

 Secure and Fast Hashing Algorithm with
Multiple Security Levels

Hassan M. Elkamchouchi

Faculty of Engineering, Alexandria, Egypt
Email: helkamchouchi@yahoo.com

Mohammed Nasr and Roayat Ismail

Faculty of Engineering, Tanta, Egypt
Email: {mnasr, roaayat}@yahoo.com

Abstract—We propose a new secure and fast hashing
algorithm with multiple security levels (SFHA-MSL). It is
based on the generic 3C (3 compressions) construction and
the 3C-X (3C XOR) hash function which is the simplest and
efficient variant of the generic 3C hash function and it is the
simplest modification to the Merkle-Damgard (M-D)
iterated construction that one can achieve. The design
principle of the proposed algorithm is to have variable
output length of 128, 192 and 256 bits, variable number of
compression functions, variable number of iterations in each
compression function and variable compression function
structure. The compression function used in this algorithm
is more dynamic in the sense that the input controls what
happen in the algorithm. This enable us to achieve a novel
design principle: when message is changed, different shift
rotations are done which causes more complexity for
someone trying to create a collision. Instead of mixing a
single word of a message block, four words are mixed per
iteration which achieve faster data diffusion and hence
better avalanching effect. There is no message expansion in
the proposed scheme and it doesn't use Boolean functions
but uses only addition, XOR and rotations to achieve its
security. This in addition to increasing the algorithm
efficiency, it distributes non-linearity among all blocks in a
round.

Index Terms—hashing algorithm, compression function,
iterated hash function, the generic 3C construction, the 3C-
X hash function, Merkle-Damgard iterated construction

I. INTRODUCTION

A hash function accepts a variable-size message m as
input and produces a fixed-size hash code H(m),
sometimes called a message digest, as output. The hash
code is a function of all the bits of the message and
provides an error-detection capability: a change to any bit
or bits in the message results in a change to the hash code
[1]. Historically, the first designs for hash functions have
been based on block ciphers; several successful proposals
are still widely in use. A second approach has been the
use of modular arithmetic. In order to obtain a better
performance, cryptographers started in the late eighties to
design efficient custom hash function [2]. The hash
function must have three desirable properties:

One-way: for any given code h, it is computationally
infeasible to find x such that H(x) = h.

Weak collision resistance: for any given block x, it is
computationally infeasible to find y ≠ x with H(y) = H(x).

Strong collision resistance: it is computationally
infeasible to find any pair (x , y) such that H(x) = H(y).

Most of hash functions are iterated hash function and
most of compression functions are iterated by Merkle-
Damgard (M-D) construction with constant IV (initial
variable) as shown in Fig. 1.

In this construction the hash function takes an input
message and partitions it into L – 1 fixed-sized block of
b bits each. The final block is padded to b bits. The final
block also includes the value of the total length of the
input to the hash function. The inclusion of the length
makes the job of the opponent more difficult. Either the
opponent must find two message of equal length that hash
to the same value or two messages of differing lengths
that, together with their length values, hash to the same
value.

The hash algorithm involves repeated use of a
compression function, f, that takes two inputs (an n-bit
input from the previous step, called the chaining variable;
CV and a b-bit block) and produces an n-bit output. At
the start of hashing, the chaining variable has an initial
value (CVO) that is specified as part of the algorithm. The
final value of the chaining variable is the hash value.
Usually, b > n; hence the term compression. The hash
function can be summarized as follows:

CV0 = IV = initial n-bit value. (1)

CVi = f (CV i-1 , Y i-1) 1≤ i ≤ L. (2)

 H (m) = CVL . (3)

Figure1. Merkle-Damgard iterated construction.

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 935

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.9.935-942

where the input to the hash function is a message m
consisting of the blocks Y0, Y1… Y L – 1. Keep in mind that
for any hash function there must exist collisions, because
we are mapping a message of length at least equal to the
block size b into a hash code of length n, where b > n [3].
Cryptanalysis of hash functions proves that the M-D hash
construction is not immune to extend attack, fix point
attack and multi-blocks attack, moreover, some slight
weakness in compression function may results in failure
of hash function so some improved constructions such as
wide-pipe, double-pipe and the generic 3C (3
compression) constructions are developed. But the
generic 3C construction prevents extension attacks in a
more efficient way than both the wide-pipe and double-
pipe constructions without increasing the size of the
internal state [4]. This construction as shown in Fig. 2
consists of two compression functions: f which is iterated
in the cascade chain and f \ which is iterated in the
accumulation chain. First, the message is processed in an
iterated manner over the function f which itself is based
on the M-D construction then this output is padded using
the standard padding technique (appending Z with a bit 1
and some 0's followed by the binary encoded
representation of the length of Z) to make it a block of b
bits. This is denoted with ZPAD operation in Fig.2.

