

Application of Genetic Algorithms for a Tyre
Production Scheduling Information System

Lin Liu

School of Management, Hefei University of Technology, Hefei 230009, China
liulinmail@163.com

Xinbao Liu, Hao Cheng, Ying Guo, Shanlin Yang
School of Management, Hefei University of Technology, Hefei 230009, China

lxinbao@mail.hf.ah.cn, chenghao2008@tom.com

Abstract—A optimization scheduling problem in a
enterprise of manufacturing tyres is discussed in this paper.
And this problem is reduced to a single machine scheduling
problem to minimize setup times with batchs setup time
depending on sequence. A method for solving tyre
production scheduling problem using an effective adaptive
hybrid genetic algorithm (AHGA) is proposed. We advance
a novel operator (looping & cutting operator) to improve
the mountain climbing ability of the genetic algorithm, and
put forward adaptive probabilities of crossover and
mutation based on information entropy. Computational
results show that the proposed adaptive hybrid genetic
algorithm is effective and robust.

Index Terms—genetic algorithms, scheduling,
single-machine, batch setup time

I. INTRODUCTION

Most research on scheduling problems assumes that
setup times are independent of the sequence of tasks on a
machine. It is assumed that setup times are negligible or
are added to the processing times of the tasks. However,
significant setup times are incurred in some situations
whenever a machine switches service from one task to
another. In these cases, the machine processes many
different jobs, and the setup time for a job depends on the
job that has just finished processing before it. This kind
of optimization scheduling problem was considered
when the tyre production scheduling information system
was designed in a enterprise. The enterprise
manufactures a series of tyres. The process flow of
producing tyres is that the steel ingots are rolled for
shaping after they are cut and heated, shown in Figure1.
The tyre production scheduling information system must
make a optimal production plan for the jobs on
production orders, in order to determine the optimization
sequence that the jobs will be processed.

When the capability of cutting and heating stock is
great enough, the processing sequence on rolling only

need to be considered. Then this scheduling problem is
regarded as a single-machine problem. In real-life, the
manner of manufacturing tyres is batched job processing.
The parts (jobs) in the same class are allocated into the
same batch. The parts in the same batch are in one class.
All the parts from the same batch must be processed
consecutively, i.e., batchs cannot be split. The next batch
of parts only begin to be processed after one batch
finished. A setup time, which depends on both the
previous and the current classes of jobs, is required for
the changeover task, when the rolling mill is changed
over from parts in one class to parts in a new class. The
setup tasks include changing models and adjusting
machines. The setup time lie on the type and number of
the changed models. The moulds which are used in the
parts in every class are different. So the setup time is
different if the next batch is different, that is to say the
setup times depend on sequence.

For example, there are four batchs (b1, b2, b3, b4) will
be processed. The setup times that change one to another
are shown as Table 1. The setup time is 2 hours if batch
b2 follows batch b1. It is just 1 hour if batch b3 follows
batch b1.

Supposing the processing times of all parts are
constant, the scheduling problem to minimize maximum
completion time of all jobs depends on the optimization
of setup times between batchs completely. So the
optimization objective of the scheduling problem is to
minimize all setup times. Following the description of
the three parameters, the scheduling problem is denoted
by 1/rj, s-batch /∑rj. This is a typical problem of the
optimization combination, which has been shown to be
NP-hard. There are n! schemes, if there are n batchs. The
number of schemes will go up rapidly with n becoming
large, viz. so-called “exponential burst”. At present, it is
unlikely for any algorithm to always find an optimal
solution within a practical time limit. The better methods
of solving the optimization scheduling problem are
finding a near-optimal solution by heuristic, ant-colony
algorithm, genetic algorithm, simulated annealing etc.
D.Danneberg et al.[1] proposed different heuristic
algorithms for flow shop scheduling problems with setup
times and limited batch size. C. G. Skylab R. Gupta et
al.[2] consider the problem of scheduling a single machine

Figure 1. The process flow producing tyres

Cuting steel ingots Heating Rolling

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 959

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.9.959-967

to minimize total tardiness with sequence dependent
setup times. And they presented two algorithms, a
problem space-based local search heuristic and a Greedy
Randomized Adaptive Search Procedure (GRASP) for
this problem. Ching-Jong Liao et al.[3] present an ant
colony optimization (ACO) algorithm for a single
machine scheduling problem with sequence-dependent
setup times.

