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Abstract—A optimization scheduling problem in a 
enterprise of manufacturing tyres is discussed in this paper. 
And this problem is reduced to a single machine scheduling 
problem to minimize setup times with batchs setup time 
depending on sequence. A method for solving tyre 
production scheduling problem using an effective adaptive 
hybrid genetic algorithm (AHGA) is proposed. We advance 
a novel operator (looping & cutting operator) to improve 
the mountain climbing ability of the genetic algorithm, and 
put forward adaptive probabilities of crossover and 
mutation based on information entropy. Computational 
results show that the proposed adaptive hybrid genetic 
algorithm is effective and robust. 
 
Index Terms—genetic algorithms, scheduling, 
single-machine, batch setup time 
 

I.  INTRODUCTION 

Most research on scheduling problems assumes that 
setup times are independent of the sequence of tasks on a 
machine. It is assumed that setup times are negligible or 
are added to the processing times of the tasks. However, 
significant setup times are incurred in some situations 
whenever a machine switches service from one task to 
another. In these cases, the machine processes many 
different jobs, and the setup time for a job depends on the 
job that has just finished processing before it. This kind 
of optimization scheduling problem was considered 
when the tyre production scheduling information system 
was designed in a enterprise. The enterprise 
manufactures a series of tyres. The process flow of 
producing tyres is that the steel ingots are rolled for 
shaping after they are cut and heated, shown in Figure1. 
The tyre production scheduling information system must 
make a optimal production plan for the jobs on 
production orders, in order to determine the optimization 
sequence that the jobs will be processed.  

When the capability of cutting and heating stock is 
great enough, the processing sequence on rolling only 

need to be considered. Then this scheduling problem is 
regarded as a single-machine problem. In real-life, the 
manner of manufacturing tyres is batched job processing. 
The parts (jobs) in the same class are allocated into the 
same batch. The parts in the same batch are in one class. 
All the parts from the same batch must be processed 
consecutively, i.e., batchs cannot be split. The next batch 
of parts only begin to be processed after one batch 
finished. A setup time, which depends on both the 
previous and the current classes of jobs, is required for 
the changeover task, when the rolling mill is changed 
over from parts in one class to parts in a new class. The 
setup tasks include changing models and adjusting 
machines. The setup time lie on the type and number of 
the changed models. The moulds which are used in the 
parts in every class are different. So the setup time is 
different if the next batch is different, that is to say the 
setup times depend on sequence. 

For example, there are four batchs (b1, b2, b3, b4) will 
be processed. The setup times that change one to another 
are shown as Table 1. The setup time is 2 hours if batch 
b2 follows batch b1. It is just 1 hour if batch b3 follows 
batch b1. 

Supposing the processing times of all parts are 
constant, the scheduling problem to minimize maximum 
completion time of all jobs depends on the optimization 
of setup times between batchs completely. So the 
optimization objective of the scheduling problem is to 
minimize all setup times. Following the description of 
the three parameters, the scheduling problem is denoted 
by 1/rj, s-batch /∑rj. This is a typical problem of the 
optimization combination, which has been shown to be 
NP-hard. There are n! schemes, if there are n batchs. The 
number of schemes will go up rapidly with n becoming 
large, viz. so-called “exponential burst”. At present, it is 
unlikely for any algorithm to always find an optimal 
solution within a practical time limit. The better methods 
of solving the optimization scheduling problem are 
finding a near-optimal solution by heuristic, ant-colony 
algorithm, genetic algorithm, simulated annealing etc. 
D.Danneberg et al.[1] proposed different heuristic 
algorithms for flow shop scheduling problems with setup 
times and limited batch size. C. G. Skylab R. Gupta et 
al.[2] consider the problem of scheduling a single machine 

   

Figure 1. The process flow producing tyres 

Cuting steel ingots Heating Rolling 
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to minimize total tardiness with sequence dependent 
setup times. And they presented two algorithms, a 
problem space-based local search heuristic and a Greedy 
Randomized Adaptive Search Procedure (GRASP) for 
this problem. Ching-Jong Liao et al.[3] present an ant 
colony optimization (ACO) algorithm for a single 
machine scheduling problem with sequence-dependent 
setup times. 

