 

A.  Proportional Cloning Operator  
In biological immune system, cloning means that a 

group of identical cells is generated from a single 
common ancestor and only antibodies with high affinity 
will be cloned to attack the pathogens. In NCMO, only 
part of antibodies with greater crowding-distance values 
is selected to do proportional cloning and the number of 
clones is generated based on their crowding-distance 

values. By this means, nondominated antibodies with 
greater crowding-distance values will have more clones. 
Therefore, the less-crowded regions possess more clones, 
which encourages exploring the complete Pareto-optimal 
front. Assuming that 1 2{ , , , }nA  a  a   a  = L  is the 
population that is going to do cloning. The proportional 
cloning operation is defined as follows: 

 1 2( ) [ ( ), ( ) , , ( )] T
C C C C nT  A   T  a  T  a   T  a  = L  (6) 
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where ( ) ( 1,2, , )C i i i T  a   q a   i n= × = L . The value of 
( 1,2, , )i q i n= L  is the number of clones for each 

antibody ( 1,2, , )ia  i n= L , with as follows: 

 | |

1

( , )
( , )

i
i C A

jj

a A
q n

a A
ζ

ζ
=

⎡ ⎤
⎢ ⎥= ×
⎢ ⎥
⎢ ⎥∑

 (7) 

where Cn  is the given value of the clone population size 
and ( , )ia Aζ  is the crowding-distance value of the 
antibody ( 1, 2, , )ia   i n= L with as follows: 

 
1

( , )
( , )

max min

m
j i

i
j j j

a A
a A

f f
ζ

ζ
=

=
−∑  (8) 

where maxjf  and minjf  is the maximum and the 
minimum value of the j-th objective respectively and the 
definition of ( , )j ia Aζ  can be found in (9). 

Noted that when calculating the number of clones for 
each antibody, it is possible that the crowding-distance 
value is ∞  when the antibody is in boundary. In this 
case, it is set as double maximum crowding-distance 
value except the boundary solutions. 

 
, ( ( ) min{ ( )})  ( ( ) max{ ( )}), 1,2... ;

( , )
min{ ( ) ( )}, ( , 1, 2... )  ( ), ;

j i j k j i j k
j i

j k j l

if f a f a or f a f a k n
a A

f a f a k l n and k l i otherwise
ζ

∞ == == =⎧⎪= ⎨ − = ≠ ≠⎪⎩
  (9)

B.  D-SBX Operator 
The recombination operator has the ability to escape 

from local optimal, and share gene segments from parent 
chromosomes. Simulated binary crossover (SBX) [20] is 
one of main recombination operators that have been used 
in various real-coded multiobjective algorithms [2,3,14]. 
However, the SBX operator is always used with fix 
probability (usually set as 0.5) of the variables to get 
crossed. It may destroy good gene segments at the end of 
algorithm running because too many genes get crossed at 
this stage. Therefore, in NCMO, dynamic SBX (D-SBX) 
is proposed as an improved recombination operator. 
Because the selection operator selects antibodies 
according to their Pareto dominance and diversity 
estimation measured by crowding-distance value. As a 
result, if it is executed with more generations, the 
antibodies are becoming closer to the Pareto-optimal 
front. At the beginning of the algorithm execution, when 
the generated antibodies are far away from the Pareto-
optimal front, the dynamic probability is set with relative 
large value in order to share good gene segments. By this 
means, it is easy to generate better antibodies in high 
probability. With the algorithm running, the antibodies 
are becoming closer to the Pareto-optimal front, so the 
dynamic probability is becoming small gradually to a 
minimal threshold. Otherwise, the good genes segments 
may be destroyed and the antibodies can’t explore closer 
to the Pareto-optimal front.  

Ordinarily, SBX has three controllable parameters 
[15]: (1) pc: the probability for a pair of parent solutions 
to do recombination; (2) η : the magnitude of the 
expected variation from the parent values; (3) pv: the 
probability of the variables to get crossed. In D-SBX, the 
genes have dynamic probability pv to do crossover 
according to the number of generations. The dynamic 
probability of genes pv is defined as: 

 (  -  ) *  -  pvx pvy genpv pvx
maxgen

=  (10) 

where pvx and pvy is the predefined probability of the 
variables to get crossed at the beginning and at the end of 
the algorithm execution respectively, gen is the number 

of iteration, maxgen is the predefined maximum number 
of generations.  