Finally the accumulated output of the function f \ is
padded then fed as input to the external application f. It
should be noted that the padding is performed twice for
the 3C construction; once for the basic cascade
construction and next on Z to get the accumulation chain
block. The construction is called 3C as it requires at least
three applications of the compression function to process
the message and three being the least when there is only
one message block, the first application of the
compression function processes that single block, the
second application processes the padded block and the
third application processes the block due to the
accumulation chain function [5]. If the function f \ is
replaced with XOR operation we will obtain the 3C-X
hash function shown in Fig. 3. The 3C-X hash function is
the simplest efficient modification to M-D construction.

In this paper we introduce a new design for a secure
one-way hashing algorithm based on both the generic 3C
and the 3C-X hash construction with an efficient and
dynamic compression function and different levels of
security to resist the advanced attacks, such as preimage,
second preimage and collision attacks. All simulation
programs are performed by using MATHEMATICA.5
and test values are given.

Figure 2. The Generic 3C-hash function construction [5]

Figure 3. The 3C-X hash function [5]

II. AN OVERVIEW OF SFHA-MSL

The overall structure of the proposed SFHA-
MSL as shown in Fig. 4 consists of the combination
of two sections (three compression functions). One
of them is the generic 3C hash function section with
the compression function f1 in the cascade chain
and the compression function f1

\ in the
accumulation chain and its output is C1. The other
is 3C-X hash function section with the compression
function f2 in the cascade chain and XOR operations
in the accumulation chain and its output is C2.

The overall processing of SFHA-MSL consists of four
steps: set up, pre-processing, iterated processing and
output transformation. The set up step is used to select
secret parameters (output length, number of compression
functions, and number of iterations in each compression
function) which are used in the processing step. Both the
sender and the verifier use the same secret parameters.
Pre-processing step involves padding a message, parsing
the padded message and setting initialization values to be
used in the iterated processing step. The output
transformation is used in a final step to map the n bits to
variable lengths. The following operations will be used in
the processing and all of these operators act on 32 bit
word
+ : addition mod 232, ⊕ : XOR, ∧ : AND, ∨ : OR, A <<< s :
s-bit left shift rotation a 32-bit string.

III. SFHA-MSL PRE-PROCESSING

The pre-processing step is used to prepare the message
before the SFHA-MSL processing step. It consists of
three steps: padding the message, parsing the padded
message into message blocks, and setting the initial hash
values.

A. Padding the Message
An input message is processed by 512-bit block.

SFHA-MSL pads a message by appending a single bit 1
next to the least significant bit of the message, followed
by zero or more bits 0's until the length of the message is
448 modulo 512, and then appends to the message the 64-
bit original message length modulo 232.

B. Parsing the Padded Message
Parse the message m into L 512 bit blocks Y0, Y1…

.....Y L – 1. Each of Yi parsed into 16 32-bit words M0,
M1… M15. The message blocks are processed one at a

936 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

 Figure.4 The Overall structure of SFHA – MSL

time, beginning with the initial hash value called the
message digest buffer (MDB).

C. Setting the Initial Hash Value
Before hash computation begins for SFHA-MSL, the

initial hash values (MDB) must be set. The MDB is 512
bits used to hold intermediate and final results. The MDB
can be represented as eight 32-bit words registers A0, B0,
C0, D0, E0, F0, G0, H0 which are obtained by taking the
fractional part of the square roots of the first eight primes
in hexagonal values:
A0 = 6a09e66 B0 = bb67ae8 C0 = 3c6ef372,
D0 = a54ff53a E0 = 510e527f F0 = 9b05688c
G0 = 1f83d9ab H0 = 5be0cd19

IV. SFHA-MSL ITERATED PROCESSING

The iterated processing step depends upon the secret
parameters used.