In this paper, we propose a kind of adaptive hybrid 
genetic algorithm (AHGA) to determine the optimal 
sequence that the jobs will be processed. The proposed 
AHGA has several features, including introducing a new 
operator to improve the mountain climbing ability of the 
genetic algorithm, and using information entropy for 
computation of sharing function, and employing 
information entropy for the adaptive probabilities 
formula of crossover and mutation. We have also applied 
the algorithm to the design of the tyre production 
scheduling information system. The outline of this paper 
is as follows. Section 2 starts with a brief description of 
the problem. Section 3 describes our proposed AHGA 
approach. Section 4 gives the results of computational 
experiments. In the end section 5 concludes with a 
summary of this research and a description of future 
work. 

 
TABLE 1 

SETUP TIMES (IN HOUR) 

From 

To 

b1 b2 b3 b4 
b1 0 2 1 1.5 
b2 2 0 1.7 2.3 

b3 1 1.7 0 2.5 
b4 1.5 2.3 2.5 0 

II.  PROBLEM FORMULATION 

Suppose 
(1) The identical model of parts will be allocated into 

the same batch. The number of parts in each batch is 
determinate, before making production plan. 

(2) The processing is continual in each batch, namely 
any other parts cannot begin to be processed before one 
batch is finished. 

(3) The setup time of one batch is relevant to the 
model of parts before it. 

(4) The setup time exhibit symmetry, if two different 
batchs counterchange, such as the setup time of batch i 
next to batch j equals that of batch j next to batch i. 

Let B = {b1, b2, …, bn} be the given set of product’s 
batchs, R(n×n) = {rij; rij≥0; i, j∈B} be the matrix of setup 
times of batches, where rij is the setup time which is 
incurred when batch j immediately follows batch i. Let 
S={s1, s2, …, sn}, a scheme, be a array of set B, and π 
denote the set of all arrays. The sum of setup times in 
scheme S is denoted by f(S). Then this production 
scheduling problem is to solve the scheme, which satisfy  

)(min)(min)(
1

1
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where r0 is the first setup time before processing the first 
batch of jobs. In real-life production, the setup times 
required by various batchs are identity, if they are placed 
in the first position. So we can regard r0 as a constant. 
The optimization objective given above is equal to  
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III.  THE ALGORITHM 

HollandJ[4] put forward a adaptive method to solve 
optimization problems by mimicking the evolving 
process of biological organisms in 1975. This method is 
genetic algorithm. Subsequently, people develop it 
continually. Now genetic algorithms have been applied 
to various optimization problems widely. 

The standard genetic algorithm consists of the 
following steps[5]. 

Step 1. Determining the parameters of genetic 
algorithm: population size (represented as POPSIZE), 
crossover probability (represented as Pc), mutation 
probability (represented as Pm). 

Step 2. Initialization: The initial population which size 
is POPSIZE is generated randomly, where every 
individual is a string type structure. And fitness valve of 
each individual is computed. 

Step 3. Crossover: Two individuals selected based on 
the fitness function. Then their genes, which positions 
are selected randomly,are exchanged by Pc. 

Step 4. Mutation: The individual is selected from the 
population, and it is recombined by using mechanisms of 
mutation. 

Step 5. Reproduction: The fitness value of each 
chromosome in current generation is calculated. Then the 
regeneration times of each individual is computed, based 
on these values, some of them are selected for 
reproduction. The population size POPSIZE must be kept 
invariable after reproduction. 

Step 6. If stopping criteria is met, then the individual 
with the maximum fitness value among current 
generation is regarded as the optimization result, else 
return step 3. 

In this paper, we shall discuss the application of a kind 
of adaptive hybrid genetic algorithm (AHGA) to tyre 
production scheduling problem. The procedure of the 
new AHGA is described in Table 2. The implementation 
details are as follows. 

A. Genetic code design 

One of the important problem in using genetic 
algorithms is deciding on how chromosomes or solutions 
should be encoded. Consulted nine kinds of 
representations summarized in literature [6], we 
concluded to use the permutation representation based on 
batchs. For our problem, a chromosome represents a 
feasible solution of the problem. The size of a 
chromosome is n, each position in the chromosome 
corresponds to one batch number to schedule.  