C.  GP-HM Operator 
Polynomial mutation has been used in many real-

coded multiobjective optimization algorithms [2, 3, 14]. 
Ordinarily, Polynomial mutation has two controllable 
parameters: mutation probability and distribution index. 
However, with the fixed distribution parameter, it is not 
efficient at searching the global Pareto-optimal front. For 
example, at large search space, the convergence speed of 
polynomial mutation is very slow with the relative large 
distribution parameter and it is easy to stagnate if many 
local Pareto-optimal fronts exist. In this paper, we 
propose GP-HM operator, which combines with 
Gaussian and polynomial mutations. 

For antibody 1 2( , , , )nX x x x= L , the GP-HM operator 
is defined as: 

 ( - ), 1, 2, ,i ix  x   delta  yu yd   i n′ = + × = L  (11) 

where ix′ and ix  is the i-th decision variables after and 
before mutation respectively, yu is the upper bound of 
the i-th decision variables, yd is the lower bound of the i-
th decision variables. If polynomial mutation is selected, 
delta is a small variation which is obtained from 
polynomial distribution by using: 

 
[ ]

[ ]

1
1

1
1

2 1,   0.5
 

1 2(1 ) ,   0.5   

i i

i i

r if r
delta

r if r

η

η

δ

δ

+

+

⎧ + − <⎪= ⎨
⎪ − − + ≥⎩

 (12) 

where: 

 1max( , )
(1 2 )*( )i i

i
yu x x yd

r
yu yd

ηδ +− −
= −

−
 (13) 

ir  is an uniformly sample random number between (0,1) 
and η  is the mutation distribution index. The plot of 
delta obtained from polynomial distribution (assuming 
η  =20, ( ) / 2ix yu yd= − ) can be seen in left part of Fig 
2. It is noted that when ix is equal with yu or yd, ix′will 
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be generated randomly between yu and yd. Otherwise, 
Gaussian mutation is selected and delta is a small 
variation obtained from Gaussian distribution by using: 

 0.1 (0,1)delta N= ×  (14) 

where N(0,1) is a random Gaussian number with mean 
zero and standard deviation one. The plot of delta 
obtained from Gaussian distributions can be seen in right 
part of Fig 2. 
 

   
Figure 2.  Plot of delta obtained from the polynomial and Gaussian 
distributions respectively. 

Seen from the Fig 2, Gaussian mutation has higher 
probability to generate an offspring further away from its 
parent than polynomial mutation due to its long flat tails 
and low hill. In other words, it has a higher probability to 
escape from a local optimum. On the other hand, it also 
indicates that polynomial mutation has stronger fine-
grained search ability than Gaussian mutation in small 
regions. In GP-HM, we combine the advantages of two 
mutations by a switching parameter. The switching 
parameter is used as a threshold value to control the 
switching of two mutations. When a randomly generated 
number is smaller than the switching parameter, the 
Gaussian mutation is deployed. Otherwise, the 
polynomial mutation is deployed. The switching 
parameter sp is proposed as: 

 ( - ) *   -  spx spy gendsp spx
maxgen

=  (15) 

where spx and spy is the predefined probability to do 
Gaussian mutation at the beginning and at the end of the 
algorithm execution respectively. In general, there is 
high probability to do Gaussian mutation at the 
beginning of algorithm, which can make the proposed 
algorithm converge fast toward the Pareto-optimal front. 
When nondominated solutions are approaching the 
Pareto-optimal front, the probability with Gaussian 
mutation gradually decreases while the probability with 
polynomial mutation gradually increases. By this means, 
the algorithm gradually performs more fine-grained 
search. It is an effective and high-speed search operator, 
which well keeps the balance of global search and local 
search. 

It is noted that the mutation probability should be 
changed dynamically according to the adaptive ability of 
the immune system. In this study, the mutation 

probability is only changed according to the number of 
generations in the first half part of algorithm running as 
follows: 

   (1 )* -  2 * *( )genpm p minpm p minpm
maxgen

= +  (16) 

where minpm is the predefined minimal mutation 
probability that guarantees every antibody with one gene 
on average to do mutation and p is a predefined 
parameter that adjusts the mutation scale. While in the 
last half part of algorithm running, pm is fixed as minpm. 

