
Integrating Heterogeneous Data Source Using
Ontology

Jinpeng Wang, Jianjiang Lu, Yafei Zhang, Zhuang Miao and Bo Zhou

Institute of Command Automation, PLA University of Science and Technology, Nanjing, China
Email: wangjinpeng1982@gmail.com

Abstract—Integrating data from multiple heterogeneous
sources entail dealing with different data models, schemas
and query languages. The burgeoning Semantic Web has
provided several new methods for data integration. This
paper focuses on integration of relational database and
XML data. To solve the problem we propose an ontology-
based approach. A semantic integration infrastructure for
heterogeneous data sources is presented. In this infrastruc-
ture, ontology is used as the mediated schema for the repre-
sentation of the data source semantics. To model different
source schemas, we propose a describing method based on
RDF graph patterns. The semantic mappings between
source schema and RDF ontology are described declarative-
ly using SPARQL queries. The semantic of query rewriting
is further discussed and a query rewriting algorithm is pre-
sented.

Index Terms—data integration, ontology, SPARQL, hetero-
geneous database, RDF

I. INTRODUCTION

Integrating and querying data from heterogeneous
sources is a hot research topic in database research field.
The goal of data integration is to provide user a uniform
access to multiple heterogeneous data sources. This prob-
lem is known in the literature as query rewriting and
query answering using views, and has been studied very
actively in the recent years [1]. However, with the use of
ontology, these former research works are not applicable.

The burgeoning Semantic Web has provided several
methods for integration of heterogeneous data sources.
Being an “explicit specification of a conceptualization”
[1], ontology is considered as a possible solution to
represent the content of heterogeneous data sources. RDF
is a general proposition language for description of ontol-
ogy. SPARQL, a query language for RDF, can join data
from different databases, as well as documents, inference
engines, or anything else that might express its know-
ledge as a directed labeled graph.

In this paper, an ontology-based approach for hetero-
geneous data source integration is proposed. In our pro-
posal, RDF ontology is used as mediated schema for the
explicit description of the data source semantics, provid-
ing a shared vocabulary for the specification of the se-
mantics. In order to implement the integration, the mean-
ing of the source schemas has to be understood. A source
describing method based on RDF graph patterns is pro-
posed to specify the semantic mapping between ontology
and the source schemas. The semantic of query rewriting

is further discussed and a query rewriting algorithm is
presented to reformulate a SPARQL query into source
specific queries (e.g. SQL, XQuery etc.), so that
SPARQL can access heterogeneous data sources without
converting the data into physical triples. We base our
discussion on our previous work [3].

The contributions of the present work are:
 A semantic integration infrastructure for relational

data.
 A data source describing method based on SPARQL

graph patterns.
 Semantic mapping between relational, XML schema

and RDF ontology.
 A query rewriting algorithm in integration scenario.

The remainder of this paper is structured as follows: In
Section II we first list some related work and Section III
overview the integration infrastructure, introduce the ar-
chitecture of data integration system we present. In Sec-
tion IV we discuss semantic mapping in detail. After in-
troduce the RDF graph model, relational data model and
XML data model, we give some principles for semantic
mapping between data source schemas and ontology.
Then a new method which describe source schema using
SPARQL is proposed. Section V discusses the semantic
of query rewriting on graph pattern. In Section VI, we
give our algorithm to execute the query rewriting. Section
VII concludes the paper.

II. RELATED WORK

A. Relational Database Integration
Considering that much of the world’s data are stored in

databases of one kind or another, primarily relational
databases, need for integrating of heterogeneous relation-
al databases efficiently is obvious. Systems like Virtuoso
[4], D2RQ [5] and Squirrel RDF [6] rewrite SPARQL
queries to SQL. Oracle's 10.2 and the MySQL SPASQL
[7] module compile SPARQL queries directly into an
evaluation structure to be executed by the relational en-
gine. However these research works only focused on ac-
cessing conventional relational databases using SPARQL,
which didn’t take the integration into account.

