
Essay on Semantics Definition in MDE
An Instrumented Approach for Model Verification
Benoı̂t Combemale? Xavier Crégut† Pierre-Loı̈c Garoche‡ Xavier Thirioux†

? Institut National de Recherche en Informatique et en Automatique (INRIA), France
† Institut de Recherche en Informatique de Toulouse (IRIT), France

‡ Office National d’Étude et de Recherche en Aérospatiale (ONERA), France

Email: first name.last name ?: @inria.fr †: @enseeiht.fr ‡: @onera.fr

Abstract— In the context of MDE (Model-Driven Engineer-
ing), our objective is to define the semantics for a given
DSL (Domain Specific Language) either to simulate its
models or to check properties on them using model-checking
techniques. In both cases, the purpose is to formalize the
DSL semantics as it is known by the DSL designer but
often in an informal way. After several experiments to define
operational semantics on the one hand, and translational
semantics on the other hand, we discuss both approaches
and we specify in which cases these semantics seem to be
judicious. As a second step, we introduce a pragmatic and
instrumented approach to define a translational semantics
and to validate it against a reference operational semantics
expressed by the DSL designer. We apply this approach to
the XSPEM process description language in order to verify
process models.

I. INTRODUCTION

In the MDE (Model-Driven Engineering), models are
defined by means of metamodels which specify their
syntax and give some structural properties that constrain
valid models. Usually they rely on an abstract syntax
(specified by means of metamodeling languages like
MOF [1], Ecore [2], [3], KM3 [4] or others) enriched with
constraints expressed using query languages like OCL [5].
The MDE practices eases as well the definition of DSL
(Domain Specific Language). These languages allow users
to concentrate on their problems because they manipulate
a formalism specific to their activity. Numerous available
frameworks (Topcased [6], GME [7], AMMA [8], etc.)
have emerged, allowing to easily define both concrete and
abstract syntax of such DSLs.

A current open issue is the expression of a behavioral
semantics allowing to execute models during the devel-
opment process. Our actual works in this context has
its roots in the different kinds of behavioral semantics
devised for programming languages engineering (e.g.,
[9]).

We carried out several experiments to define an oper-
ational semantics for a simplified process modeling lan-
guage. We have used metaprogramming languages (like
Kermeta [10]) and endogenous transformations (expressed
in ATL [11], or in AGG [12], a rewriting graph tool). We
then compared these different approaches in [13]. In both
cases, we were able to execute a model but a mandatory

preliminary step was to extend the metamodel in order
to describe the additional pieces of informations required
to capture a snapshot of the system. Different approaches
may be followed depending upon the kind of extension.
A metaprogramming approach requires to enrich the
metamodel with implemented operations. Instead, these
operations are expressed in an endogenous transformation
approach, through the transformation itself.

A second experiment was the definition of a trans-
lational semantics to Petri nets using ATL exogenous
transformations1. The obtained Petri nets could then be
executed using their own semantics. This translation
defines an behavioral semantics for the original DSL.
Once the semantics is defined by translation to another
language, we were able to reuse existing tools such
as model-checkers or simulators available on the target
model. This approach seems powerful but one of its main
drawback is the interpretation of tools results back on the
source model.

A lot of works consider this concern of defining a
semantics on a DSL. Our proposal is mainly focused on
the way used to express the semantics but also on means
to validate its consistency with respect to the one intended
by the DSL users. We do not target a general solution for
every kind of semantics and for every DSL but we rather
propose a methodology that could be instantiated in many
contexts depending on the DSL, on the granularity of the
needed semantics, and so on.

Thus, this paper broadens our tries and proposes:

• A survey (Section II) synthesizing the ways of for-
malizing the semantics definition in the model-driven
development context. It particularly addresses the
two principal approaches: exhibiting an operational
semantics, mainly through an endogeneous transfor-
mation (based on rewriting rules, automaton, etc.), or
a translational semantics which relies on a separate
formal model to embed the model semantics.

• A definition (Section III) and a complete use (Sec-
tion IV) of our proposal for the definition of a be-
havioral semantics. It starts with the definition of the

1see. http://www.eclipse.org/m2m/atl/usecases/
SimplePDL2Tina/

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 943

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.9.943-958

http://www.eclipse.org/m2m/atl/usecases/SimplePDL2Tina/
http://www.eclipse.org/m2m/atl/usecases/SimplePDL2Tina/

reference semantics of the initial metamodel, goes
on with the definition of a translational semantics,
and ends with the proof of bisimulation stating that
both semantics – the reference one and the one
obtained through the translation – characterize the
same systems2.

This second contribution presents a pragmatic approach
to define a translational semantics and reuse existing tools
of the chosen target domain. It is illustrated with an
example that considers process models and embeds them
into prioritized time Petri nets. Associated tools, such
as the Tina model checker, can then be used to observe
properties of the models. Finally, we detail a bisimulation
proof that validates the semantics defined by translation
against the reference one defined on the source DSL.

The paper is organized as follows. Section II presents
a survey of ways to define the semantics of a DSL
and discusses benefits and weaknesses of operational and
translational semantics. Section III describes the general
approach we propose to define the semantics of a DSL and
ensuring their consistency. It is illustrated in Section IV.
Last section gives some concluding remarks and future
works.

II. DEFINING AN EXECUTION SEMANTICS FOR DSL

A. Taxonomy

The intensive works on the semantics of programming
languages have provided a taxonomy of the different tech-
niques used to express a semantic according to different
needs [9]. This concern is much more recent for modeling
languages. We can identify three main techniques to
define the behavioral semantics of a DSL.

The first one is called axiomatic semantics. It consists
to define a set of properties satisfied by the model at
the different steps of its execution (like pre- and post-
conditions). Unfortunately, it usually not easy to fully
specify the behavior of the model [9]. Furthermore, an
axiomatic semantics can not be made automatically or
easily executable.

Operational semantics is the second technique. It di-
rectly manipulates the model. Thus, it allows to stay in
the same technical space and to express the evolution
of the model state in the same specific domain (fig. 1,
on the left). It generally requires to extend the initial
metamodel with the informations that describes the state
of model at execution. Several possibilities have been
explored to implement the operational semantics directly
on the abstract syntax.

The first one is to use a metaprogramming language
to express directly the behavioral semantics like a set of
operations for each concept. We can cite, for example,
operations defined with Kermeta [10], xOCL [15] or the
MOF action langage [16], [17].

2In this paper, we follow the definition of bisimulation given in [14]

MyDSL

Metamodel

Rules

operational
semantics

MyDSL

Metamodel

FormalDomain

DATA

Rules

translational
semantics

Figure 1: Operational Vs. Translational Semantics

The second way is to lay endogenous transformations
over the abstract syntax. They can be implemented using
any model transformation language.

As an example, [18] uses QVT [19] to express in-place
rewriting rules that gradually compute the values of an
OCL [5] expression. In this way, they have defined an
operational semantics of OCL and are able to compute
the value on an OCL expression. The authors had first
to complete the OCL and UML metamodels to add the
required missing dynamic informations.

Endogenous transformations have also been widely
implemented through graph transformation [20]. Graph
transformation provides a declarative and rule-based tech-
nique to define an operational semantics, but also analysis
capabilities due to its formal nature. AGG [12] is an
example of such a language that is directly usable over
Eclipse/EMF models thanks to [21]. As another example,
the GROOVE tool was used in [22] (and detailled in
[23]). Kuske, Gogolla et Ziemann [24]–[27] are also using
graph transformations (and the notion of transformation
unit [28]) to define the behavioral semantics for some
UML diagrams and their relationships.

Hausmann [29] introduces the notion of dynamic meta-
modeling (DMM) as a semantics description technique
for Visual Modeling Languages. Graph transformation is
used to define the behavior as a system of transitions.
In [30], graph transformation rules are visually defined
thanks to collaboration diagrams. [31] represents ele-
mentary transformations as UML collaborations diagrams
indicating the elements to add and/or to remove when
it is applied. These transformations are embedded in
the state of a UML activity diagram that controls the
order the transformations are applied. It thus looks like
a graphical meta-programming language (called Story
Diagrams) where actions are transformations based on
graph rewriting and control structures are provided by the
UML activity diagram.

The third technique to define the behavioral semantics
of a DSL is called translational semantics. On the con-
trary of operational semantics, a translational semantics
maps the model state into another (formally well defined)
technical space (fig. 1, on the right). Thus, it relies on an
existing semantics defined on the target technical space.
It consists to translate constructs from the initial domain
into the constructs of the formal target space. That is this
translation that gives the semantics of the initial domain.

As part of the MIC approach (Model-Integrated Com-
puting), the ISIS laboratory promotes semantics anchoring

944 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

[32] that is a kind of translational semantics. It consists to
map the DSL constructs into a semantics unit to define its
semantics. The GReAT transformation language is used
[33]. We can notice that semantics units are defined using
operational semantics, for example using Abstract State
Machines (ASM). Translational semantics is also used by
the group pUML3, called Denotational Meta Modeling,
in order to formalize some UML diagrams [34].

Numerous works use translational semantics, mainly to
take advantage of the facilities and tools available in the
target technical space (code generators, model-checkers,
simulators, visualization tools, etc.). To deal with the
complexity of a translational semantics definition and help
in handling changes in the language definition, Cleenew-
erck et al. [35] promote the separation of concerns.
They define a language module as a language construct
accompanied by its translational semantics that constitutes
an important design decision in the language. The con-
structions (i.e., the concerns) can then be assembled in
order to define the semantics of the entire DSL.