For example, if n=8, let the kth chromosome be pk = [3, 
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2, 5, 8, 1, 6, 4, 7]. The chromosome means that the 
batchs are processed in the order of 
b3→b2→b5→b8→b1→b6→b4→b7. 

 
TABLE 2 

ADAPTIVE HYBRID GENETIC ALGORITHM (AHGA) 

BEGIN 
Generate the initial population P(0), |P(0)|=N 
FOR i=1 to M DO 
│ FOR j=1 to N DO 
│  │Select randomly two chromosomes in P(i-1) 
│  │IF random<Pc THEN 
│  │  │Implement Crossover on both Parents 
│  │  │Add the two offsprings to P(i) 
│  │ENDIF 
│ENDFOR 
│FOR all chromosome Pk∈P(i-1) DO 
│  │IF random<Pm THEN 
│  │  │Implement Mutation of Pk to obtain Pk

' 
│  │  │Add Pk

' to P(i) 
│  │ENDIF 
│ENDFOR 
│FOR all chromosome Pk

'∈P(i-1) DO 
│  │IF random<Pm THEN 
│  │  │Implement looping & cutting  
│  │  │of Pk

' to obtain Pk
″ 

│  │  │Replace Pk
' by Pk

″ in P(i) 
│  │ENDIF 
│ENDFOR 
│P(i)=P(i)∪P(i-1) (selection based on enlarged  
│sampling space) 
│Implement Selection in order to obtain population 
│such that |P(i)|=N 
ENDFOR 
END 

 

B. Initial population generation 

Two questions must be considered about the initial 
population. One of them is size. It costs more time of 
computing during bigger size, while it is not sure that the 
optimization result is gotten. In this paper, let population 
size be N=2n. The other question is the way of 
generating individuals in the initial population. If every 
individual is generated randomly in the initial population, 
the capability of seeking the optimization result should 
be advanced, but the search process is hard. If the initial 
population is composed of individuals which are given 
by some heuristic algorithm, the average fitness value of 
the population should be increased. So convergence of 
performing the algorithm should be quick. But the search 
process is likely to fall into premature convergence to a 
local optima, because of a lack of the diversity of the 
individuals.  

To give attention to convergence rate and premature 
convergence, a combination way is used for generating 
individuals in this paper. One better individual is made 
by a minimal neighborhood algorithm. Other individuals 
are generated randomly. The minimal neighborhood 
algorithm consists of the following steps. 

step1. Look for jobs k and l in N. Let rkl=min{rij; i, j∊
N }. K and l form the prime genes of individual P. A case 
that k follows l is same as a case that l follows k, because 

of rk,l = rl,k here. We might as well suppose that l follows 
k. 

step2. let α←k, β←l. 
step3. Delete jobs α and β from N. 
step4. Look for job f in N. Let rfα = min{riα ; i ∊ N }.  

Look for job g in N. Let rβg = min{rβj ; j ∊ N }. 
step5. If rfα≤rβg, put f into p, before α. Let α←f. 

Delete jobs α from N.  
Else, put g into p, follows β. Let β←g. 
Delete jobs β from N. 

step6. If N is empty, obtain individual p.  
Else, return step4. 

C. Fitness and Selection 

In GA, a fitness value is computed for each individual 
in the population, and the objective is to find a individual 
with the maximum fitness value. Inasmuch as the 
objective of this research is to minimize the total setup 
time, we take the fitness value of a chromosome of each 
chromosome to be the reciprocal of the objective 
function. namely the fitness value of a chromosome is 
determined by using the following equation: 

∑
−

=
+

=
1

1
1

 1
n

i
ss ii

rFitness                      (3) 

A candidate solution with a small total setup time will 
lead to a chromosome with a large fitness value. As a 
result, the chromosome is given a greater chance to be 
selected as a parent chromosome to breed the offspring.  