A few early works study integration of relational data-
bases using ontology [8][9], [10]. All the three papers
construct ontologies from relational databases schema.
This method cannot fully capture the semantic behind the
relational schema, only reflecting the structure of data-

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 843

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.8.843-850

base, which makes it hard to integrate heterogeneous rela-
tional databases.

B. XML Data Integration
The success of XML and its potential use in interope-

rability problems has fuelled lots of XML-related data
integration projects like XQuare [11], Liquid Data
(Enosys) [12], Tukwila [13], etc.

Tukwila system uses the MiniCon [14] algorithm to re-
formulate the queries posed over the global schema into
queries over the local XML sources.

Enosys XML Integration Platform is an XML-based
data integration system. This system is based on the
wrapper-mediator architecture. It allows querying hetero-
geneous data sources abstracted with XML schemas.
Wrappers use XML schemas as logical views of the
sources, and a mediator resolves XQuery expressions
over the sources.

XQuare (XQuery Advanced Runtime Environment) is
a set of open source Java modules for extending J2EE
platforms with XML-based, heterogeneous information
integration capabilities. The goal of XQuare is presenting
to applications a single, uniform XML view of the differ-
ent data sources, which can then be queried with XQuery
to produce XML documents. Accessible data sources
include relational databases, XML documents, Web Ser-
vices and any XQuery-enabled data source and JCA con-
nectors.

III. INTEGRATION ARCHITECTURE

In this section, we discuss the architecture the for data
integration. Our approach adopts a so-called mediator-
wrapper architecture that allows data sources to function
independently while the remote access can be done via a
mediator and adaptable wrappers. Illustrated in Figure 1,
the architecture of our system may be divided into four
layers: application layer communicate with users; mediat-
ing layer contains a mediator which allows the integra-
tion; wrapper layer contains wrappers for each data re-
source; and source layer contains a set of heterogeneous
sources.

Figure 1. Architecture of data integration system

The relations in the mediated schema are virtual in the
sense that their extensions are not actually stored any-
where. The data integration system has a set of source
descriptions that specify the semantic mapping between
the mediated schema and the source schemas and uses
these source descriptions to reformulate a user query into
a query over the source schemas.

Circled by broken line, the main elements of the archi-
tecture include four parts: query processor, mediated
schema, source description and wrapper.

A. Query Processor
The query processor is the kernel component of data

integration system. It parses, translates, rewrites and dis-
patches the user query to related data sources. When user
pose their queries expressed in SPARQL using terms
from mediated schema, the parser analyzes the query,
verifying if it is in accordance with the SPARQL syntax.
Rewriter implements the query rewriting algorithm to
carry out the query rewriting work with reference to
source descriptions.

B. Mediated Schema
We use ontology as the mediated schema, which can

be seen as a knowledge base of a particular domain we
are interested. The mediated schema has two roles: (1) It
provides the user access to the data with a uniform query
interface to facilitate the formulation of a query on all
sources; (2) It serves as a shared vocabulary set for wrap-
pers to describe the content in every data sources. The
mediated schema is expressed using RDFS in our work.

C. Source Descriptions
As mentioned before, queries are posed in terms of the

mediated schema. To answer a query, the rewriter need
descriptions that relate the contents of each data source to
the classes, attributes and relations in the mediated sche-
ma. Each data source is described by one or more
SPARQL queries. These semantically rich descriptions
help the rewriter to form queries and also direct the query
dispatcher to distribute queries to specific data sources.

D. Wrapper
The wrapper provides an SPARQL view representing a

data source and a means to access and to query the data
source. It translates the incoming queries into source-
specific queries executable by the query processor of the
corresponding sources.