In this paper, we propose a kind of adaptive hybrid
genetic algorithm (AHGA) to determine the optimal
sequence that the jobs will be processed. The proposed
AHGA has several features, including introducing a new
operator to improve the mountain climbing ability of the
genetic algorithm, and using information entropy for
computation of sharing function, and employing
information entropy for the adaptive probabilities
formula of crossover and mutation. We have also applied
the algorithm to the design of the tyre production
scheduling information system. The outline of this paper
is as follows. Section 2 starts with a brief description of
the problem. Section 3 describes our proposed AHGA
approach. Section 4 gives the results of computational
experiments. In the end section 5 concludes with a
summary of this research and a description of future
work.

TABLE 1

SETUP TIMES (IN HOUR)

From

To

b1 b2 b3 b4
b1 0 2 1 1.5
b2 2 0 1.7 2.3

b3 1 1.7 0 2.5
b4 1.5 2.3 2.5 0

II. PROBLEM FORMULATION

Suppose
(1) The identical model of parts will be allocated into

the same batch. The number of parts in each batch is
determinate, before making production plan.

(2) The processing is continual in each batch, namely
any other parts cannot begin to be processed before one
batch is finished.

(3) The setup time of one batch is relevant to the
model of parts before it.

(4) The setup time exhibit symmetry, if two different
batchs counterchange, such as the setup time of batch i
next to batch j equals that of batch j next to batch i.

Let B = {b1, b2, …, bn} be the given set of product’s
batchs, R(n×n) = {rij; rij≥0; i, j∈B} be the matrix of setup
times of batches, where rij is the setup time which is
incurred when batch j immediately follows batch i. Let
S={s1, s2, …, sn}, a scheme, be a array of set B, and π
denote the set of all arrays. The sum of setup times in
scheme S is denoted by f(S). Then this production
scheduling problem is to solve the scheme, which satisfy

)(min)(min)(
1

1
0 1∑

−

=
∈∈ +

+==
n

i
ssSSopt ii

rrSfSf
ππ

, (1)

where r0 is the first setup time before processing the first
batch of jobs. In real-life production, the setup times
required by various batchs are identity, if they are placed
in the first position. So we can regard r0 as a constant.
The optimization objective given above is equal to

∑
−

=
∈ +

=
1

1

'
1

min)(
n

i
ssSopt ii

rSf
π

 (2)

III. THE ALGORITHM

HollandJ[4] put forward a adaptive method to solve
optimization problems by mimicking the evolving
process of biological organisms in 1975. This method is
genetic algorithm. Subsequently, people develop it
continually. Now genetic algorithms have been applied
to various optimization problems widely.

The standard genetic algorithm consists of the
following steps[5].

Step 1. Determining the parameters of genetic
algorithm: population size (represented as POPSIZE),
crossover probability (represented as Pc), mutation
probability (represented as Pm).

Step 2. Initialization: The initial population which size
is POPSIZE is generated randomly, where every
individual is a string type structure. And fitness valve of
each individual is computed.

Step 3. Crossover: Two individuals selected based on
the fitness function. Then their genes, which positions
are selected randomly,are exchanged by Pc.

Step 4. Mutation: The individual is selected from the
population, and it is recombined by using mechanisms of
mutation.

Step 5. Reproduction: The fitness value of each
chromosome in current generation is calculated. Then the
regeneration times of each individual is computed, based
on these values, some of them are selected for
reproduction. The population size POPSIZE must be kept
invariable after reproduction.

Step 6. If stopping criteria is met, then the individual
with the maximum fitness value among current
generation is regarded as the optimization result, else
return step 3.

In this paper, we shall discuss the application of a kind
of adaptive hybrid genetic algorithm (AHGA) to tyre
production scheduling problem. The procedure of the
new AHGA is described in Table 2. The implementation
details are as follows.

A. Genetic code design

One of the important problem in using genetic
algorithms is deciding on how chromosomes or solutions
should be encoded. Consulted nine kinds of
representations summarized in literature [6], we
concluded to use the permutation representation based on
batchs. For our problem, a chromosome represents a
feasible solution of the problem. The size of a
chromosome is n, each position in the chromosome
corresponds to one batch number to schedule.

For example, if n=8, let the kth chromosome be pk = [3,

960 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

2, 5, 8, 1, 6, 4, 7]. The chromosome means that the
batchs are processed in the order of
b3→b2→b5→b8→b1→b6→b4→b7.