The selection may avoid loss of effective genes, and 
let high-powered individuals get greater probability of 
survival. Consequently, the constringency speed of the 
algorithm is expedited. In this paper, the Roulette Wheel 
Selection is chosen as the selection strategy, which is the 
method of direct proportion, and can select the individual 
in dircct proportion to its fitness value. 

Let N be the population size, fi be fitness value of 
individual i. Then the probability which individual i is 

selected is ∑
=

=
N

j
jii ffP

1

/ .  

The niche method to suppress the similar individuals 
to maintain large diversity of the population is employed 
in selection operator. Fitness value of every individual is 
adjusted with sharing function, which is put forward by 
Goldberg et al.[7] in 1987. Selection operator is 
implemented according to the adjusted fitness value. The 
value of sharing function is large when genotype is 
similar, vice versa. The sharing degree of individual in 
population is defined by the information entropy theory 
in this paper. Suppose that there are N individuals in the 
population, and every individual is composed of n genes. 
Let Rj be a set of the values of the j th genes in N 
individuals. Pij denote the percentage of the values of the 
j th gene lies in i th individual in Rj. Then the sharing 
degree of individual in population is defined as: 

∑
=

=
n

j ij
iji P

PS
1

2
1log1 ,  i=1, 2, …, N        (4) 

The fitness value of every individual is recomputed as 
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follows: 
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D. The genetic operators 

(1)  Crossover operator 

The evolution of the population is done through 
crossover and mutation. Through crossover, two parent 
members are exchanged partly and combined to form 
two new members. Crossover is the kernel operation in 
genetic algorithm. It is also a mechanism for 
chromosome diversification. Many crossover methods 
were brought forward by scholars. 

Goldberg[8] proposed partially mapping crossover 
(PMX) in 1989. Davis[9] put forward order crossover 
(OX) and uniform order-based crossover in 1991. 
Reeves[10] proposed one-point order crossover (C1) in 
1995. Croce[11] proposed linear order crossover (LOX) in 
1995. Besides, other persons proposed position-based 
crossover (PX) resembling OX, cycle crossover (CX) etc. 
We discovered the OX is the most appropriate for this 
problem according to a lot of experimentation. The OX 
exercise is carried out in the following steps. 

 
Step 1. Randomly choose two chromosomes, named 

P1 and P2. 
Step 2. Select randomly two different gene positions i 

and j in P1 and P2. The close positions after i and j are 
just crossing positions, i.e. crossing areas are between 
gene positions i+1 and j. 

Step 3. Copy the contents of the crossing areas to T1 
and T2 respectively. 

Step 4. Find out every gene positions x in P1 according 
to mapping relation of the crossing areas, and let x be 
empty positions. The mapping relation is 1

xp = 2
yp  (y＝

i+1, i+2, …, j). 
Analogously, find out every gene positions r in P2 

according to mapping relation of the crossing areas, and 
let r be empty positions. The mapping relation is 

2
rp = 1

yp  (y＝i+1, i+2, …, j). 
Step 5. Move each gene toward left in P1 or P2 round 

until first empty gene reach the left side of the crossing 
area. Then move all empty genes into the crossing area, 
and move the genes that originally lie the crossing area to 
right simultaneously 

Step 6. Interconvert the contents of T1 and T2, and put 
them into the crossing areas of P1 and P2 respectively. 
Generate new individuals P1

' and P2
'. 

 
For example, if choose P1 = (4 9 2 8 1 7 5 3 6) and P2= 

(5 7 6 3 2 4 9 1 8). Then the process employing OX to 
generate offspring is demonstrated in Figure 2. 

(2)  Mutation operator 

The mutation operator is performed immediately after 

crossover. It is used to safeguard the search process from 
premature convergence to a local optima. The mutation 
operator rearrange the structure of a chromosome, and 
helps to increase the searching power. The probability of 
mutating a single gene is called the probability of 
mutation pm.  

The mutation operators used in genetic algorithm are, 
in the main, inversing mutation, swapping mutation and 
inserting mutation etc. We discovered the inserting 
mutation is the most appropriate for this problem 
according to a lot of experimentation. 

The process of inserting mutation is shown as follows. 
 
Step 1. Randomly choose two gene positions in 

individual. 
Step 2. Insert one of two behind the other. Generate 

new individual P1
″. 