Other taxonomies have been proposed. Clark et al. [36],
recently updated in [37], share the distinction between
operational and translational semantics. Their works are
focused on the execution semantics and therefore do not
mention axiomatic semantics. They also define the notion
of semantics by extension, consisting in extending the
concepts and semantics of an existing language and thus
allowing for capitalization and reuse of semantics. Nev-
ertheless, the semantics is defined either as a operational
or translational semantics. Finally, we do not share the
definition of a denotational semantics as a mapping to a
semantic domain. For us, this is the general definition of
a semantics and thus generalizes all the other kinds.

Hausmann [29] also presents a taxonomy of techniques
to express a behavioral semantics. He lists the available
techniques to achieve specific objectives (e.g., verification
of properties, analysis of the consistency and code gener-
ation) and he identifies the general techniques to express
the semantics, including operational and translational se-
mantics.

B. Discussion

An operational semantics seems simpler to define and
to use than a translational one because it is directly
expressed on the concepts of the specific domain which
are naturally well-known by the expert. For the purpose
of animation (viewing the evolution of a model during
its execution) and/or simulation (analysing an execution)
this approach seems preferable, in particular if the model
of computation is fairly simple, for example representable
using discrete states.

However, operational semantics may not always be
easy to implement. For example, if the model of com-
putation deals with time, operational semantics definition
may become tricky and may involve to heavily extend the
source metamodel to deal with time constraints [38].

3The precise UML group, cf. http://www.cs.york.ac.uk/puml/

Furthermore, if one needs to use formal techniques like
model-checking for example, a translational semantics
seems more relevant than operational one. Indeed, state-
of-the-art existing tools rely on several years of research
and development and could not be easily generalized to
be applied to any domain specific concepts.

To use translational semantics, one has to choose the
appropriate target technical space depending on the kind
of property one wants to check or depending on the
tool one wants to use. This approach requires to define
a metamodel for the target language, which may not
already exist in a MDE model flavor, and then to define a
translation from models of the source language to models
of the target one. Finally a concrete syntax extractor is
needed in order to create the input data for the tools.

So one great benefit of the translational semantics is
to give access to any tools existing on the target space.
Obviously, it requires a good understanding of both the
source space, specific to a given domain, and the target
one, generally a more formal one. Indeed, the execution
of a model in the source language must be expressed by a
translation to the target language, relying on its behavioral
semantics. Another difficulty of the translational seman-
tics is that results obtained in the target space have to be
interpreted back according to the concepts of source one.

The work done in [39], [40] illustrates the strength
and weakness of operational and translation approach ex-
plained here-above. The authors aim at formally defining
the semantics of a DSL by translating it to the Maude
formal environment. The Maude tool is then used to
express the operational semantics using rewriting rules. It
looks like semantics anchoring approach presented in the
previous section with ASM replaced by Maude that the
purpose is not to define reusable semantics units but only
express the desired semantics. An identified drawback
is that it requires specialized knowledge and expertise
by the DSL designer who has to use the Maude tool.
Thereafter, the same authors have proposed in [41] the use
of graph transformation to directly express the operational
semantics through the abstract syntax of the DSL, which
then become more intuitive to the designer. Metamodel
and graph transformation rules are then automatically
translated into the Maude environment.

III. A PRAGMATIC AND COMBINED APPROACH TO
DEFINE CONSISTENT BEHAVIORAL SEMANTICS

We introduce in this section our pragmatic and com-
bined approach to define a behavioral semantics for
DSL. We first discuss the necessity to define a reference
operational semantics ¡refletant¿ the DSL designers ex-
periences. Then we discuss the validation of translational
semantics according to the reference one and its abstrac-
tion level.

A. The Need for a Reference Semantics

Having in mind the variety of choices that could be
made in order to express one DSL’s semantics, the first
concern should be to define a reference semantics, which

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 945

© 2009 ACADEMY PUBLISHER

should carry the most precise (or less abstract) view on
model executions. So we have to gather and take into
account every concept that every expert has pinpointed as
important according to his own standpoint. For instance,
some expert may stay focused on complex functional
properties, while some other would direct his interest
toward real-time aspects only. Obviously, independent
concerns should better be expressed independently. As
shown in section IV-C, we have defined a translational
semantics which indeed respects such a separation of
concerns. In our opinion, a reference semantics should
stay as close as possible to the model designers’ views,
and as such, should also stick to the original technical
space, avoiding its translation to a somehow distant target
space. As a consequence, a reference semantics ought to
be operational, rather than translational or axiomatic.

More than being only the most precise one, the refer-
ence semantics also gives us the opportunity to define a
formal semantics, i.e., one that could serve as a basis for
formally expressing a specification and achieving mech-
anized validation proofs. Model designers may also con-
sider other semantics, which may be designed for practical
purposes, as long as these semantics are respectful of
the reference semantics. In that case, designers will also
benefit from the specification and proof effort made on the
reference semantics, as some properties will automatically
be carried over to these other respectful semantics. The
forthcoming problem of determining whether another
given semantics is respectful of the reference semantics
will be addressed by exhibiting simulation or bisimulation
relations between these semantics.

The bisimulation relation between a reference seman-
tics and any other translational semantics is defined as
follows, as pictured in Figure 2. Note that it is a kind
of weak bisimulation, assuming the reference semantics
has no τ unobservable transitions. This hypothesis makes
sense as transitions introduced by model designers are
always meaningful and reflect observable changes in the
model.

Definition 1 (Weak Bisimulation Relation) Let us as-
sume a translation function Π between state spaces from
a reference semantics (RS) to a target semantics (TS):
For all model state S ∈ RS and for all sequence u ∈ T ∗
such that S0

u→ S, S0 being an initial state of RS:
1) ∀λ ∈ T, S′ ∈ RS,

S
λ→ S′ =⇒ Π(S) τ∗→ λ→ τ∗→ Π(S′)

2) ∀λ ∈ T, P ∈ TS,
Π(S) τ∗→ λ→ τ∗→ P =⇒

∃S′ ∈ RS s.t.

{
S

λ→ S′

Π(S′) ≡ P
where τ→ denotes a non observable transition.

We propose in the remainder a formal operational
reference semantics, as a rather standard transition system.
As is, this transition system may be directly implemented
by a set of endogenous rewrite rules, mapping each state
to its possible successor states. This approach can be

S1

P2

P1’

S2

*

*

bisimulation

ΠP1= (S1)

P2’=Π(S2)

λ λ

τ

τ

Figure 2: Bisimulation between a reference and any other
semantics

implemented by using a model transformation engine such
as ATL [11] or a graph transformation tool such as AGG
[12].

B. Taxonomy of Combined Semantics Definition

In this section, we enumerate the different approaches
used to describe a model semantics relying on a target
model with its own well defined semantics. In a general
manner, we consider in the following that the transla-
tion target model is provided with a formal small-steps
operational semantics, like the one of Petri nets. The
source DSL semantics can then be described by two
orthogonal viewpoints: the abstraction level and the kind
of description. Depending on the abstraction level used
to describe the source DSL semantics, we then identify
how to ensure the quality of the defined translational
semantics.

1) Expressing the source DSL semantics: A first char-
acteristic of the source DSL semantics is its abstraction
level. A small-steps operational semantics could, for ex-
ample, be described by a set of rewriting rules, by an
automaton or a Kripke structure. A denotational abstrac-
tion of this semantics maps each observable state to its
possible observable images by one or more applications of
these transitions or rules. Finally an axiomatic semantics,
abstracting the latter, is not operational but rather defines
a set of properties satisfied by the model at the different
steps of its execution (like pre- and post-conditions). It
does not fully specify the behavior of the model [9].

The second, very pragmatic, viewpoint is the kind of
description of this source semantics. Independently of its
abstraction level, the semantics can be described more or
less formally. Historically, DSL were used by designers to
communicate their modeling concepts. Therefore there is
no general formal framework for specifying the DSL se-
mantics. Thus the semantics description, when it exists, is
usually given informally in natural languages. Sometimes
it is defined using more formal structures such as Kripke
structures, rewriting rules or endogenous transformations.
If the semantics does not explicitly exist, whether in a
formal manner or not, its definition is a required step.

946 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

We now consider the different possible combinations of
these two DSL semantic characteristics in order to identify
the key steps during the definition of a sound translational
semantics. Whatever the precision of the initial semantics,
a domain expert identifies equivalent states with respect
to the properties of interest for the model. Each such class
is characterized by a state predicate (predicate abstraction
phase). An event or a state evolution in the model is said
to be observable if its states before and after the event are
not equivalent. In the following, the translation function
considers a model in a particular state. The image of such
a state by this function is, in the following, a Petri net with
a particular marking.

2) Translation from an Axiomatic Semantics: Expres-
sion of the Consistency: When the initial semantics is
not precise enough, it is not always possible to exhibit
a one to one mapping between this semantics and the
translational one. However, we need to be sure that the
target model satisfies the properties expressed in the
initial semantics. A standard axiomatic semantics contains
invariants, preconditions and postconditions which must
be expressed according to state predicates defined by the
expert. On a more theoretical side, there is no bisimulation
but simply a simulation of the target model by the source
model. In fact, the axiomatic semantics is not operational,
but the properties of the axiomatic semantics permits to
define a set of observable state-based properties on the
target model, that will have to be checked. We will be able
to translate only types of properties supported in target
technological space, in our case behavioral properties of
the Petri nets. The possibility of translating axiomatic
properties is thus strongly dependent on the target DSL.

This approach gives to model designers a way to ensure
minimal requirements such as typing constraints, but light
axiomatic semantics does not give strong confidence in
the results of target model analysis tools. Actually, the
definition of a semantics by translation requires to make a
lot of choices in the semantics definition and the resulting
semantics could be distant from the original one, while
being compatible with the axiomatic requirements.

3) Translation from an Operational Semantics: Bisim-
ulation Relation: The approach of translating from an
operational semantics is more promising as the distance
between the original and target semantics is smaller.

