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Abstract—Integrating data from multiple heterogeneous 
sources entail dealing with different data models, schemas 
and query languages. The burgeoning Semantic Web has 
provided several new methods for data integration. This 
paper focuses on integration of relational database and 
XML data. To solve the problem we propose an ontology-
based approach. A semantic integration infrastructure for 
heterogeneous data sources is presented. In this infrastruc-
ture, ontology is used as the mediated schema for the repre-
sentation of the data source semantics. To model different 
source schemas, we propose a describing method based on 
RDF graph patterns. The semantic mappings between 
source schema and RDF ontology are described declarative-
ly using SPARQL queries. The semantic of query rewriting 
is further discussed and a query rewriting algorithm is pre-
sented. 
 
Index Terms—data integration, ontology, SPARQL, hetero-
geneous database, RDF 
 

I.  INTRODUCTION 

Integrating and querying data from heterogeneous 
sources is a hot research topic in database research field. 
The goal of data integration is to provide user a uniform 
access to multiple heterogeneous data sources. This prob-
lem is known in the literature as query rewriting and 
query answering using views, and has been studied very 
actively in the recent years [1]. However, with the use of 
ontology, these former research works are not applicable.  

The burgeoning Semantic Web has provided several 
methods for integration of heterogeneous data sources. 
Being an “explicit specification of a conceptualization” 
[1], ontology is considered as a possible solution to 
represent the content of heterogeneous data sources. RDF 
is a general proposition language for description of ontol-
ogy. SPARQL, a query language for RDF, can join data 
from different databases, as well as documents, inference 
engines, or anything else that might express its know-
ledge as a directed labeled graph.  

In this paper, an ontology-based approach for hetero-
geneous data source integration is proposed. In our pro-
posal, RDF ontology is used as mediated schema for the 
explicit description of the data source semantics, provid-
ing a shared vocabulary for the specification of the se-
mantics. In order to implement the integration, the mean-
ing of the source schemas has to be understood. A source 
describing method based on RDF graph patterns is pro-
posed to specify the semantic mapping between ontology 
and the source schemas. The semantic of query rewriting 

is further discussed and a query rewriting algorithm is 
presented to reformulate a SPARQL query into source 
specific queries (e.g. SQL, XQuery etc.), so that 
SPARQL can access heterogeneous data sources without 
converting the data into physical triples. We base our 
discussion on our previous work [3]. 

The contributions of the present work are: 
 A semantic integration infrastructure for relational 

data. 
 A data source describing method based on SPARQL 

graph patterns. 
 Semantic mapping between relational, XML schema 

and RDF ontology. 
 A query rewriting algorithm in integration scenario. 

The remainder of this paper is structured as follows: In 
Section II we first list some related work and Section III 
overview the integration infrastructure, introduce the ar-
chitecture of data integration system we present. In Sec-
tion IV we discuss semantic mapping in detail. After in-
troduce the RDF graph model, relational data model and 
XML data model, we give some principles for semantic 
mapping between data source schemas and ontology. 
Then a new method which describe source schema using 
SPARQL is proposed. Section V discusses the semantic 
of query rewriting on graph pattern. In Section VI, we 
give our algorithm to execute the query rewriting. Section 
VII concludes the paper. 

II.  RELATED WORK 

A.  Relational Database Integration 
Considering that much of the world’s data are stored in 

databases of one kind or another, primarily relational 
databases, need for integrating of heterogeneous relation-
al databases efficiently is obvious. Systems like Virtuoso 
[4], D2RQ [5] and Squirrel RDF [6] rewrite SPARQL 
queries to SQL. Oracle's 10.2 and the MySQL SPASQL 
[7] module compile SPARQL queries directly into an 
evaluation structure to be executed by the relational en-
gine. However these research works only focused on ac-
cessing conventional relational databases using SPARQL, 
which didn’t take the integration into account.  

A few early works study integration of relational data-
bases using ontology [8][9], [10]. All the three papers 
construct ontologies from relational databases schema. 
This method cannot fully capture the semantic behind the 
relational schema, only reflecting the structure of data-
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base, which makes it hard to integrate heterogeneous rela-
tional databases. 