A. Iterated Compression Functions
SFAH-MSL has three compression functions: f1 and f1

\
of the generic 3C hash function section and f2 of the 3C-
X hash function section. Each of f1 and f2 consists of two
parallel branches; Branch1 and Branch2. So the attacker
who tries to break the function should aim simultaneously
the two branches. The function f1

\ consists of a single
branch (Branch1) of the function f1. Let CVi = [A, B, C,
D, E, F, G, H] be the chaining variable of the
compression function. Each successive 512-bit message
block M is divided into sixteen 32-bit words M0, M1…
M15 and the following computation is performed to
update CVi to CV i+1.

CV i+1 = Branch1 (CVi , M) ⊕ Branch2 (CVi , M) (4)

where M is the re-ordering of message words for the two
branches as follows:
Branch1: M = (M0, M1… M15)
Branch2: M = (M15, M14… M0), where the order is reversed.

B. Constants
The compression functions of SFHA-MSL uses sixteen

constants for Branch1 which are ordered as following:
β0 = 428A2F98 β1 = 71374491 β2 = b5c0fbcf
β3 = e9b5dba5 β4 = 3956c25b β5 = 59f111f1
β6 =923f82a4 β7 = ab1c5ed5 β8 = d807aa98
β9 = 12835b01 β10 = 243185be β11 = 550c7dc3
β12 = 72be5d74 β13 = 80deb1fe β14 = 9bdc06a7
β15 = c19bf174.
For Branch2 the order is reversed.

By using these constants we achieve the goal to disturb
the attacker who tries to find good differential
characteristics with a relatively high probability. So, we
prefer the constants which represent the first thirty-two
bits of the fractional parts of the cube roots of the first
sixteen prime numbers.

C. Iterated Function
The registers content of the k-th iteration is divided

into eight 64-bit words: (Ak , Bk , Ck , Dk , Ek , Fk , Gk ,
Hk). SFHA-MSL has two different iteration function: the
generic 3C and the 3C-X iteration functions.

The generic 3C iterated function:
For the k + 1 iteration the following computations are
done (see Figure. 5):

 Ak+1 = [Hk + (Gk ⊕ M(4k+3)15)<<< s7] ⊕
 [(Gk ⊕ M(4k+3)15) + β(4k+3)15]<<< s8. (5)

Bk+1 = (Ak ⊕ M(4k) 15) + β(4k) 15 . (6)

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 937

© 2009 ACADEMY PUBLISHER

Figure.5 Iteration function of the generic 3C compression function.

 Ck+1 = [Bk + (Ak ⊕ M(4k)15)<<< s1] ⊕

 [(Ak ⊕ M(4k)15) + β(4k)15]<<< s2. (7)

 Dk+1 = (Ck ⊕ M(4k+1)15) + β(4k+1)15 . (8)

 Ek+1 = [Dk + (Ck ⊕ M(4k+1)15)<<< s3] ⊕
[(Ck ⊕ M(4k+1)15) + β(4k+1)15]<<< s4. (9)

 Fk+1 = (Ek ⊕ M(4k+2)15) + β(4k+2) 15 . (10)

 Gk+1 = [Fk + (Ek ⊕ M(4k+2)15)<<< s5] ⊕
 [(Ek ⊕ M(4k+2)15) + β(4k+2)15]<<< s6. (11)

Hk+1 = (Gk ⊕ M(4k+3)15) + β(4k+3)15. (12)

where 0 ≤ k ≤ (R`/4) -1 and R` is a secret parameter used
by both the sender and the verifier. R` can be one of three
possible values : 16 , 32 , 48.

The 3C-X iteration function:
For the k + 1 iteration the following computations are
done (see Figure 6):

Ak+1 = (Bk ⊕ M(4k) 15) + β(4k) 15 . (13)

 Bk+1 = [Ck + (Dk ⊕ M(4k+1)15)<<< s5] ⊕
 [(Dk ⊕ M(4k+1)15) + β(4k+1)15]<<< s6. (14)

Ck+1 = (Dk ⊕ M(4k+1)15) + β(4k+1) 15. (15)

 Dk+1 = [Ek + (Fk ⊕ M(4k+2)15)<<< s3] ⊕
 [(Fk ⊕ M(4k+2)15) + β(4k+2)15]<<< s4. (16)

Ek+1 = (Fk ⊕ M(4k+2)15) + β(4k+2) 15. (17)

Fk+1 = [Gk + (Hk ⊕ M(4k+3)15)<<< s1] ⊕
[(Hk ⊕ M(4k+3)15) + β(4k+3)15]<<< s2. (18)

Figure.6 Iteration function of the 3C-X compression function.