When semantics is formally expressed and described
in an operational way, one has to ensure that the original
semantics and the one obtained by translation describe
the same behaviors. Thus one needs to have a proof of
bisimulation between these two semantics. It is a proof
by induction on the abstract syntax in which one shows
that any transition in the first semantics corresponds
to a transition in the second one, and vice versa. If
one of these semantics comprises more states than the
other, it is a weak bisimulation. This proof guarantees
that the observable events of these two semantics are
identical and thus that the analyses on the target model are
relevant for the source model properties. The bisimulation
consists in showing that a model and its image by the

translation function have identical observable events at
every moment.

In the next section we propose such a model definition,
as a translation from an operational semantics defined on
process models to Petri nets. This translational semantics
definition is then validated by the weak bisimulation we
exhibit in the section IV-E. This application ensures that
we can rely on existing tools for Petri nets to verify
properties on process models.

C. Our Approach in a Nutshell
Whatever be the kind of description of the reference

semantics, the general schema of our proposal is described
by the following steps for a given metamodel:

1) reference semantics must be defined according to
the DSL designers needs.

2) an adequate target domain must be chosen depend-
ing on the intended facilities;

3) then a mapping from the initial DSL to the target
domain must be defined;

4) a validation of the mapping must be established
with respect to the reference semantics thanks to
a bisimulation proof;

5) finally, any user of the initial DSL is able to rely
on tools available in the target domain to observe
properties of its initial models.

The last four steps (2–5) can be repeated to reuse facili-
ties provided by different domains with possibly different
levels of abstraction. It thus leads to the definition of a
family of semantics.

IV. PROCESS MODELS VERIFICATION THROUGH
PRIORITIZED TIME PETRI NETS

We now illustrate the above methodology throughout
for the instrumentation of a process model DSL: we
enrich it with a semantics definition “by translation” with
respect to its reference semantics. We first present our
source DSL: XSPEM, a SPEM-based4 process meta-
model enriched with information to support the execution
of its models. We also explain how the DSL designer
may define an abstraction of XSPEM operation semantics
suited to the properties he wants to focus on. The second
part presents prioritized time Petri nets and their associ-
ated semantics. Thereafter, we propose the mapping from
XSPEM to Petri nets and express it in a MDE approach.
Finally, we validate the semantics induced by the mapping
with respect to the identified reference semantics. The
full details concerning the bisimulation proof are given in
Appendix .

A. XSPEM: an eXecutable SPEM metamodel
In our experiments, we used a simple process descrip-

tion language, the simplified XSPEM metamodel (cf.
Figure 3).

4SPEM is an OMG specification [42]. It stands for Software Process
Engineering Metamodel. SPEM is used to define software and systems
development processes and their components. SPEM is a MOF-based
metamodel [1].

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 947

© 2009 ACADEMY PUBLISHER

Activity
tmin : EInt
tmax: EInt
state: ActivityState
time: TimeState

Parameter
direction: DirectionKind
charge: EInt

WorkBreakdownElement Resource
 occurencesNb : EInt

BreakdownElement
 name: EString

WorkSequence
linkKind: WorkSequenceKind

<<enumeration>>
DirectionKind
in
out
inout

<<enumeration>>
WorkSequenceKind
finishToStart
finishToFinish
startToStart
startToFinish

0..*

 ownedParameter

1 parameterType

0..* nestedBreakdownElement

predecessor
1
0..*
linkToSuccessor

successor
1

 0..*
linkToPredecessor

<<enumeration>>
ActivityState

notStarted
inProgress
finished

<<enumeration>>
TimeState

ok
tooLate
tooEarly

Figure 3: XSPEM metamodel (simplified)

XSPEM stands for eXecutable SPEM. It is proposed
in [43] as an extension of SPEM2.0 specification [42]
in order to take into account the support of process
enactment while remaining standard. In the metamodel,
an Activity represents a general unit of work assignable to
specific performers. It may rely on inputs and produces
outputs (represented by Resource). An activity may be
broken down into sub-activities. Activities are ordered
thanks to the WorkSequence concept whose attribute
linkKind indicates when an activity can be started or
finished. The values of linkKind are defined by the
WorkSequenceKind enumeration. One value is named in
the form stateToAction where state indicates the state
that must have been reached by the source activity in
order to perform the action on the target activity. For
example, linking two activities A1 and A2 by a Work-
Sequence relation of kind finishToStart specifies that A2

will be able to start only when A1 is finished. The
direction attributes defined in Parameter could be used
to complete sequencing constraints expressed through the
WorkSequence concept.

In order to tailor a process model for a given project,
additional features have to be defined. They are required
to specify the number of used resources, expected dura-
tion, etc., and to identify the concrete resources allocated
to the project.

XSPEM includes: 1) the time interval during which
an activity must finish once started (tmin and tmax on
Activity); 2) the number of occurrences for one kind
of Resource affected to the project (occurrencesNb on
Resource); 3) the work load affected to a resource for an
activity (charge on Parameter).

In order to enact a process model, its semantics has to
be defined or at least validated by the DSL designer. So
we consider that we should not yet rely on a translational
semantics but on an operational semantics that explains
how a model/program of the DSL evolves. It thus consists
in identifying model states and transitions between these
states. As the initial definition of the DSL mainly focuses
on static properties of the domain language, a firt step
consists in adding features to the metamodel to capture

states.
XSPEM identifies two orthogonal aspects for the Ac-

tivity element. First, an activity can be not started, in-
Progress, or finished (state attribute). Secondly, there is
a notion of time and clock associated to each activity;
but this time is only relevant for transition-enabling con-
ditions (in our case transitions that start and finish an
activity) and is not explicit in state properties. Thus it
is abstracted away and yields the finite set of observable
states {tooEarly, ok , tooLate} (time attribute). This sec-
ond orthogonal aspect is only relevant when the activity is
finished. Abstracting away internal clocks doesn’t mean
they are thrown away, but only that their values are not
observable. In particular they will be needed and used in
the bisimulation proofs.

It is also necessary to take into account the concept
of a global external clock (clock ∈ R+), whose rate is
followed by the internal activity clocks when performing
idle time-elapsing transitions.

Definition 2 (xSPEM Model State) We denote a state
of an Activity by a triple (state, inT ime, clock) ∈
{notStarted, inProgress, finished} × {tooEarly, ok,
tooLate} × R+. A model state is then a mapping from
each Activity to its state in the concerned model.

a) XSPEM reference semantics: An observational
abstraction of the operational semantics of our processes
with respect to our properties can now be defined. The
expert has again to formalize the initial state and the
transition relation. In our case, it is quite natural: the
initial state is {a 7→ (notStarted, ok, 0)|a ∈ A}. The
transition relation is defined for Activity in Figure 4. It is
composed of two possible transitions: a first one allows
to start the activity and the second one to finish it. An
activity can be started whenever it is not yet activated and
when its predecessor constraints are satisfied. Concerning
the second transition rule, it has three cases depending
on the value of the clock and the timing bounds of the
considered activity.

B. Prioritized Time Petri Net

As XSPEM models real-time constraints and clocks,
we find it natural to use time extensions to basic Petri
nets.

Time Petri Nets (TPN) [44] are one of the most widely
used model for the specification and verification of real-
time systems. Time Petri nets are Petri nets (PN) in which
a non-negative real interval Is(t), with rational end-points,
is associated with each transition t of the net. Function
Is is called the Static interval function.

R+ and Q+ are the sets of non negative real numbers
and rationals, respectively. Let I+ be the set of non empty
real intervals with non negative rational end-points. For
i ∈ I+, ↓ i denotes its left end-point, and ↑ i its right
end-point (if i bounded) or ∞. For any θ ∈ R+, i −. θ
denotes the interval {x− θ|x ∈ i ∧ x ≥ θ}.

948 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

Let a be a given activity.

∀ws ∈ a.linkToPredecessor,
(ws.linkType = startToStart && ws.predecessor.state = {inProgress, finished})

|| (ws.linkType = finishedToStart && ws.predecessor.state = finished)

(notStarted, ok, clock)
StartActivity−→ (inProgress, ok, 0)

∀ws ∈ a.linkToPredecessor,
(ws.linkType = startToF inished && ws.predecessor.state ∈ {inProgress, finished})

|| (ws.linkType = finishedToF inished && ws.predecessor.state = finished)

(inProgress, ok, clock)
FinishActivity−→ (finished, tooEarly, clock) if clock < tmin

(inProgress, ok, clock)
FinishActivity−→ (finished, ok, clock) if clock ∈ [tmin, tmax[

(inProgress, ok, clock)
FinishActivity−→ (finished, tooLate, clock) if clock ≥ tmax

Figure 4: Event-based Transition Relation for Activities

Prioritized Time Petri Nets [45] extend TPNs with the
priority relation � on transitions. Priorities are repre-
sented by directed arcs between transitions, the source
transition having a higher priority.

Definition 3 (Prioritized Time Petri Net – PrTPN) A
Prioritized Time Petri net (or PrTPN) is a tuple
〈P, T,Pre,Post,�,m0, Is〉, in which 〈P, T,Pre,Post,
m0〉 is a Petri net, Is : T → I+ is a function called the
Static Interval function and � a pre-order on transitions.

P is the set of places, T is the set of transitions, Pre,
Post : T → P → N+ are the precondition and post-
condition functions, m0 : P → N+ is the initial marking.
Time Petri nets add to Petri nets the static interval
function Is, that associates a temporal interval Is(t) ∈ I+

with every transition of the net. Efts(t) = ↓Is(t) and
Lfts(t) = ↑Is(t) are called the static earliest firing time
and static latest firing time of t, respectively.