 
For example, if P1

' = (8 1 7 3 2 4 5 6 9). Then the 
process employing the inserting mutation to generate 
offspring is described in Figure 3. 

(3)  Probabilities of crossover and mutation 

The given values of probabilities of crossover and 
mutation have an impact on genetic algorithm. Srinivas 
M and Patnaik L M[12] put forward adaptive probabilities 
of crossover and mutation. The probabilitie of crossover 
Pc and probabilitie of mutation Pm can automatically 
change by the fitness value of population. When fitness 
values of every individuals in the population go the same, 
Pc and Pm are able to increase automatically to escape 
from a local optima. While them are scattered, Pc and Pm 
are able to decrease automatically to favor the survival of 
good individuals. If fitness value of the individual is 
greater than average fitness value of the population, the 
less Pc and Pm are given to safeguard the good solution. 

mutation positions 
 

(8 1 7． 3 2 4 5． 6 9) 
 

(8 1 7 ．5． 3 2 4 6 9) 

= P1
″ 

 

Figure 3. Inserting mutation process 

cross positions             cross positions 
 

( 4 9 2．┊8 1 7．┊5 3 6 )         ( 5 7 6．┊3 2 4．┊9 1 8 ) 

 
( ⊔9⊔┊8 1 7┊5⊔6 )         ( 5 ⊔6┊3 2 4┊9⊔⊔ ) 
 
( 8 1 7┊⊔⊔⊔┊5 6 9 )         ( 3 2 4┊⊔⊔⊔┊9 5 6 ) 
 
 
(8 1 7┊3 2 4┊5 6 9 )          (3 2 4┊8 1 7┊9 5 6 ) 

=P1
'                                   =P2

' 

 
Figure 2 Order crossover process
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Contrarily, the greater Pc and Pm are given to expedite the 
generation of new individual. The formulae that were 
employed by Srinivas M and Patnaik L M[12] are 
demonstrated as follows. 

⎪
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Where fmax is the most fitness value of individual in 
every population, favg is the average fitness value of the 
population, f’ is the greater fitness value in two 
individuals chosen to implement crossover, f is the 
fitness value of individual chosen to implement mutation, 
k1, k2, k3 and k4 are the given constants.  

It has been observed that the difference between the 
fmax and favg of the population likely to be less for a 
population that has converged to optimum solution than 
that for a population scattered in the solution space. 
Therefore, the rate of crossover and mutation operators 
should be varied depending on the value of the fmax－favg. 
For all the solutions of the population, which means that 
the solutions with high fitness values as well as the ones 
with low fitness values are subjected to the same level of 
crossover (or mutation) operation if Pc (or Pm) has the 
same value. This will certainly deteriorate the 
performance of GAs.[15] Later, Wu et al.[16] inserted an 
additional scheme into the original mutation scheme in 
order to prevent the deterioration of the performance as 
follows: 

⎪
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fmut is the best fitness value among the individuals to 
which the mutation with a rate Pm is applied. mut≠j, 
fj=all the individuals except fmut. 

The difference of the individuals in the population is 
calculated by the fitness values in the above 
formulations.  

But this is not exact. And similitude between two 

individuals is not considered when the probabilities of 
crossover are calculated.  

In this paper, we employ a sort of improved method to 
compute adaptive probabilities of crossover and mutation 
based on information entropy.  

Suppose that there are N individuals in population, and 
each individual is composed of n genes. Let Rj be a set of 
the values of the j th genes in N individuals, bij be the 
times of the values of the j th gene lies in i th individual 
appear in Rj. Pij denote the percentage of the values of 
the j th gene lies in i th individual in Rj. Then the 
information entropy of j th genes is defined as: 

∑
=

=
N

i ijij

ij
j Pb

P
H

1
2

1log                          (9) 

The population diversity is denoted as follows: 

∑∑
= =

=
n

j

N

i ijij

ij

Pb
P

n
H

1 1
2

1log1                     (10)

If the population has a trend of falling into local 
optimum, Pc and Pm will be increased in order to help the 
algorithm to escape from local optimal. Contrariwise, the 
population scatter in the solution space, Pc and Pm will be 
decreased. Furthermore, if fitness value of the individual 
is greater than average fitness value of the population, 
the less Pc and Pm are given to safeguard it into offspring. 
Whereas, the greater Pc and Pm are given to expedite the 
elimination of the solution. 