IV. SEMANTIC MAPPING

A. RDF Graph Model
RDF describes things by making statements about an

entity's properties. RDF statements are triples consisting
of a subject (the resource being described), a predicate
(the property) and an object (the property value). The
values of a statement are URI references. This simple
model of assertions leads to a network of information
resources, interrelated by properties which establish rela-
tions between resources and property values. Thus, one
can intuitively understand a collection of information

844 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

resources and RDF statements describing them as a graph.
To emphasize this characteristic, the term RDF Graph is
defined as a set of RDF triples; hence, any collection of
RDF data is an RDF Graph [14].

Definition 1 (RDF Terms, Triples, and Variables)
Assume there are pair wise disjoint infinite sets I, B, and
L (IRIs, Blank nodes, and literals). A tuple (s, p,
o)∈(I∪B)×I×(I∪B∪L) is called an RDF triple. In this
tuple, s is the subject, p the predicate and o the object. We
denote the union I∪B∪L by T (RDF terms). Assume
additionally the existence of an infinite set V of variables
disjoint from the above sets.

Definition 2 (RDF Graph) An RDF graph is a set of
RDF triples.

Figure 2 shows a part of RDF ontology. We use “sub”
represent relation “subclass” for short. There is a relation
“write” between concepts “Person” and “Publication”,
indicating the relationship between authors and their
works. The relation “belongs to” between “Person” and
“Organization” indicate what organizations people belong
to. The relation “per_name” and “per_email” point a per-
son’s name and email. The same applies to “pub_title”,
“pub_year” and “org_name”.

B. Relational Model
The term relation is used here in its accepted mathe-

matical sense. Given sets D1, D2, …, Dn, R is a relation on
these n sets if it is a subset of the Cartesian product
D1×D2× … ×Dn. R is said to have degree n, often called
n-ary. An n-ary relation R can be represented as a table
with n column, which has the following properties:
1. Each row represents an n-tuple of R.
2. The ordering of rows is immaterial.
3. All rows are distinct.

Normally, one column (or combination of column) of a
given relation has values with uniquely identify each
element (n-tuple) of that relation. Such a column (combi-
nation) is called a primary key.

A common requirement is for elements of a relation to
cross-reference other elements of the same relation or
elements of a different relation. We shall call a column of
relation R a foreign key if it is not the primary key of R
but its elements are values of the primary key of some
relation S.

As shown in Figure 3(a), suppose there are two hetero-
geneous relational databases, each has several tables con-
taining information about authors and papers.

Figure 2. Part of RDF ontology

Figure 3. Two heterogeneous data sources

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 845

© 2009 ACADEMY PUBLISHER

C. XML Model
Extensible Markup Language (XML) is a simple, very

flexible text format derived from SGML. While XML
was originally designed to meet the challenges of large-
scale electronic publishing, it plays an increasingly im-
portant role in the exchange of a wide variety of data on
the Web [16].

XML is an extremely versatile data format that has
been used to represent many different kinds of data, in-
cluding web pages, books, XML representations of rela-
tional database tables, programming interfaces, objects
and multimedia presentations. In addition, some systems
offer XML views of non-XML data sources such as rela-
tional databases, allowing XML-based processing of data
that are not physically stored as XML.

The XML data model is a tree with labeled and or-
dered nodes. This means that the order of each node is
meaningful and important for writing an XML document.

The W3C XML Schema Definition Language [17] is
an XML language for describing and constraining the
content of XML documents. W3C XML Schema is a
W3C Recommendation. The basic characteristic of the
XML Schema is that it can define elements and attributes
that can appear in a document, define which elements are
child elements, the order of these elements and their car-
dinality. XML Schema provides user with the ability to
define an element or an attribute into a specific scope.
User can define complex or simple elements (depending
on whether they have further structure on not) and cardi-
nalities for them.

Figure 3(b) shows an XML tree, which describing the
schema of an XML document about papers and their au-
thors.

D. Mapping Relational Schemas to ontology
To solve the heterogeneity problem, the meaning of the

relational schema has to be well described, which is

called “source description” in [18]. Before presenting
how source descriptions are defined, it is worth consider-
ing how, in general terms, relational schema can be
mapped to RDF ontology.