A Prioritized Time Petri net is given in Figure 5. In
such example, the place p0 has a unique token. Both
transitions t and t′ could then be fired. However they
have to satisfy both the timing constraint and the priority
expressed between them. Here, at time 0, only transition
t can be fired. But, in the valid timing range for both,
i.e. in]1, ω[, t′ must be fired before t. In any case, when
a transition is fired, it consumes a specified number of
tokens and produces also a given number of tokens. These
values are defined on input and output arcs of transitions.
Default values for both are one token, i.e. a transition
needs one token in the source place and produces one
new in the target place. In this example, the transition t′

consumes one from p0 and produces two tokens into p2.
In our graphical syntax, the number of tokens in a place is
specified by a number, when greater than one, or a black
dot, when equal to one.

States, and the temporal state transition relation t@θ−→,
are defined as follows:

Definition 4 (PrTPN state and semantics) A state of a
PrTPN is a pair s = (m, I) in which m is a marking
and I is a function called the interval function. Function

t

p1

p0 t'
p2]1,w[

[0,w[

2

Figure 5: A Prioritized Time Petri Net

I : T → I+ associates a temporal interval with every
transition enabled at m.
We write (m, I) t@θ−→ (m′, I ′) iff θ ∈ R+ and:

1) m ≥ Pre(t) ∧ θ ≥ ↓I(t)
∧ (∀k ∈ T)(m ≥ Pre(k)⇒ θ ≤ ↑I(k))
∧ (∀k ∈ T)(m ≥ Pre(k) ∧ θ ≥↓ I(k)⇒
¬k � t)

2) m′ = m−Pre(t) + Post(t)
3) (∀k∈T)(m′ ≥ Pre(k)⇒

I ′(k) = if k 6= qt ∧ m−Pre(t) ≥ Pre(k)
then I(k) −. θ else Is(k))

Transitions may fire at any time in their temporal
intervals, so states typically admit an infinite number of
successor states. As with many formal models for realtime
systems, state spaces of PrTPN are typically infinite.
Model checking PrTPN first requires to produce finite
abstractions of their state spaces, that is labeled transition
systems that preserve some classes of properties of the
PrTPN state space.

Different state equivalence class constructions have
been proposed and are available in TINA, preserving
different families of properties of the state space. State
class graph construction preserves markings of the PrTPN
and all the properties that can be expressed in linear time
temporal logics like LTL.

C. XSPEM2PETRINET Transformation

We now propose to implement the semantics defined
in the previous section in order to check XSPEM process
models. For this purpose, we formalize a transformation

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 949

© 2009 ACADEMY PUBLISHER

from XSPEM to Petri nets, thus defining a translational
semantics.

The Figure 6 presents the mapping in a graphical view.
The transformation is first defined by a structural mapping
from a XSPEM model to Petri net without any marking.
Then a second step is performed that produced a marking
in the Petri net structure. This second step is defined by
the value of the extra variables denoting the semantics
state of the XSPEM model.

b) Structural Mapping: Each Activity is translated
into three places characterizing its state (NotStarted, In-
Progress and Finished). An additional place called Started
is added to records that the activity has been started (and
may either be inProgress or finished). It corresponds to
the set identified in the operational reference semantics
(cf. Figure 4). Three places define a local clock that may
be in state TooEarly when the activity ends before tmin,
in the state TooLate when the activity ends after tmax, and
in state ok when still on time. Four transitions between
these seven places define the behavior of the modeled
activity. We rely on the use of priorities among transitions
to soundly deal with temporal constraints. As an example,
the a deadline transition is defined with a higher priority
than the a finish one (light grey in Figure 6).

Each Resource is represented by one place where
the initial marking is initialized with its number of oc-
currences (occurrencesNb). Every activity Parameter is
translated into one arc whose weight is initialized with
a charge. This arc is linked to one activity transition
according to the direction.

A WorkSequence becomes a read-arc from one place
of the source activity to a transition of the target activity
according to the linkKind.

The hierarchical decomposition of activities is rep-
resented in the form of scheduling constraints in the
following manner: (A1 �— A2) = ((A1 S2S−→ A2) &
(A2 F2F−→ A1)), S2S denoting a startToStart dependency
between activities A1 and A2 and F2F a finishToFinish
one (see WorkSequenceType on Figure 3).

c) States Mapping: Finally, the process state is char-
acterized using the markings of places characterizing the
activity state and the local clock. The different alternatives
are expressed in the Figure 6 through the use of annota-
tions. These annotations are complete with respect to the
possible combination of values for semantics variables
state and time.

D. Implementing XSPEM2PETRINET Transformation
Through MDE Practices

In order to fit the MDE view, the target model must
also be defined as a model as well as the translation from
XSPEM to Petri nets.

We first propose a Petri net metamodel that fits the
usual definition defined above in Section IV-B. Then we
rely on this metamodel to define a model transformation
from XSPEM metamodel to the Petri net one.

Node
 name: EString

Transition
tmin: EInt
tmax: EInt

Place
marking: EInt

PetriNet
 name: EString

Arc
weight: EInt
kind: ArcKind

<<enumeration>>
ArcKind

normal
readArc

1 source

1 target

outgoings
0..*

0..*
ingoings

nodes
0..*

arcs
0..*

0..* prioritize

Figure 7: PRIORITIZED TIME PETRI NET Metamodel

d) Petri Net Metamodel: Figure 7 proposes a pos-
sible metamodel for PrTPN. A PetriNet is composed of
Nodes that denote Places or Transitions. Nodes are linked
by Arcs. Arcs can be normal ones or read-arcs. An Arc
specifies the number of tokens consumed in the source
place or produced in the target one (weight). A read-arc
only checks tokens availability without removing them.
A Petri net marking is defined by the number of tokens
contained in each place (marking). Priorities are modeled
as a self-reference on the Transition element, the source
transition having a higher priority that the target one.
Finally, a time interval can be expressed on a Transition.
Obviously many models conforming to this metamodel
are invalid models. As an example, this metamodel does
not prevent from putting an arc between two places or
two transitions. Thus, we have completed it with OCL
rules to check whether models are valid or not. The
metamodel, embedding structural rules based on OCL
rules and associated to its semantics, is our target DSL.

e) Model Transformation: The transformation de-
scribed in Section IV-C and Figure 6 has been writ-
ten in ATL. The complete sources are available in the
TOPCASED5 open source project. The principles of this
approach are detailed through a complete case study on
the Eclipse website within the context of an execution
dedicated XSPEM subset (SIMPLEPDL)6.

Remark 1 (Translation Π) We denote by Π the function
that applies the ATL transformation described above on
a model. It is defined for every model that conforms to
XSPEM. As mentionned earlier in Section III-B.3, this
function is later used to reason about the initial model
and to guaranty the validity of the translation.

The Petri net model is then translated into the concrete
syntax of Tina, our target Petri net model checker, using
an ATL query PETRINET2TINA. To target other Petri
nets tools, only this last transformation would have do
be adapted.

Now that the process model is translated into a Petri
net model, we can check XSPEM properties by using

5http://www.topcased.org
6http://eclipse.org/m2m/atl/usecases/

SimplePDL2Tina

950 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

http://www.topcased.org
http://eclipse.org/m2m/atl/usecases/SimplePDL2Tina
http://eclipse.org/m2m/atl/usecases/SimplePDL2Tina

a_notStarted a_start
[0,w[

a_started

a_tooEarly a_lock
[min,min]

a_ok

 a_deadline
[max-min,max-min]

a_tooLate

r
x

a_start a_finish

y
y

a_finish
[0,w[

a_finishedtmin = min
tmax = max
state = s
time = t

a:Activity

occurrencesNb = x
r:Resource

direction = d
charge = y

p:Parameter
a:Activity

if (d = in) or
(d = inout)

if (d = out) or
(d = inout)

r:Resource r

a1:Activity

a2:Activity

linkKind = lk
ws:WorkSequence

a2_finish

a1_started

a2_start

a1_finished

if (lk = finishToFinish)if (lk = startToStart)

if (lk = finishToStart)if (lk = startToFinish)

if (s = notStarted)
if (s = started)

a_inProgress
if (s = finished)

if (s ≠ notStarted
& t = tooEarly)

if (s ≠ notStarted
& t = tooLate)if (s ≠ notStarted & t = ok)

Figure 6: XSPEM2PETRINET (Simplified) Translation

TINA [46]. Properties expressed on the XSPEM meta-
model are matched against an ATL transformation that
produces the corresponding LTL properties instantiated
from the XSPEM model.

There are two kinds of checked properties: universal
or existential. In the first case, the property must be
checked in all executions. If they fail, the tool provides
a trace counter-example. The second case corresponds to
checking that one possible execution satisfies the property,
for example the time or resources constraints. If such an
execution exists, its trace is generated by the tool. This
kind of property is usually obtain with model-checking
tools, by trying to ensure the validity of their negation.
The counter example produced by the tool is the answer
to the initial query.

E. Validating the translation

Finally, we establish a bisimulation relation between
the two semantics. This relation ensures that the con-
clusions obtained on the Petri nets also hold on the
XSPEM model: a property checked by the Tina Petri
net model checker we used, is thus a valid property on
XSPEM.

Let us first compare the number of possible transitions
in the XSPEM model and in its associated Petri net.
In the first one we have two transitions applicable to
each activity whereas in the second one we have four
transitions for each encoded activity. Therefore we need
to prove a weak bisimulation between these two models.

Theorem 1 (Weak bisimulation) Model state space
MS and Prioritized Time Petri Nets state space PNS

are in bisimulation w.r.t. the translation function Π,
according to the definition 1.

Proof: The theorem is proved by induction on the
process model structure. The initial case addresses the
bisimilarity of a single activity and its encoding. Then by
structural induction on the number of activities and their
dependences, one prove the theorem. The property for a
set of activities to be part of a bigger one is encoded by
dependence links and thus is preserved by the bisimula-
tion. The different steps of this weak bissimulation proof
are detailed in the appendix.