If two individuals which are selected for mating are 
very similar, it is unnecessary that greater Pc is given, 
because the significance of crossover is little. Contrarily, 
if the difference of two individuals is great, the greater Pc 
must be given to help improve the search efficiency, by 
reason of a great probability of generating new 
individuals. 

The original Pc and Pm are modified as follows based 
on the information entropy and above analyse.  

N
HNPHPP cc

c
2

212

log
)(log −+

=                (11) 

N
HNPHPP mm

m
2

212

log
)(log −+

=                 (12) 

where Pc1 be the most value of probabilities of crossover,  
Pm1 be the most value of probabilities of mutation, Pc2 be 
the least value of probabilities of crossover, Pm2 be the 
least value of probabilities of mutation. The curves of the 
adaptive probabilities of crossover and mutation is 
shown in Figure 4. 

Pc 

Pc1 

Pc2 

H(N) log2n 

Pm 

Pm1 

Pm2 

H(N) log2n 

Figure 4  Adaptive probabilities of crossover and mutation 

information 
entropy 

information 
entropy 
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E.  Looping & cutting operator 

To advance searching efficiency, we devise a new 
operator (i.e. looping & cutting operator) and combine it 
with the genetic algorithm. The basic idea of this 
operator is to find the optimal order that the batchs are 
processed among all kinds of schemes, in which the 
relative processing orders are unchanging. The process of 
looping & cutting is shown as follows. 

Step 1. Connect the head and end of chromosome into 
a loop. 

Step 2. Find the position where the setup time is 
maximum in the loop. 

Step 3. Cut the loop at the position where the setup 
time is maximum, then form a new chromosome. 

Step 4. Replace the old chromosome with the new one. 
 
For example, there is 4 batchs of jobs to be processed. 

Supposing that the setup times between batchs are shown 
in Table 3. 

 
TABLE 3 

THE SETUP TIMES BETWEEN BATCHS 

 b1 b2 b3 b4 
b1 
b2 
b3 
b4 

0 
7 
5 
4 

7 
0 
6 
3 

5 
6 
0 
5 

4 
3 
5 
0 

 
If choose Told = (4 3 1 2). The chromosome means that 

the batchs are processed in the order of b4→b3→b1→b2. 
Connect the head and end of the chromosome into a 
loop: 

Then the setup time of b4→b3 is 5, the setup time of 
b3→b1 is 5, the setup time of b1→b2 is 7, the setup time 
of b2→b4 is 3. The position where the setup time is 
maximum in the loop is between b1 and b2. Cut the loop 
at where between b1 and b2. The new chromosome Tnew = 
(2 4 3 1) is formed. By all appearances, the order of 
b2→b4→b3→b1 is the optimization in all schemes that 
relative orders are unaltered. This is shown in Table 4. 
 

TABLE 4 
ALL SCHEMES THAT RELATIVE ORDERS ARE UNALTERED 

cutting point schemes total setup 
time optimization 

between b2 and b4 
between b4 and b3 
between b3 and b1 
between b1 and b2 

b4→b3→b1→b2 
b3→b1→b2→b4 
b1→b2→b4→b3 
b2→b4→b3→b1 

17 
15 
15 
13 

 
 
 

* 

F.  Elitist preservation strategy[13] 

The new individuals are generated continually by 
crossover and mutation in genetic algorithm. Although 
increasing good individuals appear in the population 
along with evolution, the crossover and mutation may 
destroy the best individual in current population because 
of their randomicity. This isn’t what we expect, by 

reason of it can reduce the average fitness value of the 
population, and it is a bad influence on efficiency and 
convergence of performing the algorithm. We wish that 
the best individual found at each generation is stored 
unaltered in the next generation's population. To fill the 
purpose, we used an elitist preservation strategy, where 
the best individual in current population is stored and 
replace the worst individual in the population after 
crossover and mutation.  