As mentioned above, RDF describes resources using a
graph model. RDF Schema (RDFS) provides modeling
primitives for defining classes and properties, range and
domain constraints on properties, and subclass and sub-
property relations.

The relational schema is based on entity-relationship
diagram (ERD). Typically, each entity is represented as a
database table, each attribute of the entity becomes a col-
umn in that table, and relationships between entities are
indicated by foreign keys. Each table typically defines a
particular class of entity, each column one of its attributes.
Each row in the table describes an entity instance, uni-
quely identified by a primary key. The table rows collec-
tively describe an entity set.

There are some similarities and differences between
RDF and the ER model, Berners-Lee discussed this issue
in [19]. Basically, ERD and RDF Graph have much in
common. RDF can be viewed as a member of the Entity-
Relationship model family [20]. Class in RDFS corres-
ponds to entity in ERD; property is kind of binary rela-
tionship; subclass and subproperty are subsumption rela-
tions. Therefore, we list some principles below for se-
mantic mapping between relational schema and RDF
ontology:

 Primary key of table is mapped to class.
 Columns in table are mapped to properties.
 Column value is mapped to property value.
 Each row key corresponds to an instance.
 Each row is represented in RDF by a collection of

triples with a common subject.
As shown in figure 4, the semantic mappings between

relational schemas and ontology are marked by arrows
with broken line.

Person

Publication

Proceedings

sub

Write

name

title

year

per_name

pub_year

pub_title

database1.person

PK PersonId

Name

database1.proceeding

PK ProceedingId

Title
Year
ISBN
Url

database1.rel

PersonId
ProceedingId

title

paper

string

year

string

author

name email homepage

string string

papers(root)

string

Figure 4. Semantic mapping between relational schemas and ontology

846 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

E. Mapping XML Schemas to ontology
Elements and attributes are the two basic building

blocks of XML documents. Elements can be defined as
simple types or complex types. Simple types cannot have
element content and cannot carry attributes, while com-
plex types can contain elements and attributes. On the
other hand, all attribute declarations must reference sim-
ple types since attributes cannot contain other elements or
other attributes. From the perspective of XML Schema,
these nesting relationships are defined in terms of data
types (simple or complex type). A well-formed XML
document contains the hierarchical structure of elements
and attributes, which contains the following two aspects:
only complex-type elements can carry attributes and
attributes can only be of simple types; only complex-type
elements can allow elements as their children. But child
elements can be either simple types or complex types.

No new RDF metadata needs to be defined here be-
cause RDFS Class and RDFS Property are enough for the
specifications of classes and properties. Taking into ac-
count XML elements, attributes and their relationships,
we propose some principles below for semantic mapping
between XML schema and RDF ontology:

 Attributes is mapped into properties.
 Simple-type elements are mapped into properties.
 Complex-type elements are mapped into classes.

As shown in figure 4, the semantic mappings between
XML schemas and ontology are marked by arrows with
solid line. In this example, attributes (like title, name,
year, etc.) are mapped into properties in ontology. And
complex-type elements (like author, paper) are mapped
into RDFS classes.

F. Source Description
After being mapped to ontology, source schemas have

to be described so that the query rewriting algorithm can
use them to generate executable query plans efficiently.
We use SPARQL here..

Definition 3 (Source description) Given a data source
P, its source description DP is a tuple (QP, µ), where QP is
a SPARQL query and µ is a mapping from variables ap-
peared in QP to corresponding columns in P.

Each relational table is described by a SPARQL query
over domain ontology. The semantic of the databases are
thus explicitly defined, and it is easy to add and delete
sources. Table database1.person can be described as the
tuple

(
SELECT ?name
WHERE {?X per_name ?name},
{?name→Name}
).

Table database1.proceeding can be described as the
tuple

(
SELECT ?title, ?year
WHERE {?X pub_title ?title.

?X pub_year ?year},

{?title→Title, ?year→Year}
).