V. RELATED WORK

Related works presented in the survey on the definition
of semantics (Section II) are not focused on the problem
of consistency between several complementary semantics
because they aim at defining one semantics for a given
language. This is achieved either through operational
semantics or translational semantics.

Translational semantics is often used to reuse avail-
able tools of target technical space like code generators,
model-checkers and so one. The work of [47] is close
to the application domain we have used in this paper.
Indeed, the authors propose a specific mapping from
BPMN (Business Process Modeling Notation) to Petri net
in order to analyse business process models. Like most
of related works, the stress is not on the check of the
consistency of the BPMN semantics and the one given
by the translation into Petri nets. Furthermore, they do
not propose a general and generic approach to describe a
translational semantics according to an operational one.

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 951

© 2009 ACADEMY PUBLISHER

The key point is that we believe that a semantics always
exists on the DSL even if it is often only implicit or
informally described. We advocate that this semantics,
the reference semantics, has to be explicitly described
so that it can be validated by the DSL designer. One
step toward this goal is certainly achieved thanks to the
work done to make the definition of semantics easier for
example by providing a friendlier language to express
it like visual graphical notation of graph transformation
rules [30], Story Diagrams [31] or by reusing already
defined semantics units like [32].

Furthermore, we can notice that aside the reference
semantics of the DSL, several semantics may have to
be defined for the same DSL to address the problem
at different levels of abstraction or for reusing the tools
available in other technical spaces. So we had to deal
with the consistency of these different definitions of the
semantics of the same DSL.

Automatically generating the mapping defining the
translational semantics is one way that has been inves-
tigating to ensure this consistency. The approach pro-
posed in [48] is one example. Once the semantics is
defined in an operational way on the DSL (through graph
rewriting rules), they are able to translate a model of
this DSL into a Petri net having the same behavior by
construction. This translation is based on the definition
of a mapping between DSL metamodel and the Petri
net metamodel expressed through Triple Graph Grammar
(TGG). It consists in stating if an element of the source
DSL becomes a place or a token in the target Petri net.
Each rewriting rule describing the behavior of the DSL
is automatically translated into a Petri net transition. Un-
fortunately, the approach imposes strong hypothesis and
thus cannot translate arbitrary behavioral specifications. It
also constrains the metamodel because a source element
can only be map into one place or one token. In our case,
the XSPEM metamodel should be changed to define one
subclass of each possible state of an activity.

The same approach is used in [41]. As it has been
presented in Section II, they translate an operational se-
mantics defined on the DSL into the Maude environment.

A second way to verify consistency of semantics has
been proposed by Narayanan and Karsai [49]. As a first
step towards verifying model transformations, Narayanan
and Karsai propose to check if a particular generated
model is a valid representation of a particular source
model in order to verify a given property about the source
model. They establish an equivalence relation between
objects of the input and output models and use it to check
if the two models are similar in behavior. The approach
has been applied to a transformation from statecharts to
EHA (Extended Hybrid Automata) and the checking is
done according to links between input and output objects
recorded during the transformation execution. In [50] they
use semantic anchoring [32] to the same semantic unit
(Finite State Machines, FSM defined using Abstract State
Machines, ASM) to define the semantics of two variants
of statechart, and then check a weak bisimulation between

the two resulting FSM models to ensure that they are
behaviorally equivalent.

The approach does not ensure that both semantics are
consistent but it can assert whether the target model is
behaviorally equivalent to the source one for a given prop-
erty. The check has to be done for each transformation
but as it is included in the transformation process, its
execution is automatic.

The work is facilitated by the fact that the two meta-
models are quite similar and the transformation produces
a one to one mapping for states and transitions of both
metamodels. It seems to be far less obvious in the case of
general metamodels, for example in the case of XSPEM
to Petri nets. In order to help detect errors in the transfor-
mation itself, we have defined additional LTL properties
that controls that invariants on the source metamodel are
preserved of the target metamodel. For example, we can
check that the same activity cannot be at the same time
not started, running or finished. Obviously, it does not
ensure that the transformation is correct and only helps
in pointing out errors.

In the process of validating model transformations, the
notion of bisimulation is a central concern. Actually, many
different definitions of bisimulation do exist, depend-
ing upon the chosen granularity between corresponding
events of the two systems to be proved bisimilar. These
bisimulations have been defined on a semantical basis,
as relations between transition systems, but for a vast
majority of works, they have been applied to process
calculi, and especially π-calculus [51]. Still, the focus is
mainly being put on defining new variants and addressing
their properties, disregarding the eventuality of automat-
ing bisimulation proofs.

As for this last topic, some works about automatic
proofs of bisimulations recently came up, again for π-
terms and within the framework of a proof assistant:
Coq [52]. As is, the results presented in [53], [54] seem
inapplicable to our case without a considerable redesign
effort. Indeed, their heuristics for automating bisimulation
proofs have been specifically developed for π-terms, not
for arbitrary transition systems, and are obviously not
aware of our metamodeling framework. As far as we
know, the amount of related works seems quite small. And
furthermore, the special case when one system is obtained
through translation from the other is by far an unexplored
territory, even for structural and modular translations like
ours.

To conclude with a positive remark, most theoretical as
well as practical results about automation of bisimulation
proofs stemed from the study of finite state systems, a
class the simple XSPEM models presented in this paper
indeed boil down to. In this context, many questions about
bisimulations are decidable, though usually very resource
demanding, as advocated by a bunch of related tools [55],
[56].Yet this appealing property doesn’t carry over to the
general case of XSPEM models.

952 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

VI. CONCLUSION AND PERSPECTIVES

This paper gives several contributions on the definition
of model semantics. A first one is a survey of the different
techniques allowing to define and manipulate the execu-
tion of models. The different approaches are compared
with their pros and cons. Then a second contribution is the
application of one approach, the translational semantics
definition, on a DSL describing processes. Its semantics
is defined through a mapping to prioritized time Petri
nets. All the step towards the sound definition of the
DSL semantics are detailed. We formalize the initial
semantics, give the semantics of the target DSL, provide a
translation from the source metamodel to Petri nets. This
transformation is validated by a bisimulation proof.

This work is a first step toward the practical instru-
mentation of models. In particular the approach presented
here, including the transformation validation step, ensures
that one can rely on all available tools on the target model
while keeping a strong confidence in the quality of the
semantics representation. For example, model can then
be validated using static analyzers, model checkers, or
even be simulated using specific tools.

It is now essential to continue this work with the
interpretation of the results obtained on the Petri nets in
term of the XSPEM concepts. It will then provide a
transparent way to instrument high level models and gives
tool to non expert in order to manipulate their models.
For example, a trace obtained by a model checker on the
target model could be translated back as a trace of the
source model (in XSPEM) and exploited by an XSPEM
simulator. Traces corresponding to counterexamples may
be used to find errors on the source model while traces of
an existential property may be used to simulate a possible
execution.

Another perspective is a computer-aided way to build
such translational semantics. The bisimulation proof step
which seems necessary could be automated, at least
partially. Promising works of [53] and [54] address the
automated verification of bisimulation, resp. strong and
weak.

In this line of thought, we have started the design and
implementation of a formal framework for expressing
formal semantics of models, the Coq4MDE (Coq for
Model-Driven Engineering) framework, which principles
are exposed in [57]. The rationale behind Coq4MDE was
to provide a formal foundation to the various concepts of
MDE (e.g. model, metamodel, model conformity, model
transformation, etc) so that properties could be stated and
proved about general MDE concepts and some of their
specific instances. We make use of the general purpose
higher-order logic and proof assistant Coq, as it provides
an automatic mechanism for generating executable pro-
grams from proofs, loosely speaking. Thus, an operational
formal reference semantics in this framework could be au-
tomatically turned into an executable semantics, suitable
for testing and interactive simulation for instance, with no
supplementary developing effort. An immediate benefit
of this executable semantics is the possibility to put the

model designers’ reference semantics to a test, in early
stages of DSL definition, i.e., before attempting to define
a translational semantics with its bisimulation proof. Such
a feedback would surely help in designing a sensible and
suitable reference semantics in a more efficient way.

As a general conclusion, regarding the spread of model
driven engineering, more and more tools will be needed
to support model manipulation, in particular model ex-
ecution. This work proposes an approach allowing to
rely on existing formal models and tools to support new
developments.

APPENDIX

In this appendix, we give more details about the different
steps of the weak bisimulation proof.

Lemma 1 Model state space MSS where states are restricted
to a single activity and Prioritized Time Petri Nets state space
PNS are in bisimulation w.r.t. the translation function Π,
according to the definition 1.

Proof: Let S be a model state and u ∈ T∗ be such that
S0

u→ S,
1) Let S′ be a model states containing only a single Activity

such that S λ→ S′.
Then Π(S) is the Petri net described in Fig 6 describing
only one single activity in PN.

Is =


s 7→ (0, 0), f 7→ (0, w), l 7→ (min,min),
d 7→ (max−min,max−min)

P = {a notStarted, a started, a inProgress,
a finished} ∪ {a tooEarly, a ok, a tooLate}

T = {a start, a finish} ∪ {a lock, a deadline}

We associate to the transitions StartActivity and
FinishActivity of XSPEM semantics the Petri net
transitions a start and a finish respectively. The two
Petri nets remaining transitions a lock and a deadline
are our epsilon transitions, the transitions that are not
observable.
We now consider the different cases of possible transitions
applicable on S:
• StartActivity with any clock value (∀θ)

In that case, the activity in S is such that
∃clock, (notStarted, ok, clock). The precondition
about predecessor is satisfies since the considered
activity is the only one in the state.
Then S is such that the marking obtained by Π
contains a single token in the place nS.

m = {a notStarted 7→ 1}, I = {a start 7→ (0, w)}

According to the semantics of PN, m > Pre(s).
Let us compute such transition, the resulting Petri
net (m′, I ′) is such that:

m′ = {a started 7→ 1, a inProgress 7→ 1,
a tooEarly 7→ 1},

I ′ = {a lock 7→ (min,min), a finish 7→ (0, w)}.