938 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

Gk+1 = (Hk ⊕ M(4k+3)15) + β(4k+3) 15. (19)

 Hk+1 = [Ak + (Bk ⊕ M(4k)15)<<< s7] ⊕
[(Bk ⊕ M(4k)15) + β(4k)15]<<< s8. (20)

where 0 ≤ k ≤ (L`/4) -1 and L` is a secret parameter used
by both the sender and the verifier. L` can be one of three
possible values : 16 , 32 , 48.

In these equations k represents the number of iteration
of the compression function. Initially for k = 0 the
amounts of shift rotations for the generic 3C and the 3C-
X iteration function are constant values then for the
successive values of k the shift rotations become dynamic
as it depends on the input (the content of the registers) as
shown in Table I.

For the two iteration functions there is no message
expansion part, instead the sixteen words of each
message block (M0, M1… M15) are mixed more than one
time depending on the secret parameters used R` and L`
as shown in Table II.

The final output of the generic 3C hash function
section (Double Compression Function, DCF) is given
by:

HashN(C1) = AN(C1), BN(C1), CN(C1), DN(C1), EN(C1),
FN(C1), GN(C1), HN(C1) (21)

The final output of the 3C-X hash function section
(Triple Compression Function, TCF) is given by:

HashN(C2) = AN(C2), BN(C2), CN(C2), DN(C2), EN(C2),
FN(C2), GN(C2), HN(C2) (22)

where N is the number of blocks in the padded message.

V. SFHA-MSL OUTPUT TRANSFORMATION

The output transformation step is a modular
summation used to map the final output of the two output
(C1, C2) of 256 bit to variable output length (n = 128,
192, 256 bits). This length is also a secret parameter. The
final output is given by:

A. SFHA-MSL with DCF Output
Case 128-bit digest:

HashN = AN(C1), BN(C1) ,CN(C1), DN(C1). (23)

Case 192-bit digest:

 HashN = AN(C1), BN(C1), CN(C1), DN(C1),
 EN(C1), FN(C1). (24)

Case 256-bit digest:

HashN =AN(C1), BN(C1), CN(C1), DN(C1),
 EN(C1), FN(C1), GN(C1), HN(C1). (25)

B. SFHA-MSL with TCF Output
Case 128-bit digest:

HashN =AN(C1)+AN(C2), BN(C1) + BN(C2)
 CN(C1) + CN(C2), DN(C1)+DN(C2). (26)

TABLE I.
DYNAMIC SHIFT ROTATION FOR THE GENERIC 3C AND THE 3C-X

ITERATIONS.

 TABLE II.

NUMBER OF ITERATIONS AND WORD MIXING FOR DIFFERENT SECRET
PARAMETERS VALUES.

Value of R` and L` No. of iterations No. of word mixing

16 4 1
32 8 2
48 12 3

Case 192-bit digest:
 HashN = AN(C1)+AN(C2), BN(C1) + BN(C2),

 CN(C1) + CN(C2), DN(C1)+DN(C2)
 EN(C1) + EN(C2), FN(C1) + FN(C2). (27)

Case 256-bit digest:
 HashN =AN(C1)+AN(C2),BN(C1)+BN(C2),

 CN(C1) + CN(C2), DN(C1)+DN(C2)
 EN(C1) + EN(C2), FN(C1) + FN(C2),

 GN(C1) + GN(C2), HN(C1) + HN(C2). (28)

VI. SFHA-MSL TEST RESULTS

Two tests were run on both SFHA-MSL and
SHA-256 for comparison between the collision
resistance and uniformity of each.

A. Collision and Avalanche Tests
To test for collisions and avalanching effect of the

algorithms two different sets of data were run through
both SFHA-MSL and SHA-256. Each set of data consists
of a single block of data (512 bit) without padding and
has a single bit of change from input to input.