Table database1.rel can be described as a tuple

(
SELECT ?person, ?proceeding
WHERE {?person Write ?proceeding}”,
{?person→ PersonId,
?preceeding → ProceedingId}
).

An XML document can also be described by a
SPARQL query. The XML tree in figure 3(b) can be de-
scribed as the tuple

(
SELECT ?title, ?name, ?year
WHERE {?X per_name ?name.

?Y pub_title ?title.
?Y pub_year ?year.
?X Write ?Y},

{?name→/papers/paper/author/name,
?title→/papers/paper/title,
?year→/papers/paper/year}

).

V. SEMANTIC OF QUERY REWRITING

The problem of query rewriting considers how to re-
formulation a query from the mediated schema to the
underlying relational database. A survey and analysis on
different algorithms to solve the problem is given in [14].
In this paper, we propose an algorithm to execute the
query rewriting over RDF Graph model.

Pérez introduce the formal semantics of SPARQL in
[21]. The SPARQL query language is based on matching
graph patterns. Graph patterns contain triple patterns that
are like RDF triples, but with the option of query va-
riables in place of RDF terms in the subject, predicate or
object positions. Combining triple patterns gives a basic
graph pattern, more complex graph patterns can be
formed by combining smaller patterns.

The triple patterns of a SPARQL query over domain
ontology can be considered as a sub-graph of the RDF
Graph.

Definition 4 (Query Sub-graph) Given a SPARQL
query Q, its Query Sub-graph GQ is a set of RDF triples
that satisfy the query.

In Section IV we define the source descriptions of data
source using SPARQL queries. Each SPARQL query
corresponds to a sub-graph of the RDF Graph of domain
ontology. Consequently, the contents of a data source can
be considered as a sub-graph of RDF Graph.

Definition 5 (Source Sub-graph) Given a data source
P, its Source Sub-graph GP is a set of RDF triples that
satisfy the queries in source description of the data source.

Given a SPARQL query over domain ontology, query
rewriting algorithm finds proper data sources whose sub-
graph cover the SPARQL query, generates the query
plans and unit the results together. The semantic of query
rewriting is defined below:

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 847

© 2009 ACADEMY PUBLISHER

Definition 6 (Query Rewriting) Given a SPARQL
query Q over domain ontology, a query rewriting answer
is a set of data sources whose sub-graph cover the
SPARQL query. The results of all possible query rewrit-
ing answers of Q make up the final result of Q.

VI. QUERY REWRITING ALGORITHM

As implied by the previous section, a semantically cor-
rect query plan amounts to finding proper data sources
whose sub-graph cover the SPARQL query. In this sec-
tion, we present the query rewriting algorithm to generate
semantically correct and executable query plans under the
RDF Graph model. Our algorithm proceeds in two stages.
In the first stage, we find all relative data sources and
decompose them to Minimal Connectable Units (MCU)
according to source descriptions. In the second stage we
join MCUs to produce query plans that are semantically
correct and executable.

A. Generating MCUs
A MCU is a subset of RDF triples in source descrip-

tion that can be joined with other MCUs and executed on
heterogeneous data sources. Intuitively, a MCU
represents a fragment of semantic mapping from the
query to the rewriting of the query.

Formally, we define MCUs as follow:
Definition 7 (Minimal Connectable Units) Given a

SPARQL query Q, a data source P and its source descrip-
tion DP = (QP, µ), a MCU m for P is a tuple of the form (Υ,
µ’) where:

- Υ is a subset of triple patterns in QP.
- µ’ is a partial mapping from variables appeared in QP

to corresponding component in P.
The algorithm for creating the MCUs is shown in Fig-

ure 5. We say a set of triple patterns Y connectable if the
following conditions hold: (1) Each return variable of Q
is also return variable in Y. (2) If x is not a return variable
in Q, then for every triple pattern t that includes x, t∈Y.