Epsilon transitions are not computable here.
Let us go back to S′. According to the semantics of
MS, S′ is our activity with values (started, ok, 0).
Its image by the Π function gives a Petri net
(m′′, I ′′) such that

m′′ = {a started 7→ 1, a inProgress 7→ 1,
a tooEarly 7→ 1},

I ′′ = {a lock 7→ (min,min), a finish 7→ (0, w)}.

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 953

© 2009 ACADEMY PUBLISHER

We have (m′, I ′) = (m′′, I ′′)
• FinishActivity with θ < min

Let us consider the second case. S is such that its
state is described by the triple ∃clock, such that
(started, ok, clock) and clock < min time.
The resulting S′ is such that its state is described by
the triple (finished, tooEarly, clock).
The image of S by Π is (m, I) with

m = {a started 7→ 1, a inProgress 7→ 1,
a tooEarly 7→ 1},

I = {a lock 7→ (min,min), a finish 7→ (0, w)}

Π(S′) is defined as (m′, I ′) where

m′ = {a started 7→ 1, a finished 7→ 1,
a tooEarly 7→ 1},

I = {}

Let us show that

(m, I)
(τ,θ1)∗−−−−→ (f,θ2)−−−−→ (τ,θ3)∗−−−−→ (m′′, I ′′)

with θ1 + θ2 + θ3 = θ = clock
The first transition on a lock ∈ τ is not applicable,
since θ1 < min.

(m, I)
(f,θ2)−−−−→ (m′′′, I ′′′)

with m′′′ = {a started 7→ 1, a tooEarly 7→
1, a finished 7→ 1}, I ′′′ = {} Then no τ transition
is applicable.
And we have (m′′′, I ′′′) = (m′′, I ′′) = (m, I)

• FinishActivity with min ≤ θ < max
S = (started, ok, clock) and min time ≤ clock <
max time.
S′ = (finished, ok, clock)
Π(S) = (m, I) with

m = {a started 7→ 1, a inProgress 7→ 1,
a tooEarly 7→ 1},

I = {a lock 7→ (min,min), a finish 7→ (0, w)}

Π(S′) = (m′, I ′) with

m′ = {a started 7→ 1, a finished 7→ 1, a ok 7→ 1}, I = {}

Let us now show that

(m, I)
(τ,θ1)∗−−−−→ (f,θ2)−−−−→ (τ,θ1)∗−−−−→ (m′, I ′)

with θ1 + θ2 + θ3 = θ = clock
Transitions a lock and a finish are applicable to
(m, I).
The transition a lock ∈ τ could be applicable
since m > Pre(l). If θ1 < min then the transi-
tion a lock is not applicable. A first case is when
(m, I)

(f,θ2)−−−−→ (m2, I2) with m2 = {a started 7→
1, a finished 7→ 1, a tooEarly 7→ 1}, I2 = {}
and θ2 = clock But according to the PN semantics,
θ2 must then be < min. The transition is not
computable.
Then θ1 must be ≥ min. Furthermore θ1 ≤ w. The
transition occurs.

(m, I)
(l,θ1)−−−→ (m′2, I

′
2)

with m′2 = {a started 7→ 1, a ok 7→
1, a inProgress 7→ 1}, I ′2 = {a deadline 7→
(max − min,max − min), a finish 7→ (0, w)}
(we have m − Pre(l) < Pre(d) & m − Pre(l) <
Pre(f))

We have 0 ≤ θ2 + θ3 < max −min. Let us now
compute the transition f .

(m′2, I
′
2)

(f,θ2)−−−−→ o(m3, I3)

with m3 = {a started 7→ 1, a ok 7→
1, a finish 7→ 1}andI3 = {}
We obtain (m′, I ′) = (m3, i3)

• FinishActivity with θ > max
S = (started, ok, clock) and clock > max time.
S′ = (finished, tooLate, clock)
Π(S) = (m, I) with

m = {a started 7→ 1, a inProgress 7→ 1,
a tooEarly 7→ 1},

I = {a lock 7→ (min,min), a finish 7→ (0, w)}

Π(S′) = (m′, I ′) with

m′ = {a started 7→ 1, a finish 7→ 1,
a tooLate 7→ 1},

I = {}

Let us now show that

(m, I)
(τ,θ1)∗−−−−→ (f,θ2)−−−−→ (τ,θ3)∗−−−−→ (m′, I ′)

with θ1 + θ2 + θ3 = θ = clock
Transitions a lock and a finish are applicable to
(m, I).
The same reasoning to the last case applies here.
Then necessary, a first a lock transition occurs when
θ1 ≥ min and θ1 < w.

(m, I)
(a lock,θ1)−−−−−−−→ (m′2, I

′
2)

with

m′2 = {a started 7→ 1, a ok 7→ 1, a inProgress 7→ 1},

I ′2 =


a deadline 7→ (max−min,max−min),
a finish 7→ (0, w)

ff
(m− Pre(l) < Pre(d) & m− Pre(l) < Pre(f))
Let’s see if the transition on f can apply. Then θ2 <
max − min. And no more transition could apply.
But clock = θ1 + θ2 = max and we consider the
case clock > max
Then we have to compute the transition on d
(m′2, I

′
2)

(a deadline,max−min)−−−−−−−−−−−−−−−→ (m′′2 , I
′′
2) with

m′′2 = {a started 7→ 1, a tooLate 7→ 1,
a inProgress 7→ 1},

I ′′2 = {a finish 7→ (0, w)}

Then transition on f can then apply.
(m′′2 , I

′′
2)

(a finish,θ2)−−−−−−−−→ (m3, I3) with m3 =
{a started 7→ 1, a tooLate 7→ 1, a finish 7→ 1}
and I3 = {}
We obtain (m′, I ′) = (m3, i3)

2) Let P ′ be a Petri net state such that Π(S)
λ→ P ′.

• S = (notStarted, notF inished, clock)

(m, I) = ({a notStarted 7→ 1}, {a start 7→ (0, w)})

There is only one possible transition ∃θ s.t.
(m, I)

(a start,θ)−−−−−−−→ (m′, I ′)

m′ = {a start 7→ 1, s inProgress 7→ 1,
s tooEarly 7→ 1}

I ′ = {a lock 7→ (min,min), a finish 7→ (0, w)}

The image of S by the same transition gives S′ =
(started, notF inished, 0)
and Π(S′) = (m′, I ′)

954 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

• S = (started, notF inished, clock)
Π(S) = (m, i) with

m = {a started 7→ 1, a inProgress 7→ 1,
a tooEarly 7→ 1},

I = {a lock 7→ (min,min), a finish 7→ (0, w)}

We have two possibilities :
– applying a finish iff θ < min then

necessary, (m, I)
(f,θ)−−−→ ({a started 7→

1, a finished 7→ 1, a tooEarly 7→
1}, {}) = (m′, I ′) and clock = θ < min

S
λ2−→ (finished, tooEarly, clock)

Π((finished, tooEarly, clock)) = (m′, I ′)

– applying a lock iff θ1 = min (m, i)
(a lock,θ1)−−−−−−−→

({a started 7→ 1, a inProgress 7→ 1, a ok 7→
1}, {a deadline 7→ (max − min,max −
min), a finish 7→ (0, w)}) = (m2, I2) We have
now two cases again:
a) a deadline iff θ2 = max − min then

(m2, I2)
(a deadline,θ2)−−−−−−−−−−→ ({a started 7→

1, a tooLate 7→ 1, a inProgress 7→
1}, {a finish 7→ (0, w)}) = (m3, I3)
Finally the transition f can apply.
(m3, I3)

(a finish,θ3)−−−−−−−−→ ({a started 7→
1, a tooLate 7→ 1, a finished 7→ 1}, {}) =
(m′, I ′)
and clock = θ1 + θ2 + θ3 = max +

θ3 S
λ4−→ (finished, tooLate, clock)

Π((finished, tooLate, clock)) = (m′, I ′)
b) a finish iff θ2 < max − min then

(m2, I2)
(a finish,θ2)−−−−−−−−→ ({a started 7→

1, a ok 7→ 1, a finish 7→ 1}, {}) = (m′, I ′)
clock = θ1 + θ2 < max&clock ≥
min S

λ3−→ (finished, ok, clock)
Π((finished, ok, clock)) = (m′, I ′)

– other cases of values for S are mapped to Petri
net with not applicable transitions

3) Initial case. Trivially (m, I) = Π(S0) is defined and
satisfied the property.

Lemma 2 Let us consider a process model state S ∈MS with
a finite number n of activities with dependence rules among
them such that S and Π(S) are weakly bisimilar. Let us define
the process model state S′ ⊇ S ∈ MS defined as the process
model state S with one more activity A with no links. Then S′

and Π(S′) are weakly bisimilar.

Proof: If no link exists between S and A in S′ then
• S → X =⇒ S ∪A→ X ∪A
• Similarly in Petri net, since no dependency link exists

between A and S then Π(S′) = Π(S) ∪ Π(A) and
Π(S) → Π(X) =⇒ Π(S ∪ A) = Π(S) ∪ Π(A) →
Π(X) ∪ Π(A). The transition does not add links then
Π(X) ∪Π(A) = Π(X ∪A).