D.  Population Selection And Archive Update 
Reference [21] has shown that elitism can speed up 

the performance of GA significantly and elitism scheme 
has been well adopted by many state-of-the-art EAs [2, 3, 
14]. The elitism mechanism is also deployed here. 
Nondominated antibodies are preserved in an archive, 
which is helpful to prevent the loss of good solutions 
once they are found. When the number of nondominated 
antibodies exceeds the archive size, a nondominated 
neighbor-based selection mechanism developed by Gong 

[14] is used to evaluate the nondominated antibodies. 
The selection mechanism can evidently extend the 
diversity of population and mainly focuses on less-
crowded regions. The procedures can be described as 
follows. After the child population is generated from 
proportional cloning operator, mutated with D-SBX and 
GP-HM, nondominated antibodies are identified in 
mating pool that contains the archive and the child 
population. Then, part of nondominated antibodies with 
greater crowding-distance values is selected by using the 
nondominated neighbor-based selection mechanism as 
the next generation population and the archive is updated 
with the new population. 

E.  Complexity Analysis 
The complexity analysis of NCMO is provided in this 

section. Assuming that the population size, the clone 
population size and the archive size are N, the number of 
function objectives is M. The basic operators and their 
worst time complexity are given as follows: 
1. Population initialization: O(M×N). 
2. Calculate the fitness value: O(M×2N×log(2N)). 
3. Proportional cloning operator: O(M×N). 
4. D-SBX operator and GP-HM operator: O(M×N). 
5. Procedure to identify the nondominated individuals in 

the mating pool that contains the archive and the child 
population: O(M×(2N)2). 

6. New population selection and archive update: O(2N×
log(2N)). 

Therefore, the worst total time complexity is: 

 O(M×N2) (17) 

Note that the worst time complexity of NSGA-II, 
PAES, SPEA, SPEA2 and NNIA is O(M×N2), O(M×

N), O(M×N2), O(M×N3) and O(M×N2) respectively. 
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IV.  EXPERIMENTS 

In this section, we make some simulations to present 
the performance of NCMO. At first, we give the related 
knowledge of the simulations such as benchmark 
functions and performance metrics used in this paper.  
Next, we give the simulation results of NCMO 
comparing with various multiobjective optimization 
algorithms.  

A. Benchmark Functions 
In this study, we use ten benchmark functions to 

valuate the performance of NCMO. The functions 
include five ZDT functions and five three-objective 
DTLZ functions without any inequality and equality 
constraints. Definitions of the ZDT and DTLZ functions 
can be found in Ref. [21] and Ref. [22] respectively. It is 
noted that the test problems are characterized with 
convexity, discontinuity and non-uniformity and some of 
them have many local Pareto-optimal fronts. By this 
means, they are suitable to test the comprehensive 
performance of multiobjective optimization algorithms. 

B.  Performance metrics  
As we mention above, MOPs have two goals. In order 

to compare the performance of NCMO with various 
multiobjective optimization algorithms, we adopt the 
convergence metric and the diversity metric suggested by 
Ref. [2], and the spacing metric suggested by Ref. [23]. 
These metrics are designed based on the goals. The first 
metric measures the extent of convergence to a known 
subset of the Pareto-optimal front. The last two metrics 
measure the extent of diversity of an approximation set. 
C.  Comparison of NCMO with various algorithms 

In the follow sections, we compare the performance of 
NCMO with various multiobjective optimization 
algorithms, i.e., NSGA-II (real-coded), PAES, SPEA2, 
MOEO [19] and NNIA. The simulation results are 

discussed respectively in the following. The parameters 
setting for NCMO and NNIA are tabulated in Table I.  

TABLE I.  PARAMETERS SETTING 

parameters NCMO NNIA 
Crossover probability pc 0.9 0.9 
Distribution index for SBX 20 20 
Mutation probability pm / 1/n  
Distribution index for polynomial mutation 20 20 
Population size 100 100 
Clone population size 100 100 
Population(selected to clone) size 20 20 

Besides that, the values of pvx and pvy in (10) are set 
as 0.5 and 0.25 respectively. The values of spx and spy in 
(15) are set as 0.1 and 0.02 respectively. The minimal 
mutation probability minpm and parameter p in (16) is 
set as 1/n (n is the number of decision variables) and 0.2 
respectively.  These values of parameters have been 
determined after an intensive preliminary test phase of 
the algorithm on different benchmark functions. The 
parameters setting of NSGA-II, PAES, SPEA2, and 
MOEO are found in Ref. [2] and Ref. [19]. The 
maximum of generations is 250. With these parameters 
setting, NCMO has the same simulation conditions with 
the other algorithms.  