The process of the elitist preservation strategy 
operated is described below. 

(1) Find out the best individual and the worst 
individual in current population. 

(2) If fitness value of the best individual in the current 
population is greater than of the best individual so far, 
regard the best individual in the current population as the 
new best individual so far. 

(3) Replace the worst individual with the best 
individual in the current population so far. 

Elitist preservation strategy can be regarded as a part 
of the selection operation. The implementation of the 
strategy can promise the best individual gained so far 
will not be destroyed by the crossover and mutation 
operations. It is also an importance assurance that the 
genetic algorithm would converge. 

3.7. Stopping criterion 

The program is terminated when either the maximum 
number of generations is reached, or until the best 
individual of the population does not change for M 
consecutive generations. Where the maximum number of 
generations is 300, M=30+n/4, n is number of jobs . 

IV. NUMERICAL COMPUTATION AND ANALYSIS 

To compare the effectiveness of various crossover 
operators and mutation operators in the presented 
algorithm , we consider 6 instances accord with actual 
production. 

The algorithm was implemented in Visual C++ 6.0 
and the tests were run on a computer with a 2.8GHz 
Pentium 4 CPU on the MS Windows XP operating 
system. 

A. The collaboration of diversified crossover operators 
with other operators 

For reasons of comparison, we used 3 crossover 
operators respectively in the same algorithm, in which 
other operators are identic. Where let the population size 
N be double n. Employ the adaptive probabilities of 
crossover and mutation, the inserting mutation and the 
looping & cutting operator. The six cases were used in 
the simulation. Where the most size of the problem is 50 
because the batchs of production processed are less than 
50 in the enterprise every week. Every case is run 20 
times randomly. The simulation results are shown as 
Table 5. 

4→3→1→2 
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TABLE 5 
THE EXPERIMENTAL RESULTS FOR 3 CROSSOVER OPERATORS 

Prob. Size 
(n) C** 

Crossover operator 
PMX 

C*     t      %     te 
CX 

C*    t      %      te 
OX 

C*      t     %       te   
5 4 4.2 4.89  5.00  47 4.9 5.07 22.50 50 4 5.60  0.00  5 
10 9 9.7 5.50  7.78  85 13.5 5.37 50.00 73 9.6 5.27  6.67  44 
20 19 25 6.43  31.58 137 28.6 7.01 50.53 166 19.2 8.46  1.05  76 
30 29 38.7 11.97  33.45 272 43.9 12.22 51.38 208 30.3 15.44  4.48  161 
40 39 57.6 12.89  47.82 322 60.6 15.21 55.38 247 40.3 16.98  3.33  141 
50 49 74.5 17.85  52.04 296 72.7 21.00 48.37 324 50.8 24.33  3.67  137 

n denotes the batch size, C** is the best solution of the problem, C* is the average best solution of 20 simulations, t is the 
average CPU time of 20 simulations, % is the relative deviations of C* to C**, te is the number of generations that C* 
appears firstly. 

 

Figure 5 shows the convergence situations at various 
crossover operators when problem size is 50. It is easy to 
see that OX crossover operator is superior to PMX and 
CX especially in the large problem size if other 
conditions are same. So OX crossover operator will be 
selected in our algorithm.  

Then we replaced the inserting mutation operator with 

the inversing mutation operator and the swapping 
mutation operator respectively. The simulation results 
resemble the above, they aren’t shown here. 

B.  The collaboration of diversified mutation operators 
with other operators 

For the same reason, to compare the effectiveness of 
various mutation operators, we also used 3 mutation 
operators respectively in the same algorithm. Where the 
crossover operator is OX, the adaptive probabilities of 
crossover and mutation, and employ the looping & 
cutting operator. other conditions are same as the above. 
The simulation results are shown as Table 6. Figure 6 
shows that convergence situations at various mutation 
operators when problem size is 50. 

The simulation results reveal that there is not large 
difference between the three mutation operators. But the 
inserting mutation operator is the best one. It always 
gives the best solution. So the inserting mutation 
operator is employed in our system. 