A similar reasoning applies to transition on A in presence of
S with no link between A and S.
• A→ A′ =⇒ S ∪A→ S ∪A′
• Π(A) → Π(A′) =⇒ Π(S ∪ A) = Π(S) ∪ Π(A) →

Π(S) ∪Π(A′) = Π(S ∪A′).
Since S and Π(S) are weakly bisimilar (by induction hy-

pothesis) and using the lemma 1:

• if a transition λ occurs on S ⊆ S′ then S
λ→ X =⇒

Π(S′)
λ→ Π(X ∪A);

• if a transition λ occurs on A ⊆ S′ then A
λ→ A′ =⇒

Π(S′)
λ→ Π(S ∪A′);

• if a transition λ occurs on Π(S) ⊆ Π(S′) then Π(S) →
Π(X) =⇒ Π(S′)

λ→ Π(X ∪A)
• if a transition λ occurs on Π(A) ⊆ Π(S′) then Π(A) →

Π(A′) =⇒ Π(S′)
λ→ Π(S ∪A′)

Then S′ and Π(S′) are in weak bisimulation.

Lemma 3 Let us consider a process model state S ∈MS with
a finite number n of activities with dependence rules among
them such that S and Π(S) are weakly bisimilar. Let us define
the process model state S′ ⊇ S ∈ MS defined as the process
model state S with one dependence link between two activity
A1 and A2 ∈ S. Then S′ and Π(S′) are weakly bisimilar.

Proof: The new dependence link constraints an activity A2

by another one A1. For all transition λ applicable to any activity
A ∈ S \ A2, the transition can occur in Π(S′) since S and
Π(S) are weakly bisimilar and the activity A is not constrained
by the new link. And reciprocally, if the transition can occurs
in Π(A) ⊆ Π(S) then it can occur in Π(S′).

Let us now consider the transitions applicable on A2 in S′

depending on the new link added. We can add as a preliminary
remark that if a transition can occur on A2 in S′, it is also
computable in S since the new dependence link does not exists
there.
• a link of type start2start

Then according to the definition of Fig. 4, all links
targeting this activity A2 and labeled start2start, resp.
finish2start, must have their source activity in a started
state, resp. finished state, in order to compute the start
transition on A2.
Let us show that if this transition is computable in S′ then
it is in Π(S′).
If the transition is computable in S′, then all above
constraint links in S constraining A2 start satisfy their own
constraints (either started or finished). Π(S) is such that for
each of these links there exists a read-arc in the resulting
Petri net from ax started or ax finished, depending on
the link type, to a2 start. Each of these read-arc source
is a place fulfilled with a token (cf. preliminary remark).
Furthermore, in Π(S′), the new link from A1 to A2 is
also mapped to a read-arc from the place a1 started to
transition a2 start. The transition is computable in S′ then
the activity A1 must be started. If so, its a1 started place
has one token.
The transition can then occurs in Π(S′).

• a similar reasoning applies for finish2start, start2finish and
finish2finish links.

Reciprocally, in Petri nets,
• image of a link of type start2start

Π(S′) = Π(S) ∪ { a new read-arc from a1 started
to a2 started}. Then if Π(S′) → Y using a2 start
transition, then there must be at least one token in each
place linked to a2 start by either an arc or a read-arc.
Then by definition of Π and using the preliminary remark,
S′ is such that all activities constraining A2 start satisfy
their own constraint including the new link. Then the
transition can also occurs in S′.

• a similar reasoning applies for finish2start, start2finish and
finish2finish links.

Since S and Π(S) are weakly bisimilar (by induction hy-
pothesis), we have S′ and Π(S′) also weakly bisimilar.

Theorem 4 (Weak bisimulation) Model state space MS and
Prioritized Time Petri Nets state space PNS are in bisimulation
w.r.t. the translation function Π, according to the definition 1.

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 955

© 2009 ACADEMY PUBLISHER

Proof: By induction on the process model structure:
• The initial case is proved thanks to Lemma 1;
• Adding one activity preserves the property (Lemma 2);
• Adding one dependence link preserves the property

(Lemma 3);
The property for a set of activities to be part of a bigger one

is encoded by dependence links and thus is preserved by the
bisimulation.

REFERENCES

[1] Meta Object Facility (MOF) 2.0 Core Specification, Object
Management Group, Inc., Jan. 2006, final Adopted
Specification. [Online]. Available: http://www.omg.org/
docs/formal/06-01-01.pdf

[2] F. Budinsky, D. Steinberg, and R. Ellersick, Eclipse Mod-
eling Framework : A Developer’s Guide. Addison-Wesley
Professional, 2003.

[3] F. Budinsky, E. Merks, and D. Steinberg, Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2009.

[4] F. Jouault and J. Bézivin, “KM3: a DSL for Metamodel
Specification,” in IFIP Int. Conf. on Formal Methods for
Open Object-Based Distributed Systems (FMOODS), ser.
LNCS, vol. 4037. Springer, 2006, pp. 171–185.

[5] UML Object Constraint Language (OCL) 2.0 Specification,
Object Management Group, Inc., Oct. 2003, final Adopted
Specification. [Online]. Available: http://www.omg.org/
docs/ptc/03-10-14.pdf

[6] P. Farail, P. Gaufillet, A. Canals, C. L. Camus, D. Sciamma,
P. Michel, X. Crégut, and M. Pantel, “The TOPCASED
project: a Toolkit in OPen source for Critical Aeronau-
tic SystEms Design,” in Embedded Real Time Software
(ERTS’06), Toulouse, 25-27 January 2006.

[7] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,
C. T. IV, G. Nordstrom, J. Sprinkle, and P. Volgyesi, “The
generic modeling environment,” in Workshop on Intelligent
Signal Processing, Budapest, Hungary, 2001.

[8] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez,
“Modeling in the large and modeling in the small,” in
Model Driven Architecture, European MDA Workshops:
Foundations and Applications (MDAFA 2004), ser. LNCS,
U. Aßmann, M. Aksit, and A. Rensink, Eds., no. 3599.
Sweden: Springer Verlag, June 2004, pp. 33–46.

[9] G. Winskel, The formal semantics of programming lan-
guages: an introduction. Cambridge, MA, USA: MIT
Press, 1993.

[10] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel, “Weaving ex-
ecutability into object-oriented meta-languages,” in MoD-
ELS, ser. LNCS. Jamaica: Springer, 2005.

[11] F. Jouault and I. Kurtev, “Transforming Models with ATL,”
in Proceedings of the Model Transformations in Practice
Workshop at MoDELS, ser. LNCS. Jamaica: Springer,
2005.

[12] G. Taentzer, “AGG : A Graph Transformation Environment
for Modeling and Validation of Software,” in AGTIVE, ser.
LNCS, Springer-Verlag, Ed., vol. 3062, 2003, pp. 446–453.

[13] B. Combemale, S. Rougemaille, X. Crégut, F. Migeon,
M. Pantel, C. Maurel, and B. Coulette, “Towards a Rig-
orous Metamodeling,” in 2nd International Workshop on
Model-Driven Enterprise Information Systems (MDEIS).
Paphos, Cyprus: INSTICC, May 2006.

[14] R. Milner, Communication and concurrency. Hertford-
shire, UK: Prentice Hall International (UK) Ltd., 1995.

[15] T. Clark, P. Sammut, and J. Willans, “SUPERLAN-
GUAGES – Developing Languages and Applications with
XMF,” 2008, first Edition.

[16] E. Breton, “Contribution à la représentation de processus
par des techniques de méta-modélisation,” Ph.D. disserta-
tion, Université de Nantes, June 2002.

[17] R. F. Paige, D. S. Kolovos, and F. A. C. Polack, “An action
semantics for MOF 2.0,” in Proceedings of the 2006 ACM
symposium on Applied computing (SAC). New York, NY,
USA: ACM, 2006, pp. 1304–1305.

[18] S. Markovic and T. Baar, “Semantics of OCL specified
with QVT,” Software and System Modeling, vol. 7, no. 4,
pp. 399–422, 2008.

[19] Meta Object Facility (MOF) 2.0 Query/ View/ Transforma-
tion (QVT) Specification, version 1.0, Object Management
Group, Inc., Apr. 2008.

[20] G. Rozenberg, Ed., Handbook of graph grammars and
computing by graph transformation: volume I. foundations.
River Edge, NJ, USA: World Scientific Publishing Co.,
Inc., 1997.

[21] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer,
and E. Weiss, “Graphical Definition of In-Place Transfor-
mations in the Eclipse Modeling Framework,” in Proceed-
ings of the 9th IEEE/ACM International Conference on
Model Driven Engineering Languages and Systems (MoD-
ELS), ser. Lecture Notes in Computer Science, O. Nier-
strasz, J. Whittle, D. Harel, and G. Reggio, Eds., vol. 4199.
Springer, Oct. 2006, pp. 425–439.

[22] H. Kastenberg, A. Kleppe, and A. Rensink, “Defining
Object-Oriented Execution Semantics Using Graph Trans-
formations,” in Proceedings of the 8th IFIP International
Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’06), ser. Lecture Notes in
Computer Science, R. Gorrieri and H. Wehrheim, Eds., vol.
4037. Italy: Springer-Verlag, June 2006, pp. 186–201.

[23] ——, “Engineering Object-Oriented Semantics Using
Graph Transformations,” University of Twente, CTIT
Technical Report 06-12, March 2006.

[24] S. Kuske, “A Formal Semantics of UML State Machines
Based on Structured Graph Transformation,” in Proceed-
ings of the 4th International Conference on The Unified
Modeling Language, Modeling Languages, Concepts, and
Tools, ser. Lecture Notes In Computer Science, vol. 2185.
London, UK: Springer, 2001, pp. 241–256.