Table II shows the mean and variance of the 
convergence metric and the diversity metric obtained by 
using NCMO, NNIA MOEO, NSGA-II, PAES and 
SPEA2 in solving five ZDT functions. Table III shows 
the mean and variance of the convergence metric and the 
spacing metric obtained by using NCMO and NNIA in 
solving five DTLZ functions. In this study, all the 
experimental results of MOEO, NSGA-II, PAES and 
SPEA-II come from Ref. [1] and Ref. [19], whereas the 
experimental results of NCMO and NNIA come from 
our simulations. The source code of NNIA can be found 
in author’s web site [24]. All the simulation results can 
be found in Table II and Table III. It is noted that the 
best result for each benchmark function is marked with 
boldface.

TABLE II.  MEAN (FIRST ROWS) AND VARIANCE (SECOND ROWS) OF THE CONVERGENCE METRIC AND DIVERSITY METRIC 

Algor
ithm 

Convergence Diversity 

 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 
NCM
O 

0.000714 0.000708 0.001276 0.003132 0.000943 0.345656 0.335635 0.516642 0.312922 0.431769 

 0.000027 0.000030 0.000117 0.001656 0.000042 0.029055 0.024773 0.013411 0.035242 0.017527 
NNIA 0.000728 0.000720 0.001319 0.002921 0.000965 0.348140 0.349681 0.521568 0.425531 0.444571 

 0.000032 0.000047 0.000072 0.001596 0.000101 0.021056 0.034588 0.025105 0.311671 0.028471 
MOE
O 

0.001277 0.001355 0.004385 0.008145 0.000630 0.32714 0.285062 0.965236 0.275664 0.225468 

 0.000697 0.000897 0.00191 0.004011 3.26E-05 0.065343 0.056978 0.046958 0.183704 0.033884 
NSGA
-II 

0.033482 0.072391 0.114500 0.513053 0.296564 0.390307 0.430776 0.738540 0.702612 0.668025 

 0.004750 0.031689 0.007940 0.118460 0.013135 0.001876 0.004721 0.019706 0.064648 0.009923 
PAES 0.082085 0.126276 0.023872 0.854816 0.085469 1.229794 1.165942 0.789920 0.870458 1.153052 

 0.008679 0.036877 0.00001 0.527238 0.006664 0.004839 0.007682 0.001653 0.101399 0.003916 
SPEA
2 

0.001448 0.000743 0.003716 0.028492 0.011643 0.472254 0.473808 0.606826 0.705629 0.670549 

 0.000317 8.33E-05 0.000586 0.047482 0.002397 0.097072 0.0939 0.191406 0.266162 0.077009 

TABLE III.  MEAN (FIRST ROWS) AND VARIANCE (SECOND ROWS) OF THE CONVERGENCE METRIC AND SPACING METRIC 

Algorithm Convergence Spacing 
 DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ6 DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ6 
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NCMO 0.039971 0.007059 0.349003 0.006821 0.013286 0.024681 0.061449 0.082850 0.058814 0.074760 
 0.106255 0.000075 0.474796 0.002523 0.002956 0.010031 0.004640 0.042446 0.003253 0.006578 

NNIA 0.039407 0.008560 4.440519 0.007805 0.014096 0.041189 0.059426 0.752856 0.060584 0.072492 
 0.103240 0.000095 7.793263 0.001075 0.002331 0.045407 0.005330 1.344594 0.004668 0.004531 

1) Comparison with some state-of-the-art EAs  
It can be observed from Table II that when regarding 

convergence metric and diversity metric, NCMO is much 
better than the state-of-the-art EAs i.e., NSGA-II, PAES 
and SPEA2 in all five ZDT functions. It apparently 
illustrates the effectiveness of NCMO. In addition, in all 
cases with NCMO, NCMO is the smallest at the variance 
of the convergence metric and the diversity metric in 
many test functions in ten runs except PAES. These 
simulations also illustrate the robustness of NCMO. 

2) Comparison with MOEO 
When regarding the diversity metric, simulations from 

Table II show that MOEO performs better than NCMO 
except in ZDT3. While regarding the convergence 
metrics, NCMO is better than MOEO except in ZDT6. In 
addition, NCMO is smaller than MOEO regarding the 
variance of the convergence metric and the diversity 
metric in many test functions in ten runs. It is very 
difficult for the proposed algorithm to obtain better 
performance in every metric. It fits the saying that most 
currently best multiobjective optimization evolutionary 
algorithms do not outperform each other, but perform 
similarly or are preferable than respect to different 
performance indicators [15]. Based on the above 
discussion, it is concluded that NCMO and MOEO have 
their own advantages. NCMO has faster convergence 
speed and more robust than MOEO, while MOEO gets 
more uniformly distributed solutions than NCMO. 