The First set of data:
Its basic input is a file of 64 byte (512 = 64 byte × 8 bit)
consists of alternate letters through all the letters value:
"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvw
xyzabcdefghijkl", in binary:
0110000101100010011000110110010001100101011001
1001100111011010000110100101101010011010110110
1100011011010110111001101111011100000111000101
1100100111001101110100011110101110110011101110
1111000011110010111101001100001011000100110001
1011001000110010101100110011001110110100001101
0010110101001101011011011000110110101101110011
0111101110000011100010111001001110011011101000
1110101011101100111011101111000011110010111101
0011000010110001001100011011001000110010101100

Dynamic
shift

rotation

Generic 3C iteration 3C-X iteration

Initial
value

Successive
values

Initial
value

Successive
values

s1 5 Ak + Bk + Ck 15 Hk + Ak + Bk
s2 9 Bk + Ck + Dk 19 Gk + Hk + Ak
s3 3 Ck + Dk + Ek 13 Fk + Gk + Hk
s4 11 Dk + Ek + Fk 20 Ek + Fk + Gk
s5 8 Ek + Fk + Gk 18 Dk + Ek + Fk
s6 13 Fk + Gk + Hk 23 Ck + Dk + Ek
s7 7 Gk + Hk + Ak 27 Bk + Ck + Dk
s8 10 Hk + Ak + Bk 19 Ak + Bk + Ck

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 939

© 2009 ACADEMY PUBLISHER

1100110011101101000011010010110101001101011011
01100".

We applied 24 successive inputs (with a single bit
changed from input to input) to the two algorithms
divided as following:
Eight inputs (from input1 to input8): With a single bit
changed from input to input moving forward from the
most significant bit to the least significant bit of the
underlined most significant byte, 01100001.
Eight inputs (from input9 to input16): With a single bit
changed from input to input moving forward from the
most significant bit to the least significant bit of the
underlined middle (32nd) byte,01100110.
Eight inputs (from input17 to input24) : With a single bit
changed from input to input moving forward from the
most significant bit to the least significant bit of the
underlined least significant byte, 01101100.

The Second set of data:
Its basic input is a file consists of 64 letter all are the
same letter, "A", in binary, 01000001, and we repeat the
same steps as in the first set of data.

The results of comparing the hashed values of the
successive inputs for the two sets of data are listed in
Table III. These hashed values were first checked for
collisions, none were found. Next the bits of the hash
were compared from hash to successive hash, in position,
checking to see how many bits were different due to a
single bit change in the input, and then the average is
taken.
In a perfect avalanche: a single bit change from input to

input causes half of the bits (128 bit) change from hash to

hash [5]. So the optimum number of differing bits = 128.
Looking at the results in Table III we conclude that
SFHA-MSL with both DCF and TCF has a larger average
number of differing bits for the two sets of data and so it
has a better avalanching effect than SHA-256.

B. Uniform Distribution Tests
This test was used to test the distribution of hashes into
the possible hash values. SFHA-MSL with an output of
256 bit has 2256 possible hash value ranges from 0 to
2256-1. For a perfect uniform distribution for this output,
the average value of the hash values equals [(2256-1)/2] ≅
5.7896×1076. Practically, it is impossible to obtain a
perfect uniform distribution hash algorithm. Instead, the
less the deviation from the uniform distribution the more
secure the algorithm is. Three sets of messages were used
for these tests: the first, middle, and last ten possible
input values for both SFHA-MSL and SHA-256. These
ranges are: 0x00….00 to 0x00…...09, 0x10…..00 to
0x10…..09 and 0xff….06 to 0xff…..ff. Then the average
hash value for each of these sets is computed and
compared with that of the uniform distribution then the
deviation is computed for the two algorithms. In Table IV
we give the results of the comparison between SFHA-
MSL and SHA-256.
The deviation from optimal uniform distribution
= [(uniform distribution average value – actual average
value)/ uniform distribution average value].