TABLE 2

ADAPTIVE HYBRID GENETIC ALGORITHM (AHGA)

BEGIN
Generate the initial population P(0), |P(0)|=N
FOR i=1 to M DO
│ FOR j=1 to N DO
│ │Select randomly two chromosomes in P(i-1)
│ │IF random<Pc THEN
│ │ │Implement Crossover on both Parents
│ │ │Add the two offsprings to P(i)
│ │ENDIF
│ENDFOR
│FOR all chromosome Pk∈P(i-1) DO
│ │IF random<Pm THEN
│ │ │Implement Mutation of Pk to obtain Pk

'
│ │ │Add Pk

' to P(i)
│ │ENDIF
│ENDFOR
│FOR all chromosome Pk

'∈P(i-1) DO
│ │IF random<Pm THEN
│ │ │Implement looping & cutting
│ │ │of Pk

' to obtain Pk
″

│ │ │Replace Pk
' by Pk

″ in P(i)
│ │ENDIF
│ENDFOR
│P(i)=P(i)∪P(i-1) (selection based on enlarged
│sampling space)
│Implement Selection in order to obtain population
│such that |P(i)|=N
ENDFOR
END

B. Initial population generation

Two questions must be considered about the initial
population. One of them is size. It costs more time of
computing during bigger size, while it is not sure that the
optimization result is gotten. In this paper, let population
size be N=2n. The other question is the way of
generating individuals in the initial population. If every
individual is generated randomly in the initial population,
the capability of seeking the optimization result should
be advanced, but the search process is hard. If the initial
population is composed of individuals which are given
by some heuristic algorithm, the average fitness value of
the population should be increased. So convergence of
performing the algorithm should be quick. But the search
process is likely to fall into premature convergence to a
local optima, because of a lack of the diversity of the
individuals.

To give attention to convergence rate and premature
convergence, a combination way is used for generating
individuals in this paper. One better individual is made
by a minimal neighborhood algorithm. Other individuals
are generated randomly. The minimal neighborhood
algorithm consists of the following steps.

step1. Look for jobs k and l in N. Let rkl=min{rij; i, j∊
N }. K and l form the prime genes of individual P. A case
that k follows l is same as a case that l follows k, because

of rk,l = rl,k here. We might as well suppose that l follows
k.

step2. let α←k, β←l.
step3. Delete jobs α and β from N.
step4. Look for job f in N. Let rfα = min{riα ; i ∊ N }.

Look for job g in N. Let rβg = min{rβj ; j ∊ N }.
step5. If rfα≤rβg, put f into p, before α. Let α←f.

Delete jobs α from N.
Else, put g into p, follows β. Let β←g.
Delete jobs β from N.

step6. If N is empty, obtain individual p.
Else, return step4.

C. Fitness and Selection

In GA, a fitness value is computed for each individual
in the population, and the objective is to find a individual
with the maximum fitness value. Inasmuch as the
objective of this research is to minimize the total setup
time, we take the fitness value of a chromosome of each
chromosome to be the reciprocal of the objective
function. namely the fitness value of a chromosome is
determined by using the following equation:

∑
−

=
+

=
1

1
1

 1
n

i
ss ii

rFitness (3)

A candidate solution with a small total setup time will
lead to a chromosome with a large fitness value. As a
result, the chromosome is given a greater chance to be
selected as a parent chromosome to breed the offspring.

The selection may avoid loss of effective genes, and
let high-powered individuals get greater probability of
survival. Consequently, the constringency speed of the
algorithm is expedited. In this paper, the Roulette Wheel
Selection is chosen as the selection strategy, which is the
method of direct proportion, and can select the individual
in dircct proportion to its fitness value.

Let N be the population size, fi be fitness value of
individual i. Then the probability which individual i is

selected is ∑
=

=
N

j
jii ffP

1

/ .

The niche method to suppress the similar individuals
to maintain large diversity of the population is employed
in selection operator. Fitness value of every individual is
adjusted with sharing function, which is put forward by
Goldberg et al.[7] in 1987. Selection operator is
implemented according to the adjusted fitness value. The
value of sharing function is large when genotype is
similar, vice versa. The sharing degree of individual in
population is defined by the information entropy theory
in this paper. Suppose that there are N individuals in the
population, and every individual is composed of n genes.
Let Rj be a set of the values of the j th genes in N
individuals. Pij denote the percentage of the values of the
j th gene lies in i th individual in Rj. Then the sharing
degree of individual in population is defined as:

∑
=

=
n

j ij
iji P

PS
1

2
1log1 , i=1, 2, …, N (4)

The fitness value of every individual is recomputed as

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 961

© 2009 ACADEMY PUBLISHER

follows:

∑
=

=
n

j ij
ijii P

Pxfxf
1

2
' 1log)()(, i=1, 2, …, N (5)

D. The genetic operators

(1) Crossover operator

The evolution of the population is done through
crossover and mutation. Through crossover, two parent
members are exchanged partly and combined to form
two new members. Crossover is the kernel operation in
genetic algorithm. It is also a mechanism for
chromosome diversification. Many crossover methods
were brought forward by scholars.