C.  The comparison between the AHGA and other GAs 

In Table 7, we present a comparison between the 
adaptive hybrid genetic algorithm (AHGA) and the 
standard genetic algorithm (SGA) and adaptive genetic 
algorithms (AGA) with simulation model. AGA is a kind 
of adaptive genetic algorithm which was proposed by 
Srinivas M and Patnaik L M[12] in 1994. Figure 7 shows 
the convergence situations at three algorithms when 
problem size is 50.  

TABLE 6 
THE EXPERIMENTAL RESULTS FOR 3 MUTATION OPERATORS 

Prob. Size 
(n) C** 

Mutation operator 
inversing 

 C*     t      %     te 
swapping 

 C*     t      %     te 
inserting 

 C*     t      %     te 
5 4 4 6.99  0.00  13 4 6.23  0.00  3 4 5.60  0.00  5 
10 9 10.4 6.28  15.56  39 9.4 6.23  4.44  15 9.6 5.27  6.67  44 
20 19 21.4 8.37  12.63  32 20.9 7.87  10.00 47 19.2 8.46  1.05  76 
30 29 35.9 10.10  23.79  55 30.1 10.29 3.79  80 30 15.44  4.48  161 
40 39 40 17.01  2.56  79 42.2 16.22 8.21  75 39.3 16.98  3.33  140 
50 49 53.5 25.49  9.18  89 51.3 25.20 4.69  94 50.8 24.33  3.67  137 

n denotes the batch size, C** is the best solution of the problem, C* is the average best solution of 20 simulations, t is the average 
CPU time of 20 simulations, % is the relative deviations of C* to C**, te is the number of generations that C* appears firstly. 

Figure 5. Convergence situations at various crossovers 

Figure 6. Convergence situations at various mutations
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TABLE 7 
THE EXPERIMENTAL RESULTS FOR 3 GAS 

Prob. Size 
(n) C** 

SGA 

 C*     t      %      te 

AGA 

 C*     t      %     te 

AHGA 

 C*     t     %     te 

5 3.8 3.88 4.87  2.11 9 3.85 4.10 1.32 6 3.8 4.15  0.00  5 

10 7.3 8.1 7.12  10.96 65 7.6 5.27 4.11 32 7.45 5.13  2.05  17 

20 13.1 15.4 9.69  17.56 115 14 9.46 6.87 67 13.4 6.84  2.29  35 

30 17.7 23.0 12.22  29.94 189 19.45 15.44 9.89 152 18.5 11.26  4.52  81 

40 21.3 29.9 15.70  40.38 279 26.6 18.98 24.88 236 22.6 14.01  6.10  113 

50 26.9 39.1 18.76  45.35 382 34.2 25.33 27.14 353 28.5 19.50  5.95  128 
n denotes the batch size, C** is the best solution of the problem, C* is the average best solution of 20 simulations, t is 

the average CPU time of 20 simulations, % is the relative deviations of C* to C**, te is the number of generations that 
C* appears firstly. 

 
For all the problems, we obtain better results with the 

AHGA than with other GA tested at the best solution. 
The best solution appears earlier in the AHGA than other 
GA tested. Average CPU time of the AHGA is also 
shortest.  

 

 
 

Figure 7. Convergence situations at 3GAs 

V. CONCLUSION 

The paper presents a adaptive hybrid genetic algorithm 
optimization approach for solving tyre production 
scheduling problem to minimize setup times with batchs 
setup time depending on sequence. The looping & 
cutting operator, we present, improves local search 
efficiency of the GA, improves optimization quality. It 
makes up for the shortage of SGA.  

The concept of gene entropy is used for calculation of 
sharing function, adaptive probabilities of crossover and 
mutation, making the measures of the extent of 
individuals sharing and the diversity of the population 
more accurate, so as to improve the performance of the 
algorithm. 

Now this AHGA has been employed to design MES 
by us in a enterprise which is the largest one of 
manufacturing tyres in the world. The result is 
satisfactory. The setup time is retrenched after the 
production scheduling is made with the MES. 

We believe the idea of this AHGA, whih is proposed 
in this paper, could also be further applied to the 

permutation flow shop scheduling problem and the 
traveling salesman problem with success if it is improved 
ratherish. 
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