[25] S. Kuske, M. Gogolla, R. Kollmann, and H.-J. Kreowski,
“An Integrated Semantics for UML Class, Object and State
Diagrams Based on Graph Transformation,” in Proceed-
ings of the 3rd International Conference on Integrated
Formal Methods (IFM), ser. Lecture Notes In Computer
Science, vol. 2335. London, UK: Springer, 2002, pp.
11–28.

[26] M. Gogolla, P. Ziemann, and S. Kuske, “Towards an Inte-
grated Graph Based Semantics for UML,” in Proceedings
of the Graph Transformation and Visual Modeling Tech-
niques (GT-VMT), ser. ENTCS, P. Bottoni and M. Minas,
Eds., vol. 72(3). Barcelona, Spain: Elsevier, Oct. 2002.

[27] P. Ziemann, K. Hölscher, and M. Gogolla, “From UML
Models to Graph Transformation Systems,” in Proceedings
of the Workshop on Visual Languages and Formal Methods
(VLFM), ser. ENTCS, M. Minas, Ed., vol. 127(4). Else-
vier, 2005.

[28] S. Kuske, “Transformation Units—A structuring Principle
for Graph Transformation Systems,” Ph.D. dissertation,
University of Bremen, 2000.

[29] J. H. Hausmann, “Dynamic Meta Modeling – A Semantics
Description Technique for Visual Modeling Languages,”
Ph.D. dissertation, University of Paderborn, 2005.

[30] G. Engels, R. Heckel, and S. Sauer, “Dynamic meta mod-
eling: A graphical approach to the operational semantics of
behavioral diagrams in UML,” in UML 2000 - The Unified
Modeling Language. Advancing the Standard, vol. 1939 of
LNCS. Springer, 2000, pp. 323–337.

[31] T. Fischer, J. Niere, L. Torunski, and A. Zündorf, “Story
diagrams: A new graph transformation language based
on UML and Java,” in Proc. Theory and Application to
Graph Transformations (TAGT’98), Paderborn, November,

956 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

http://www.omg.org/docs/formal/06-01-01.pdf
http://www.omg.org/docs/formal/06-01-01.pdf
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.omg.org/docs/ptc/03-10-14.pdf

1998, ser. LNCS, H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, Eds., vol. 1764. Springer, 1998.

[32] K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jack-
son, “Semantic anchoring with model transformations,”
in Model Driven Architecture - Foundations and Appli-
cations, First European Conference (ECMDA-FA), ser.
LNCS, vol. 3748, 2005, pp. 115–129.

[33] A. Agrawal, G. Karsai, Z. Kalmar, S. Neema, F. Shi,
and A. Vizhanyo, “The Design of a Language for Model
Transformations,” Institute for Software Integrated Sys-
tems, Vanderbilt University, Nashville, TN 37235, USA,
Tech. Rep., 2005.

[34] T. Clark, A. Evans, and S. Kent, “The Metamodelling
Language Calculus: Foundation Semantics for UML,” in
Proceedings of the 4th International Conference on Fun-
damental Approaches to Software Engineering (FASE), ser.
Lecture Notes In Computer Science, vol. 2029. London,
UK: Springer, 2001, pp. 17–31.

[35] T. Cleenewerck and I. Kurtev, “Separation of concerns in
translational semantics for DSLs in model engineering,”
in Proceedings of the 2007 ACM Symposium on Applied
Computing (SAC). New York, NY, USA: ACM Press,
2007, pp. 985–992.

[36] T. Clark, A. Evans, P. Sammut, and J. Willans, “Applied
metamodelling - a foundation for language driven devel-
opment,” 2004, version 0.1.

[37] T. Clark, P. Sammut, and J. Willans, “Applied Metamod-
elling – A Foundation for Language Driven Development,”
2008, second Edition.

[38] J. E. Rivera, J. R. Romero, and A. Vallecillo, “Behav-
ior, time and viewpoint consistency: Three challenges
for mde,” in Proc. of the First International Workshop
on Challenges in Model-Driven Software Engineering
(ChaMDE’2008), ser. LNCS. Springer, 2008.

[39] J. E. Rivera and A. Vallecillo, “Adding behavioral seman-
tics to models,” in 11th IEEE International Enterprise Dis-
tibuted Object Computing Conference. EDOC 2007, 15-19
October 2007 Annapolis, Maryland, USA. Proceedings.
Los Alamitos, California: IEEE Computer Society, Oct.
2007, pp. 169–180.

[40] J. R. Romero, J. E. Rivera, F. Duran, and A. Vallecillo,
“Formal and Tool Support for Model Driven Engineering
with Maude,” Journal of Object Technology, TOOLS EU-
ROPE 2007, vol. 6, no. 9, pp. 187–207, 2007.

[41] J. E. Rivera, E. G. annd Juan de Lara, and Antonio,
“Analyzing Rule-Based Behavioral Semantics of Visual
Modeling Languages with Maude,” in International Con-
ference on Software Language Engineering, Oct. 2008.

[42] Software Process Engineering Metamodel (SPEM) 2.0,
Object Management Group, Inc., Mar. 2007.

[43] R. Bendraou, B. Combemale, X. Crégut, and M.-P. Ger-
vais, “Definition of an eXecutable SPEM2.0,” in 14th
APSEC. Japan: IEEE Computer Society, Dec. 2007.

[44] P. M. Merlin, A Study of the Recoverability of Computing
Systems. Irvine: Univ. California, PhD Thesis, 1974.

[45] B. Berthomieu, F. Peres, and F. Vernadat, “Model checking
bounded prioritized time petri nets,” in ATVA, ser. LNCS,
K. S. Namjoshi, T. Yoneda, T. Higashino, and Y. Okamura,
Eds., vol. 4762. Springer, 2007, pp. 523–532.

[46] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The tool
TINA – construction of abstract state spaces for Petri nets
and time Petri nets,” Int. Journal of Production Research,
vol. 42, no. 14, pp. 2741–2756, 2004.

[47] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics
and analysis of business process models in BPMN,” Inf.
Softw. Technol., vol. 50, no. 12, pp. 1281–1294, 2008.

[48] J. de Lara and H. Vangheluwe, “Translating model simula-
tors to analysis models,” in 11th International Conference
Fundamental Approaches to Software Engineering (FASE),

ser. Lecture Notes in Computer Science, J. Fiadeiro and
P. Inverardi, Eds., vol. 4961. Springer, 2008, pp. 77–92.

[49] A. Narayanan and G. Karsai, “Towards verifying model
transformations,” in 5th International Workshop on Graph
Transformation and Visual Modeling Techniques, Vienna,
R. Bruni and D. Varró, Eds., Apr. 2006, pp. 185–194.

[50] ——, “Using Semantic Anchoring to Verify Behavior
Preservation in Graph Transformations,” ECEASST, vol. 4,
2006.

[51] D. Sangiorgi, “A theory of bisimulation for the pi-
calculus,” Acta Inf., vol. 33, no. 1, pp. 69–97, 1996.

[52] The Coq Development Team, The Coq Proof Assistant
Reference Manual – Version V8.1, 2006, http://coq.inria.fr.

[53] D. Hirschkoff, “Bisimulation Verification Using the Up-to
Techniques,” STTT, vol. 3, no. 3, pp. 271–285, 2001.

[54] D. Pous, “New up-to techniques for weak bisimulation,”
Theor. Comput. Sci., vol. 380, no. 1-2, pp. 164–180, 2007.

[55] D. Bergamini, N. Descoubes, C. Joubert, and R. Mateescu,
“Bisimulator: A modular tool for on-the-fly equivalence
checking.” in TACAS, ser. LNCS, N. Halbwachs and L. D.
Zuck, Eds., vol. 3440. Springer, 2005, pp. 581–585.

[56] A. Bouali, “XEVE, an ESTEREL Verification Environ-
ment,” in CAV, ser. LNCS, A. J. Hu and M. Y. Vardi,
Eds., vol. 1427. Springer, 1998, pp. 500–504.

[57] X. Thirioux, B. Combemale, X. Crégut, and P.-L. Garoche,
“A Framework to formalise the MDE Foundations,” in
Proceedings of the International Workshop on Towers of
Models (TOWERS), R. Paige and J. Bézivin, Eds., Zurich,
June 2007, pp. 14–30.

Benoı̂t Combemale received his PhD degree in computer
science from the University of Toulouse (France) in 2008. He
is now an associate professor at the ESIR engineering school,
University of Rennes 1 (France), and member of the IRISA labo-
ratory (CNRS & INRIA). He is working on execution semantics
of domain specific modeling languages (DSML), especially for
software validation, verification and administration purposes.

He is also involved in the dissemination of model driven en-
gineering (MDE) in various engineering and university degrees
of different countries.

Xavier Crégut is an associate professor at the ENSEEIHT
engineering school, university of Toulouse, and member of the
IRIT CNRS laboratory. He received his Ph.D. from Institut
National Polytechnique de Toulouse (France) in 1997 in Com-
puter Science and he holds a computer science engineering
degree from ENSEEIHT (1992). He is working on semantics of
domain specific modeling languages (DSML) for validation and
verification purpose. His research interests also include process
modeling, used as an application field.

Pierre-Loı̈c Garoche received his PhD degree in computer
science from the University of Toulouse in 2008. He was then
addressing the static analysis of concurrency. He is now a
researcher at Onera, the french aerospace lab, and investigates
the combination of analysis in an industrial context, widening
the means of software verification and validation.

Xavier Thirioux received his PhD degree in computer science
from the University of Toulouse in 1998. He was then addressing
the problem of automating proofs of functional specifications
for models of concurrent applications. Since 2001, he is an
associate professor at the University of Toulouse. His current

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 957

© 2009 ACADEMY PUBLISHER

research activities mainly address the problem of certifying
critical embedded C software, on the one hand by static analysis
of code, and on the other hand by automatic generation of
correct-by-construction code from the proof of its specification.

958 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