Goldberg[8] proposed partially mapping crossover
(PMX) in 1989. Davis[9] put forward order crossover
(OX) and uniform order-based crossover in 1991.
Reeves[10] proposed one-point order crossover (C1) in
1995. Croce[11] proposed linear order crossover (LOX) in
1995. Besides, other persons proposed position-based
crossover (PX) resembling OX, cycle crossover (CX) etc.
We discovered the OX is the most appropriate for this
problem according to a lot of experimentation. The OX
exercise is carried out in the following steps.

Step 1. Randomly choose two chromosomes, named

P1 and P2.
Step 2. Select randomly two different gene positions i

and j in P1 and P2. The close positions after i and j are
just crossing positions, i.e. crossing areas are between
gene positions i+1 and j.

Step 3. Copy the contents of the crossing areas to T1
and T2 respectively.

Step 4. Find out every gene positions x in P1 according
to mapping relation of the crossing areas, and let x be
empty positions. The mapping relation is 1

xp = 2
yp (y＝

i+1, i+2, …, j).
Analogously, find out every gene positions r in P2

according to mapping relation of the crossing areas, and
let r be empty positions. The mapping relation is

2
rp = 1

yp (y＝i+1, i+2, …, j).
Step 5. Move each gene toward left in P1 or P2 round

until first empty gene reach the left side of the crossing
area. Then move all empty genes into the crossing area,
and move the genes that originally lie the crossing area to
right simultaneously

Step 6. Interconvert the contents of T1 and T2, and put
them into the crossing areas of P1 and P2 respectively.
Generate new individuals P1

' and P2
'.

For example, if choose P1 = (4 9 2 8 1 7 5 3 6) and P2=

(5 7 6 3 2 4 9 1 8). Then the process employing OX to
generate offspring is demonstrated in Figure 2.

(2) Mutation operator

The mutation operator is performed immediately after

crossover. It is used to safeguard the search process from
premature convergence to a local optima. The mutation
operator rearrange the structure of a chromosome, and
helps to increase the searching power. The probability of
mutating a single gene is called the probability of
mutation pm.

The mutation operators used in genetic algorithm are,
in the main, inversing mutation, swapping mutation and
inserting mutation etc. We discovered the inserting
mutation is the most appropriate for this problem
according to a lot of experimentation.

The process of inserting mutation is shown as follows.

Step 1. Randomly choose two gene positions in

individual.
Step 2. Insert one of two behind the other. Generate

new individual P1
″.

For example, if P1

' = (8 1 7 3 2 4 5 6 9). Then the
process employing the inserting mutation to generate
offspring is described in Figure 3.

(3) Probabilities of crossover and mutation

The given values of probabilities of crossover and
mutation have an impact on genetic algorithm. Srinivas
M and Patnaik L M[12] put forward adaptive probabilities
of crossover and mutation. The probabilitie of crossover
Pc and probabilitie of mutation Pm can automatically
change by the fitness value of population. When fitness
values of every individuals in the population go the same,
Pc and Pm are able to increase automatically to escape
from a local optima. While them are scattered, Pc and Pm
are able to decrease automatically to favor the survival of
good individuals. If fitness value of the individual is
greater than average fitness value of the population, the
less Pc and Pm are given to safeguard the good solution.

mutation positions

(8 1 7． 3 2 4 5． 6 9)

(8 1 7 ．5． 3 2 4 6 9)

= P1
″

Figure 3. Inserting mutation process

cross positions cross positions

(4 9 2．┊8 1 7．┊5 3 6) (5 7 6．┊3 2 4．┊9 1 8)

(⊔9⊔┊8 1 7┊5⊔6) (5 ⊔6┊3 2 4┊9⊔⊔)

(8 1 7┊⊔⊔⊔┊5 6 9) (3 2 4┊⊔⊔⊔┊9 5 6)

(8 1 7┊3 2 4┊5 6 9) (3 2 4┊8 1 7┊9 5 6)

=P1
' =P2

'

Figure 2 Order crossover process

962 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

Contrarily, the greater Pc and Pm are given to expedite the
generation of new individual. The formulae that were
employed by Srinivas M and Patnaik L M[12] are
demonstrated as follows.