From these results, SFHA-MSL does better than SHA-
256 for all three sets of data. The most important data

TABLE III
NUMBER OF DIFFERING BITS BETWEEN SUCCESSIVE HASHES

The two

compared hashes

Number of differing bits
The first set of data The second set of data

SFHA-MSL SHA
256

SFHA-MSL SHA
256 DCF TCF DCF TCF

Hash1 and Hash2 141 126 119 127 134 121
Hash2 and Hash3 130 131 122 120 128 139
Hash3 and Hash4 143 127 128 129 116 135
Hash4 and Hash5 143 112 121 142 127 135
Hash5 and Hash6 138 140 137 126 125 131
Hash6 and Hash7 129 132 132 126 124 120
Hash7 and Hash8 115 128 134 138 133 131
Hash8 and Hash9 130 134 130 129 132 127
Hash9 and Hash10 128 128 129 134 136 129
Hash10 and Hash11 130 130 122 135 127 119
Hash11 and Hash12 118 127 124 135 139 120
Hash12 and Hash13 128 113 118 137 134 130
Hash13 and Hash14 131 119 124 141 132 121
Hash14 and Hash15 125 116 128 131 132 135
Hash15 and Hash16 136 131 121 118 119 132
Hash16 and Hash17 125 146 127 135 115 117
Hash17 and Hash18 116 133 129 127 131 100
Hash18 and Hash19 128 127 133 128 127 132
Hash19 and Hash20 138 128 131 138 134 121
Hash20 and Hash21 122 145 128 124 128 121
Hash21 and Hash22 132 127 124 135 139 123
Hash22 and Hash23 126 128 129 119 121 125
Hash23 and Hash24 123 132 125 129 135 113

Average value 129.348 128.696 126.739 130.565 129.043 125.087

940 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

TABLE IV
DEVIATION FROM OPTIMAL DISTRIBUTION

point being the deviation from the optimal uniform
distribution. SFHA-MSL deviation is smaller than SHA-
256. This means that SFHA-MSL has a more uniformly
distributed output than SHA-256 and so it is more secure
than it.

VII. SFHA-MSL TIME COMPLEXITY

In this section we give a complexity analysis on the
operations used in SFHA-MSL with DCF and TCF and
value of R` and L` =16 then compare it with SHA-256 to
indicate the efficiency of SFHA-MSL. This comparison
is indicated in Table V.

A. SFHA-MSL with DCF
As we mentioned previously the generic 3C hash

function section consists of two compression functions
are f1 and f1

\. The function f1 consists of two XORed
branches, while f1

\ consists of a single branch. So the
overall compression function consists of three branches.

Each branch has a step function that is iterated at least
four times (k = 4). Each step function contains 20
addition, 8 XOR and 8 shift rotation operation (see Figure
5).
So the overall compression function contains:
(20 × 4 × 3) = 240 addition,
(8 × 4 × 3 +1) = 97 XOR
and (8 × 4 × 3) = 96 shift rotation operation.
But the generic 3C construction has an extra stage of f1
that contains:
(20 × 4 × 2) = 160 addition,
(8 × 4 × 2 +1) = 65 XOR
and (8 × 4 × 2) = 64 shift rotation operation.
So SFHA-MSL with DCF contains:
(240 + 160) = 400 addition,
(97 + 65) = 162 XOR
and (96 +64) = 160 shift rotation operation.

B. SFHA-MSL with TCF
With the addition of the 3C-X hash function to the

generic 3C hash function we obtain a TCF (f1, f1
\ and f2).

The compression function f2 consists of two XORed
branches and an extra stage.

So the TCF contains:
[400 + (20 × 4 × 2) × 2] = 720 addition,
[162 + (8 × 4 × 2 +1) × 2] = 292 XOR
and [160 + (8 × 4 × 2) × 2] = 288 shift rotation operation.
These results show that SFHA-MSL is an efficient
algorithm compared with SHA-256.

VIII. SFHA-MSL SIMULATED RESULTS

For a simple message M = "abc", the 8-bit ASCII

message "abc" has length l = 24 bits and it is given by
"01100001 01100010 01100011". It is padded with a
one "1", so 24 + 1+ k = 448 mod 512 and then k = 423
zero bits. Append the 64-bit block that is equal to the
number l written in binary "0000……011000" and then
its length are 512-bits padded message.

The "abc" message has a single (N =1) 512 bit block.
Parse the 512 bits into 16 32-bit words M0, M1… M15 (in
hexadecimal).
61626380 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000018

These 16 32-bit words are mixed more than one time
depending on the secret parameter used with no message
expansion.