Consider a SPARQL query asking for titles of papers
written by an author called “Andy”:
SELECT ?title
WHERE {?X per_name “Andy”.

?X Write ?Y.
?Y title ?title. }

findMCUs(Q, DP)
/*Q is a SPARQL query, DP is the source description of

a data source P, has the form (QP, µ). */
Initialize M = Ф;
for each triple pattern t in Q, do
for each triple pattern t’ in QP, do
 if exist a mapping τ that map t to t’, then
 find the minimal subset (denoted by Y) of triple

patterns of QP that is connectable.
 find the subset (denoted by µ’) of µ that relative to

Y.
 M = M ∪ < Υ, µ’ >;
end for
end for
return M;

Figure 5. Finding the MCUs

TABLE I
MCUS FORMED

No. Y µ’

1 ?x per_name ?y ?y →person.Name

2 ?x pub_title ?y ?y →proceeding.Title

3 ?x Write ?y ?x→rel.PersonId
?y →rel.ProceedingId

4 ?x per_name ?y ?y →persons.Name

5 ?x pub_title ?y ?y →papers.Title

6 ?x Write ?y ?x→rel_person_paper.PerID
?y →rel_person_paper.PaperID

7
?x per_name ?n
?y pub_title ?t
?x Write ?y

?n→/papers/paper/author/name
?t→/papers/paper/title

The MCUs that will be created are shown in table1.
We notice that the last MCU in Table 1 contain all the
three triple patterns in its source description. This is be-
cause variable ?x and ?y are not return variables, accord-
ing to the two conditions we defined, they must be in a
same MCU.

B. Joining MCUs
In this phase we consider combinations of MCUs, and

for each valid combination we create a conjunctive re-
writing of the query. The final result is a union of con-
junctive queries. Given a set of MCUs, the actual rewrit-
ing is constructed as shown in Figure 6.

Continuing the above example, the algorithm will find
eight possible rewritings: {1, 2, 3}, {1, 2, 6}, {1, 5, 3}, {1,
5, 6}, {4, 2, 3}, {4, 2, 6}, {4, 5, 3}, {4, 5, 6} and {7}.
Take the rewriting {1, 2, 3} for example, which can be
translated to SQL query like:
SELECT proceeding.Title
FROM person, proceeding, rel
WHERE person.Name = ‘Andy’
AND person.PersonId = rel.PersonId
AND proceeding.ProceedingId =

rel.ProceedingId

And the rewriting {7} can be translated to XQuery like:
for $x in doc(“example.xml”)/papers
where $x/author/name = ‘Andy’
return $x/title

Executing each conjunctive query on data source and
union the result, we get the result of the example
SPARQL query.

joinMCUs(Q, M, A)
/* Q is a SPARQL query, M is a set of MCUs, M =

{m1, …, mn}, where mi = (Υi, µi’), A is a set of rewritings*/
Initialize A = Ф;
for each minimal subset {m1,…, mk} of M such that
 Υ1 ∪ Υ2 ∪ …∪ Υk cover all triple patterns of Q.
 Create the conjunctive rewriting Q’ contain all

relative tables to {m1,…, mk}
 Add Q’ to A
end for
return A

Figure 6. Joining the MCUs

848 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

C. Optimizing Rewriting on Relational Queries
We notice that some MCUs have the same triple pat-

terns, which means they have the same semantic. This
reminds us that some optimization work can be done. As
shown in figure 7, MCU No.1 and No.4 has the same
triple patterns, so are the No.2 and No.5, No.3 and No.6.
There are eight different ways joining these three kinds of
MCUs, as we get in former step. If we union the same
kind of MCUs before join them, the number of rewritings
can be drastically reduce. In this example, rewritings are
reduced from eight to only one.