⎪
⎩

⎪
⎨

⎧

≤

>
−
−

=

avg

avg
avgc

ffk

f f
ff

ffk
P

'
2

'

max

'
max1

)(
 (6)

⎪⎩

⎪
⎨
⎧

≤

>
−
−

=

avg

avg
avgm

ffk

f f
ff

ffk
P

)(

4

max

max3
 (7)

Where fmax is the most fitness value of individual in
every population, favg is the average fitness value of the
population, f’ is the greater fitness value in two
individuals chosen to implement crossover, f is the
fitness value of individual chosen to implement mutation,
k1, k2, k3 and k4 are the given constants.

It has been observed that the difference between the
fmax and favg of the population likely to be less for a
population that has converged to optimum solution than
that for a population scattered in the solution space.
Therefore, the rate of crossover and mutation operators
should be varied depending on the value of the fmax－favg.
For all the solutions of the population, which means that
the solutions with high fitness values as well as the ones
with low fitness values are subjected to the same level of
crossover (or mutation) operation if Pc (or Pm) has the
same value. This will certainly deteriorate the
performance of GAs.[15] Later, Wu et al.[16] inserted an
additional scheme into the original mutation scheme in
order to prevent the deterioration of the performance as
follows:

⎪
⎩

⎪
⎨

⎧

≤

>
−

−
=

avgmut

avgmut
avg

mutmut

m

ffk

ff
ff

ffkfC
P

)()(~

4

max

max3 (8)

where
|}{|max)1(

)(~ 1

jmutj

sizeoff

j
jmut

ffsizeoff

ff
fC

−−

−
=

−

=
∑
−

fmut is the best fitness value among the individuals to
which the mutation with a rate Pm is applied. mut≠j,
fj=all the individuals except fmut.

The difference of the individuals in the population is
calculated by the fitness values in the above
formulations.

But this is not exact. And similitude between two

individuals is not considered when the probabilities of
crossover are calculated.

In this paper, we employ a sort of improved method to
compute adaptive probabilities of crossover and mutation
based on information entropy.

Suppose that there are N individuals in population, and
each individual is composed of n genes. Let Rj be a set of
the values of the j th genes in N individuals, bij be the
times of the values of the j th gene lies in i th individual
appear in Rj. Pij denote the percentage of the values of
the j th gene lies in i th individual in Rj. Then the
information entropy of j th genes is defined as:

∑
=

=
N

i ijij

ij
j Pb

P
H

1
2

1log (9)

The population diversity is denoted as follows:

∑∑
= =

=
n

j

N

i ijij

ij

Pb
P

n
H

1 1
2

1log1 (10)

If the population has a trend of falling into local
optimum, Pc and Pm will be increased in order to help the
algorithm to escape from local optimal. Contrariwise, the
population scatter in the solution space, Pc and Pm will be
decreased. Furthermore, if fitness value of the individual
is greater than average fitness value of the population,
the less Pc and Pm are given to safeguard it into offspring.
Whereas, the greater Pc and Pm are given to expedite the
elimination of the solution.

If two individuals which are selected for mating are
very similar, it is unnecessary that greater Pc is given,
because the significance of crossover is little. Contrarily,
if the difference of two individuals is great, the greater Pc
must be given to help improve the search efficiency, by
reason of a great probability of generating new
individuals.

The original Pc and Pm are modified as follows based
on the information entropy and above analyse.

N
HNPHPP cc

c
2

212

log
)(log −+

= (11)

N
HNPHPP mm

m
2

212

log
)(log −+

= (12)

where Pc1 be the most value of probabilities of crossover,
Pm1 be the most value of probabilities of mutation, Pc2 be
the least value of probabilities of crossover, Pm2 be the
least value of probabilities of mutation. The curves of the
adaptive probabilities of crossover and mutation is
shown in Figure 4.

Pc

Pc1

Pc2

H(N) log2n

Pm

Pm1

Pm2

H(N) log2n

Figure 4 Adaptive probabilities of crossover and mutation

information
entropy

information
entropy

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 963

© 2009 ACADEMY PUBLISHER

E. Looping & cutting operator

To advance searching efficiency, we devise a new
operator (i.e. looping & cutting operator) and combine it
with the genetic algorithm. The basic idea of this
operator is to find the optimal order that the batchs are
processed among all kinds of schemes, in which the
relative processing orders are unchanging. The process of
looping & cutting is shown as follows.

Step 1. Connect the head and end of chromosome into
a loop.

Step 2. Find the position where the setup time is
maximum in the loop.