3) Comparison with NNIA 
Observed from Table II and Table III, NCMO is better 

than NNIA in four ZDT functions and four DTLZ 
functions when regarding the convergence metric. 
Especially in DTLZ3, NCMO performs much better than 
NNIA. Because DTLZ3 have | |(3 1)Mx −  local Pareto-
optimal fronts, it is very difficult to be optimized by 
many state-of-the-art multiobjective optimization 
algorithms.  It is noted that DTLZ1 also has many local 
Pareto-optimal fronts, but NCMO performs a litter worse 
than NNIA. When regarding the diversity of solutions, 
although both algorithms use the same selection 
mechanism, NCMO gets better results than NNIA in five 
ZDT functions and three DTLZ functions. These 

simulation results evidently show the advantages of our 
novel approaches in this paper. 

From the above comparison, we tabulate the 
performance results of NCMO comparing with various 
multiobjective algorithms in Table IV. 

TABLE IV.  THE PERFORMANCE RESULTS OF COMPARISON 
BETWEEN NCMO WITH VARIOUS MULTIOBJECTIVE ALGORITHMS 

 Convergence 
metric 

Diversity 
metric 

Spacing 
metric 

NCMO/NSGA-II Better Better \ 
NCMO/PAES Better Better \ 
NCMO/SPEA Better Better \ 

NCMO/SPEA-2 Better Better \ 
NCMO/MOEO Better Worse \ 
NCMO/NNIA Better Better Better 

In the above table, “Better” means that the 
performance of NCMO is generally better than other 
algorithms in the corresponding metric. “\” indicates that 
there is no comparison between NCMO and other 
algorithms. “Worse” means that the performance of 
NCMO is generally worse than other algorithms in the 
corresponding metric. In conclusion, it is evident that 
NCMO has two main advantages with the three 
improvement approaches. Firstly, NCMO can converge 
fast to the Pareto-optimal front and has the ability to 
escape from local Pareto-optimal fronts. Therefore, 
NCMO is robust when searching the global Pareto-
optimal front in big search space with many local Pareto-
optimal fronts. Secondly, NCMO is capable of keeping 
the desirable diversity of solutions. To graphically show 
the performance of NCMO, we show the images of the 
simulations obtained by NCMO in solving all benchmark 
functions respectively in Fig. 3. It is noted that the black 
line is the Pareto-optimal front and the diamond symbol 
is the corresponding front of the approximation set 
obtained by using NCMO. From the simulation images, 
it is easy to get the result that NCMO can get the 
approximation set that is distributed uniformly and close 
to the Pareto-optimal front. 

 
Zdt1                                         Zdt2                                         Zdt3                                        Zdt4                                         Zdt6 
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Figure 3.  The images of the simulations obtained by NCMO in solving all benchmark functions respectively. 

4) Simulations for the novel approaches 
In order to further investigate the performance of the 

three improvement approaches in proposed algorithm, 
we make 30 independent runs of algorithm only with one 
of three approaches, i.e., dynamic mutation probability 
(SBX operator and polynomial mutation operator), D-
SBX operator (static mutation probability and 
polynomial mutation operator) or GP-HM operator 
(static mutation probability and SBX operator) 

respectively. The parameters setting are the same with 
the above setting except that the crossover probability is 
set as 1.0. The results are shown in Table V and Table VI 
below. For increasing the precision of the convergence 
value, we find a set of more than 10000 uniformly 
spaced solutions from the Pareto-optimal front to 
calculate the convergence metric for every test functions. 
The number in brackets means times the algorithm 
converges to single approximate Pareto-optimal. 