Figure 7. Optimize the rewriting

After the optimization, we get this SQL query:
SELECT title
FROM
((SELECT Name as Name, PersonId as

PersonID FROM database1.person) UNION
(SELECT Name as Name, PerID as
PersonID FROM database2.persons)) as
Person,
((SELECT PersonId as PersonID,

ProceedingId as PaperID FROM
database1.rel) UNION (SELECT PerID as
PersonID, PaperID as PaperID FROM
database2.rel_person_Paper)) as Write,
((SELECT Title as Title, ProceedingId

as PaperID FROM database1.proceeding)
UNION (SELECT Title as Title, PaperID
as PaperID FROM database2.papers)) as
Paper
WHERE Person.Name = 'Andy'
AND Person.PersonID = Write.PersonID
AND Paper.PaperID = Write.PaperID

VII. CONCLUSION

The integration of data from multiple heterogeneous
sources is an old and well-known research problem for
the database and AI research communities. In this paper
we considered the problem of integrating heterogeneous
data sources using ontology. We discussed the main is-
sues and also solutions. We use ontology as the mediated
schema for integration. A novel data integrating architec-
ture based on ontology was presented. We first analyze
the similarities and differences among RDF schema, rela-
tional model and XML schema, and then discuss how to
map relational schema and XML schema to ontology. A
data source describing method based on SPARQL is de-
fined. Heterogeneous data source schemas are described
using queries defined by SPARQL. Based on RDF Graph
model, the semantic of query rewriting is defined and a
query rewriting algorithm is presented.

The architecture and approach we provided in this pa-
per can be extended for other data source (i.e. RDF, OWL,

web forms, etc.); some of the complex semantic (i.e.
CONSTURCT, ASK) are not discussed. We leave these
problems for future work.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their many suggestions which helped improve the paper.
We would like to acknowledge the support of the Nation-
al High Technology Research and Development Program
of China (No. 2007AA01Z126, 863 Program).

REFERENCES

[1] A. Y. Halevy, “Answering queries using views: a survey,”
In: VLDB Journal. Vol.10, No.4, pp. 270-294, 2001.

[2] T. R. Gruber, “A translation approach to portable ontology
specifications,” Knowledge Acquisition. Vol.5, No.2, pp.
199-220, 1993.

[3] J. Wang, Z. Miao, Y. Zhang, and J. Lu, “Semantic integra-
tion of relational data using SPARQL,” in International
Symposium on Intelligent Information Technology Applica-
tion, 2008.

[4] O. Erling and I. Mikhailov, “RDF Support in the Virtuoso
DBMS,” in Proceedings of the 1st Conference on Social
Semantic Web, Leipzig, Germany, pp. 59-68, 2007.

[5] C. Bizer and A. Seaborne, “D2RQ – Treating Non-RDF
Databases as Virtual RDF Graphs (Poster),” in 3rd Inter-
national Semantic Web Conference, Hiroshima, Japan,
2004.

[6] G. Zhou, R. Hull, R. King, and J.-C. Franchitti, “Using
object matching and materialization to integrate heteroge-
neous databases,” In Proceedings. of the 3rd International
Conference on Cooperative Information Systems (Coo-
pIS’95), Vienna, Austria, pp. 4-18, 1995.

[7] E. Prudhommeaux, “SPASQL: SPARQL Support In
MySQL,” http://xtech06.usefulinc.com/schedule/paper/156,
2006.

[8] C. P. d. Laborda and S. Conrad, “Bringing Relational Data
into the Semantic Web using SPARQL and Relation-
al.OWL,” in Proceedings of the 22nd International Confe-
rence on Data Engineering Workshops, Atlanta, GA, USA,
p. 55, 2006.

[9] R. J. Bayardo, W. Bohrer, R. Brice, A. Cichocki, J. Fowler,
A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine,
M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan, A.
Unruh, and D. Woelk, “Infosleuth: Agent-Based Semantic
Integration of Information in Open and Dynamic Environ-
ments,” SIGMOD Record vol. 26, pp. 195-206, 1997.

[10] D. Dou and P. LePendu, “Ontology-based Integration for
Relational Databases,” in Proceedings of the 2006 ACM
symposium on Applied computing, Dijon, France, pp. 461-
466, 2006.