Step 3. Cut the loop at the position where the setup
time is maximum, then form a new chromosome.

Step 4. Replace the old chromosome with the new one.

For example, there is 4 batchs of jobs to be processed.

Supposing that the setup times between batchs are shown
in Table 3.

TABLE 3

THE SETUP TIMES BETWEEN BATCHS

 b1 b2 b3 b4
b1
b2
b3
b4

0
7
5
4

7
0
6
3

5
6
0
5

4
3
5
0

If choose Told = (4 3 1 2). The chromosome means that

the batchs are processed in the order of b4→b3→b1→b2.
Connect the head and end of the chromosome into a
loop:

Then the setup time of b4→b3 is 5, the setup time of
b3→b1 is 5, the setup time of b1→b2 is 7, the setup time
of b2→b4 is 3. The position where the setup time is
maximum in the loop is between b1 and b2. Cut the loop
at where between b1 and b2. The new chromosome Tnew =
(2 4 3 1) is formed. By all appearances, the order of
b2→b4→b3→b1 is the optimization in all schemes that
relative orders are unaltered. This is shown in Table 4.

TABLE 4
ALL SCHEMES THAT RELATIVE ORDERS ARE UNALTERED

cutting point schemes total setup
time optimization

between b2 and b4
between b4 and b3
between b3 and b1
between b1 and b2

b4→b3→b1→b2
b3→b1→b2→b4
b1→b2→b4→b3
b2→b4→b3→b1

17
15
15
13

*

F. Elitist preservation strategy[13]

The new individuals are generated continually by
crossover and mutation in genetic algorithm. Although
increasing good individuals appear in the population
along with evolution, the crossover and mutation may
destroy the best individual in current population because
of their randomicity. This isn’t what we expect, by

reason of it can reduce the average fitness value of the
population, and it is a bad influence on efficiency and
convergence of performing the algorithm. We wish that
the best individual found at each generation is stored
unaltered in the next generation's population. To fill the
purpose, we used an elitist preservation strategy, where
the best individual in current population is stored and
replace the worst individual in the population after
crossover and mutation.

The process of the elitist preservation strategy
operated is described below.

(1) Find out the best individual and the worst
individual in current population.

(2) If fitness value of the best individual in the current
population is greater than of the best individual so far,
regard the best individual in the current population as the
new best individual so far.

(3) Replace the worst individual with the best
individual in the current population so far.

Elitist preservation strategy can be regarded as a part
of the selection operation. The implementation of the
strategy can promise the best individual gained so far
will not be destroyed by the crossover and mutation
operations. It is also an importance assurance that the
genetic algorithm would converge.

3.7. Stopping criterion

The program is terminated when either the maximum
number of generations is reached, or until the best
individual of the population does not change for M
consecutive generations. Where the maximum number of
generations is 300, M=30+n/4, n is number of jobs .

IV. NUMERICAL COMPUTATION AND ANALYSIS

To compare the effectiveness of various crossover
operators and mutation operators in the presented
algorithm , we consider 6 instances accord with actual
production.

The algorithm was implemented in Visual C++ 6.0
and the tests were run on a computer with a 2.8GHz
Pentium 4 CPU on the MS Windows XP operating
system.

A. The collaboration of diversified crossover operators
with other operators

For reasons of comparison, we used 3 crossover
operators respectively in the same algorithm, in which
other operators are identic. Where let the population size
N be double n. Employ the adaptive probabilities of
crossover and mutation, the inserting mutation and the
looping & cutting operator. The six cases were used in
the simulation. Where the most size of the problem is 50
because the batchs of production processed are less than
50 in the enterprise every week. Every case is run 20
times randomly. The simulation results are shown as
Table 5.

4→3→1→2

964 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

TABLE 5
THE EXPERIMENTAL RESULTS FOR 3 CROSSOVER OPERATORS

Prob. Size
(n) C**

Crossover operator
PMX

C* t % te
CX

C* t % te
OX

C* t % te
5 4 4.2 4.89 5.00 47 4.9 5.07 22.50 50 4 5.60 0.00 5
10 9 9.7 5.50 7.78 85 13.5 5.37 50.00 73 9.6 5.27 6.67 44
20 19 25 6.43 31.58 137 28.6 7.01 50.53 166 19.2 8.46 1.05 76
30 29 38.7 11.97 33.45 272 43.9 12.22 51.38 208 30.3 15.44 4.48 161
40 39 57.6 12.89 47.82 322 60.6 15.21 55.38 247 40.3 16.98 3.33 141
50 49 74.5 17.85 52.04 296 72.7 21.00 48.37 324 50.8 24.33 3.67 137

n denotes the batch size, C** is the best solution of the problem, C* is the average best solution of 20 simulations, t is the
average CPU time of 20 simulations, % is the relative deviations of C* to C**, te is the number of generations that C*
appears firstly.