TABLE V.  THE AVERAGE VALUE OF CONVERGENCE METRIC 
OBTAINED BY ALGORITHM WITH ONE OF THREE NOVEL APPROACHES 

AND NCMO WITH COMBINED APPROACHES 

 Dynamic  
mutation  

probability 

D-SBX GP-HM Combined
(NCMO) 

ZDT1 1.5040E-05 1.9335E-05 9.6427E-06 9.7176E-06
ZDT2 4.7625E-05(9) 4.8806E-05(5) 4.3416E-05 4.2830E-05
ZDT3 2.3015e-005 2.4277E-05 2.3778e-005 2.3290E-05
ZDT4 0.0028(9) 0.0022(11) 0.0025 0.0025 
ZDT6 5.6340e-04 5.8041e-04 5.1238e-04 5.4041e-04 

DTLZ1 0.0850 0.7040 0.0151 0.0110 
DTLZ2 0.0084 0.0081 0.0078 0.0072 
DTLZ3 7.9052 2.9255 2.4040 1.4917 
DTLZ4 0.0085(1) 0.0074(4) 0.0077(2) 0.0073 
DTLZ6 0.0147 0.0131 0.0148 0.0131 

 

TABLE VI.  THE AVERAGE VALUE OF SPACING METRIC OBTAINED 
BY ALGORITHM WITH ONE OF THREE NOVEL APPROACHES AND NCMO 

WITH COMBINED APPROACHES. 

 Dynamic 
 mutation 

probability 

D-SBX GP-HM Combined 
(NCMO) 

ZDT1 0.0071 0.0070 0.0074 0.0072 
ZDT2 0.0073(9) 0.0071(5) 0.0074 0.0072 
ZDT3 0.0081 0.0077 0.0079 0.0077 
ZDT4 0.0067(9) 0.0066(11) 0.0068 0.0063 
ZDT6 0.0056 0.0055 0.0056 0.0053 

DTLZ1 0.0561 0.2613 0.0226 0.0222 
DTLZ2 0.0580 0.0580 0.0574 0.0584 
DTLZ3 3.7108 1.8189 0.2348 0.1996 
DTLZ4 0.0591(1) 0.0575(4) 0.0565(2) 0.0582 
DTLZ6 0.0714 0.0728 0.0738 0.0746 

Observed from Table V, as far as the convergence 
metric is concerned, the algorithm performs best in 
ZDT3 if only the dynamic mutation probability is used. 
If only the D-SBX operator is used, the algorithm 
performs best in ZDT 4 and DTLZ6. If only the GP-HM 
operator is used, the algorithm performs best in ZDT1 
and ZDT 6. When all novel approaches are used, the 
algorithm performs best in ZDT2, DTLZ1, DTLZ2, 
DTLZ3, DTLZ6 and DTLZ4. 

Observed from Table VI, as far as the spacing metric 
is concerned, the algorithm performs best in DTLZ6 if 
only the dynamic mutation probability is used. If only D-
SBX is used, the algorithm performs best in ZDT1, 
ZDT2 and ZDT3. If the GP-HM is used, the algorithm 
performs best in DTLZ2 and DTLZ4. If all novel 
approaches are used, the algorithm performs best in 
ZDT3, ZDT4, ZDT6, DTLZ1 and DTLZ3. 

From the above results, it is concluded that the 
algorithm with one of three novel approaches has its own 
advantage in different test functions, but NCMO with all 
novel approaches performs best in most cases, no matter 
considering the convergence metric or the spacing 
metric. It illustrates that algorithm with D-SBX or GP-
HM is suitable to solve the test functions with many 
local Pareto-optimal fronts. When solving ZDT3 with 
discreteness features, algorithm with dynamic mutation 
probability performs best. It is rational that whether these 
approaches can work well or not is relatively decided by 
the features of the test functions. Moreover, in solving 
ZDT2, ZDT4 and DTLZ4, algorithm with one of three 
novel approaches may only converge to single Pareto-
optimal occasionally, while NCMO can get multiple 

solutions every times. It means that these three novel 
approaches can be well incorporated to preserve the 
population diversity. Only use one improved approach 
may perform better than NCMO when the optimized 
functions have some special features, but in real life 
problems, it is difficult to know the details of the 
optimized function. Therefore, it is hard to choose the 
improved approaches. However, if NCMO is used to 
solve the optimized functions, it can get better 
performance in general. 

IV.  CONCLUSIONS 

In this paper, we proposed a novel clonal algorithm 
for MOPs, which uses three novel approaches with 
dynamic mutation probability, D-SBX operator and GP-
HM operator. The notion of these approaches is 
straightforward and easy to be implemented. When 
comparing with various state-of-the-art algorithms and 
recently proposed algorithms, simulations show that 
NCMO with these approaches is robust. It can not only 
evidently accelerate the convergence speed, but also 
keep the desirable diversity. 
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