[11] Xquare Fusion. http://xquare.objectweb.org/fusion
[12] Y. Papakonstantinou and V. Vassalos, “The Enosys Mar-

kets data integration platform: lessons from the trenches,”
in Proceedings of the tenth international conference on In-
formation and knowledge management, Atlanta, Georgia,
USA, pp. 538-540, 2001.

[13] Z. G. Ives, A. Y. Halevy, and D. S. Weld, “An XML query
engine for network-bound data,” The VLDB Journal, vol.
11, pp. 380-402, 2002.

[14] R. Pottinger and A. Halevy, “MiniCon: A Scalable Algo-
rithm for Answering Queries Using Views,” The VLDB
Journal, vol. 10, pp. 182-198, 2001.

[15] J. Hayes, “A graph model for RDF,” PhD dissertation,
Darmstadt University of Technology, Germany, 2004.

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 849

© 2009 ACADEMY PUBLISHER

[16] Extensible Markup Language (XML) 1.0 (Fifth Edition),
http://www.w3.org/TR/2008/REC-xml-20081126/.

[17] XML Schema, http://www.w3.org/TR/xmlschema-0/.
[18] A. Y. Levy, A. Rajaraman, and J. J. Ordille, “Querying

Heterogeneous Information Sources Using Source Descrip-
tions,” in Proceedings of the 22th International Conference
on Very Large Data Bases, San Francisco, CA, USA, pp.
251-262, 1996.

[19] T. Berners-Lee, “Relational Databases on the Semantic
Web”, http://www.w3.org/DesignIssues/RDB-RDF.html,
1998.

[20] R. R. Swick and H. S. Thompson, “The Cambridge Com-
muniqué.” http://www.w3.org/TR/schema-arch, 1999.

[21] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics of
SPARQL,” Technical Report, Universidad de Chile
TR/DCC-2006-17, 2006.

Jinpeng Wang received his BS degree in computer science,
from Institute of Command Automation, PLA University of
Science and Technology, Nanjing, China in 2005. Now he is a
doctoral student in Institute of Command Automation, PLA
University of Science and Technology, Nanjing, China major in
Computer Science and Technology, with the study direction on
Data Integration. At present, he works in related research issues
on heterogeneous data integration. Currently, he is focusing on
problems of semantic mapping and query rewriting.

Yafei Zhang received the PhD degree in computational lin-

guistics from Fudan University, Shanghai, China in 1992. His
research interests are in natural language processing and com-
mand automation.

He has written several books and papers about natural lan-
guage processing and intelligent computing. Now he is a Pro-

fessor and PhD Supervisor of PLA University of Science and
Technology, Nanjing, China. His current research interests are
intelligent computing and data integration.

Jianjiang Lu received the PhD degree in computer science

from Institute of Command Automation, PLA University of
Science and Technology, Nanjing, China in 2002.

He has written several books and papers about fuzzy logics
and semantic web. Now he is an Associate Professor of PLA
University of Science and Technology, Nanjing, China. His
current research interests are intelligent computing and data
engineering.

Zhuang Miao received his BS and MS degree in semantic

web field from Institute of Communications Engineering, PLA
University of Science and Technology, Nanjing, China and the
PhD degree in Institute of Command Automation, PLA Univer-
sity of Science and Technology, Nanjing, China in 1999, 2003
and 2007 respectively. His major field of study is semantic web.

He has written several papers about semantic web and intel-
ligent computing. Now he is a lecturer of Institute of Command
Automation, PLA University of Science and Technology, Nanj-
ing, China. His current research interests are semantic web and
data integration.

Bo Zhou received his BS degree in mathematics, from Nanj-

ing University, Nanjing, China in 2004. Now he is a doctoral
student in Institute of Command Automation, PLA University
of Science and Technology, Nanjing, China major in Computer
Science and Technology, with the study direction on intelligent
computing.

850 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