The SFHA-MSL with different cases will be
represented by SFHA-MSL\N\R`\L`\K, where N, R`, L`
and K are secret dynamic parameters used by the sender
and verifier.
N (2 or 3): the number of compression functions (DCF or
TCF).
R` (16 or 32 or 48): the number of iteration of the generic
3C compression function.
L` (16 or 32 or 48): the number of iteration of the 3C-X
compression function.
K (128 or 192 or 256): the length of the output hash

SFHA-MSL\3\16\32\256; it means that the SFHA-
MSL has "3" compression functions (TCF), number of
iterations in the generic 3C compression functions are
"16" and "32" in the 3C-X compression function and the
output length is "256" bits. The simulated test vectors for

TABLE V
COMPARISON BETWEEN NUMBER OF OPERATIONS OF SFHA-MSL AND SHA-256

Operation SFHA-MSL with DCF SFHA-MSL with TCF SHA-256

Addition (+) 400 720 600
Bitwise Operation (⊕,∧,∨) 162 292 1024

Shift (<< , >>) - - 96
Shift rotation (<<< , >>>) 160 288 576

Total 722 1300 2296

The compared values

The first ten hash values The middle ten hash values The last ten hash values
SFHA-MSL SHA

256
SFHA-MSL SHA

256
SFHA-MSL SHA

256 DCF TCF DCF TCF DCF TCF
Actual average hash value (×1076) 5.6899 5.4807 7.2954 5.7057 6.5712 7.5985 5.3428 4.6612 7.0252

Deviation from optimal 0.0172 0.0533 0.2600 0.0145 0.1349 0.3124 0.0772 0.1948 0.2134

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 941

© 2009 ACADEMY PUBLISHER

TABLE VI
SFHA-MSL TEST VECTOR FOR DIFFERENT CASES WITH THE STRING "abc"

SFHA-MSL Version Hash value (as hex byte string)

SFHA-MSL\2\16\256
SFHA-MSL\2\16\192
SFHA-MSL\2\16\128
SFHA-MSL\3\16\16\256
SFHA-MSL\3\16\16\192
SFHA-MSL\3\16\16\128

D703AF16 0B3F3407 7E82FC19 C0FBF257 A0976776 D3E6D71F 3C5AE9B8 3185A7DB
D703AF16 0B3F3407 7E82FC19 C0FBF257 A0976776 D3E6D71F
D703AF16 0B3F3407 7E82FC19 C0FBF257
FE520E80 CB006687 B3DD1F9D 7FE37276 B8FBC27C CB697A52 DABB761D 2098FD46
FE520E80 CB006687 B3DD1F9D 7FE37276 B8FBC27C CB697A52
FE520E80 CB006687 B3DD1F9D 7FE37276

the SFHA-MSL are given in Table VI.

X. CONCLUSIONS

This paper presents a new secure and efficient hashing
algorithm with different security levels called SFHA-
MSL.

It is based on the generic 3C construction and the 3C-X
hash function which is the simplest and efficient variant
of the generic 3C hash function and it is the simplest
modification to the M-D iterated construction that one
can achieve.

All famous secure hash algorithms (SHA) given by the
National Institute of Standards and Technology (NIST)
have fixed structure and fixed output length but SFHA-
MSL has dynamic structure and variable output length so
it can provide many choices for practical applications
with different levels of security to resist the advanced
attacks such as preimage, second preimage and collision
attacks.

SFHA-MSL tests showed that it has a better
avalanching effect and a more uniform distribution than
SHA-256.

The time complexity of SFHA-MSL is compared with
that of the SHA-256 and it gives excellent results.

REFERENCES

[1] A. J. Menzes, P.C. Oroschot , and S.A. Vanstone,
"Handbook of Applied Cryptography", Boca Raton,
Florida: CRC Press LLC, 1997.

[2] A. Bosselaers, H. Dobbertin, B. Preneel, "The
Cryptographic Hash Function RIPEMD-160",
CryptoBytes, RSA laboratories, 1997.

[3] William Stallings, "Cryptography and Network
Security: Practice", Prentice-Hall Inc, 2003.

[4] Duo Lei, Li Chao, Chen Song, "The Design Principle
of Iterated Hash Function Satisfying Failure
Tolerant Principle", Department of Science National
University of Defense Technology, Changsha,
China, 2005.

[5] P. Gauranvaram, W. Millan, J.G. Neito, E. Dawson,
"3C-Aprovably Secure Pseudorandom Function and
Message Authentication Code", Information
Security Institute (ISI), QUT, Australia, 2006.

942 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