Figure 5 shows the convergence situations at various
crossover operators when problem size is 50. It is easy to
see that OX crossover operator is superior to PMX and
CX especially in the large problem size if other
conditions are same. So OX crossover operator will be
selected in our algorithm.

Then we replaced the inserting mutation operator with

the inversing mutation operator and the swapping
mutation operator respectively. The simulation results
resemble the above, they aren’t shown here.

B. The collaboration of diversified mutation operators
with other operators

For the same reason, to compare the effectiveness of
various mutation operators, we also used 3 mutation
operators respectively in the same algorithm. Where the
crossover operator is OX, the adaptive probabilities of
crossover and mutation, and employ the looping &
cutting operator. other conditions are same as the above.
The simulation results are shown as Table 6. Figure 6
shows that convergence situations at various mutation
operators when problem size is 50.

The simulation results reveal that there is not large
difference between the three mutation operators. But the
inserting mutation operator is the best one. It always
gives the best solution. So the inserting mutation
operator is employed in our system.

C. The comparison between the AHGA and other GAs

In Table 7, we present a comparison between the
adaptive hybrid genetic algorithm (AHGA) and the
standard genetic algorithm (SGA) and adaptive genetic
algorithms (AGA) with simulation model. AGA is a kind
of adaptive genetic algorithm which was proposed by
Srinivas M and Patnaik L M[12] in 1994. Figure 7 shows
the convergence situations at three algorithms when
problem size is 50.

TABLE 6
THE EXPERIMENTAL RESULTS FOR 3 MUTATION OPERATORS

Prob. Size
(n) C**

Mutation operator
inversing

 C* t % te
swapping

 C* t % te
inserting

 C* t % te
5 4 4 6.99 0.00 13 4 6.23 0.00 3 4 5.60 0.00 5
10 9 10.4 6.28 15.56 39 9.4 6.23 4.44 15 9.6 5.27 6.67 44
20 19 21.4 8.37 12.63 32 20.9 7.87 10.00 47 19.2 8.46 1.05 76
30 29 35.9 10.10 23.79 55 30.1 10.29 3.79 80 30 15.44 4.48 161
40 39 40 17.01 2.56 79 42.2 16.22 8.21 75 39.3 16.98 3.33 140
50 49 53.5 25.49 9.18 89 51.3 25.20 4.69 94 50.8 24.33 3.67 137

n denotes the batch size, C** is the best solution of the problem, C* is the average best solution of 20 simulations, t is the average
CPU time of 20 simulations, % is the relative deviations of C* to C**, te is the number of generations that C* appears firstly.

Figure 5. Convergence situations at various crossovers

Figure 6. Convergence situations at various mutations

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 965

© 2009 ACADEMY PUBLISHER

TABLE 7
THE EXPERIMENTAL RESULTS FOR 3 GAS

Prob. Size
(n) C**

SGA

 C* t % te

AGA

 C* t % te

AHGA

 C* t % te

5 3.8 3.88 4.87 2.11 9 3.85 4.10 1.32 6 3.8 4.15 0.00 5

10 7.3 8.1 7.12 10.96 65 7.6 5.27 4.11 32 7.45 5.13 2.05 17

20 13.1 15.4 9.69 17.56 115 14 9.46 6.87 67 13.4 6.84 2.29 35

30 17.7 23.0 12.22 29.94 189 19.45 15.44 9.89 152 18.5 11.26 4.52 81

40 21.3 29.9 15.70 40.38 279 26.6 18.98 24.88 236 22.6 14.01 6.10 113

50 26.9 39.1 18.76 45.35 382 34.2 25.33 27.14 353 28.5 19.50 5.95 128
n denotes the batch size, C** is the best solution of the problem, C* is the average best solution of 20 simulations, t is

the average CPU time of 20 simulations, % is the relative deviations of C* to C**, te is the number of generations that
C* appears firstly.

For all the problems, we obtain better results with the

AHGA than with other GA tested at the best solution.
The best solution appears earlier in the AHGA than other
GA tested. Average CPU time of the AHGA is also
shortest.

Figure 7. Convergence situations at 3GAs

V. CONCLUSION

The paper presents a adaptive hybrid genetic algorithm
optimization approach for solving tyre production
scheduling problem to minimize setup times with batchs
setup time depending on sequence. The looping &
cutting operator, we present, improves local search
efficiency of the GA, improves optimization quality. It
makes up for the shortage of SGA.

The concept of gene entropy is used for calculation of
sharing function, adaptive probabilities of crossover and
mutation, making the measures of the extent of
individuals sharing and the diversity of the population
more accurate, so as to improve the performance of the
algorithm.

Now this AHGA has been employed to design MES
by us in a enterprise which is the largest one of
manufacturing tyres in the world. The result is
satisfactory. The setup time is retrenched after the
production scheduling is made with the MES.

We believe the idea of this AHGA, whih is proposed
in this paper, could also be further applied to the

permutation flow shop scheduling problem and the
traveling salesman problem with success if it is improved
ratherish.

ACKNOWLEDGEMENTS

Supported by the Decision Science and Technology
Research Institute, Hefei University of Technology,
Hefei, China is gratefully acknowledged. This research
received financial assistance from the National High
Technology Research and Development Program of
China (viz. 863 Program) (project No. 2006AA04Z134).

The authors would like to put on record their
appreciation to the anonymous referees for their valuable
suggestions, which have enhanced the quality of the
paper over its earlier versions.

Any errors in the paper are our own responsibility.

REFERENCES

[1] D.Danneberg et al. A Comparison of Heuristic
Algorithms for Flow Shop Scheduling Problems
with Setup Times and Limited Batch Size.
Mathematical and Computer Modelling. 1999, vol.
29, pp. 101-126.

[2] Skylab R. Gupta, Jeffrey S. Smith. Algorithms for
single machine total tardiness scheduling with
sequence dependent setups. European Journal of
Operational Research, 2006, vol. 175, pp. 722–739.

[3] Ching-Jong Liao, Hsiao-Chien Juan. An ant colony
optimization for single-machine tardiness scheduling
with sequence-dependent setups. Computers &
Operations Research, 2007, vol. 34, pp. 1899–
1909.

[4] Holland J H. Adaption in natural and artificial
systems. Cambridge, MA: MIT Press, 1975.

[5] Michalewicz Z. Genetic Algorihms+Data
Structures=Evolution Programs. Beijing: Science
Publishing House, 2000.

[6] Cheng Runwei, Gen Mitsuo, Tsujimura Yasuhiro. A
tutorial survey of job-shop scheduling problems
using genetic algorithms—PartⅡ: Hybrid genetic

966 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

search strategies. Computers & Industrial
Engineering, 1999; vol. 36, pp. 343-364.

[7] Glodberg D E. Richardson J. Genetic Algorithms
with Sharing for Multimodal Function Optimization.
In: Proc. Of 2nd Int. Conf. on Genetic Algoriths,
Lawrence Erlbaum Associates, 1987, pp. 41–49

[8] Goldberg D E. Genetic algorithms in search,
optimization, and machine learning. MA: Addison-
Wesley. 1989.

[9] Davis L. Hand book of genetic algorithms. New
York:Van Nostrand Reinhold. 1991.

[10] Reeves CR. A genetic algorithms for flow shop
sequencing. Computers and Operations Research.
1995, vol. 22, pp. 5-13.

[11] Croce F D, Tadei R, Volta G. A genetic algorithms
for the job-shop problem. Computers and Operations
Research. 1995, vol. 22, pp. 15-24.

[12] Srinivas M, Patnaik L M. Adaptive probabilities of
crossover and mutation in genetical gorithm. IEEE

Trans Systems Man and Cybernetics, 1994, vol. 24,
pp. 656-667.

[13] WANG Wan-liang, WU Qi-di, SONG Yi. Modified
Adaptive Genetic Algorithms for Solving Job-shop
Scheduling Problems. Systems Engineering Theory
& Practice, 2004, vol. 2, pp. 58-62.

[14] JosèFernando Gonçalves et al. A hybrid genetic
algorithm for the job shop scheduling problem.
European Journal of Operational Research, 2005, vol.
167, pp. 77-95.

[15] KwanWoo Kim et al. Hybrid genetic algorithm with
adaptive abilities for resource-constrained multiple
project scheduling. Computers in Industry, 2005, vol.
56, pp. 143–160.

[16] Q.H.Wu, Y.J. Cao, J.Y. Wen, Optimal reactive
power dispatch using an adaptive genetic algorithm.
Electrical Power & Energy Systems, 1998, vol. 20
(8), pp. 563–569.

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 967

© 2009 ACADEMY PUBLISHER