B.  XML Data Integration 
The success of XML and its potential use in interope-

rability problems has fuelled lots of XML-related data 
integration projects like XQuare [11], Liquid Data 
(Enosys) [12], Tukwila [13], etc. 

Tukwila system uses the MiniCon [14] algorithm to re-
formulate the queries posed over the global schema into 
queries over the local XML sources. 

Enosys XML Integration Platform is an XML-based 
data integration system. This system is based on the 
wrapper-mediator architecture. It allows querying hetero-
geneous data sources abstracted with XML schemas. 
Wrappers use XML schemas as logical views of the 
sources, and a mediator resolves XQuery expressions 
over the sources. 

XQuare (XQuery Advanced Runtime Environment) is 
a set of open source Java modules for extending J2EE 
platforms with XML-based, heterogeneous information 
integration capabilities. The goal of XQuare is presenting 
to applications a single, uniform XML view of the differ-
ent data sources, which can then be queried with XQuery 
to produce XML documents. Accessible data sources 
include relational databases, XML documents, Web Ser-
vices and any XQuery-enabled data source and JCA con-
nectors.  

III.  INTEGRATION ARCHITECTURE 

In this section, we discuss the architecture the for data 
integration. Our approach adopts a so-called mediator-
wrapper architecture that allows data sources to function 
independently while the remote access can be done via a 
mediator and adaptable wrappers. Illustrated in Figure 1, 
the architecture of our system may be divided into four 
layers: application layer communicate with users; mediat-
ing layer contains a mediator which allows the integra-
tion; wrapper layer contains wrappers for each data re-
source; and source layer contains a set of heterogeneous 
sources. 

Figure 1. Architecture of data integration system 

The relations in the mediated schema are virtual in the 
sense that their extensions are not actually stored any-
where. The data integration system has a set of source 
descriptions that specify the semantic mapping between 
the mediated schema and the source schemas and uses 
these source descriptions to reformulate a user query into 
a query over the source schemas. 

Circled by broken line, the main elements of the archi-
tecture include four parts: query processor, mediated 
schema, source description and wrapper. 

A.  Query Processor 
The query processor is the kernel component of data 

integration system. It parses, translates, rewrites and dis-
patches the user query to related data sources. When user 
pose their queries expressed in SPARQL using terms 
from mediated schema, the parser analyzes the query, 
verifying if it is in accordance with the SPARQL syntax. 
Rewriter implements the query rewriting algorithm to 
carry out the query rewriting work with reference to 
source descriptions. 

B.  Mediated Schema 
We use ontology as the mediated schema, which can 

be seen as a knowledge base of a particular domain we 
are interested. The mediated schema has two roles: (1) It 
provides the user access to the data with a uniform query 
interface to facilitate the formulation of a query on all 
sources; (2) It serves as a shared vocabulary set for wrap-
pers to describe the content in every data sources. The 
mediated schema is expressed using RDFS in our work. 

C.  Source Descriptions 
As mentioned before, queries are posed in terms of the 

mediated schema. To answer a query, the rewriter need 
descriptions that relate the contents of each data source to 
the classes, attributes and relations in the mediated sche-
ma. Each data source is described by one or more 
SPARQL queries. These semantically rich descriptions 
help the rewriter to form queries and also direct the query 
dispatcher to distribute queries to specific data sources. 

D.  Wrapper  
The wrapper provides an SPARQL view representing a 

data source and a means to access and to query the data 
source. It translates the incoming queries into source-
specific queries executable by the query processor of the 
corresponding sources. 

IV.  SEMANTIC MAPPING 

A.  RDF Graph Model 
RDF describes things by making statements about an 

entity's properties. RDF statements are triples consisting 
of a subject (the resource being described), a predicate 
(the property) and an object (the property value). The 
values of a statement are URI references. This simple 
model of assertions leads to a network of information 
resources, interrelated by properties which establish rela-
tions between resources and property values. Thus, one 
can intuitively understand a collection of information 
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resources and RDF statements describing them as a graph. 
To emphasize this characteristic, the term RDF Graph is 
defined as a set of RDF triples; hence, any collection of 
RDF data is an RDF Graph [14].  

Definition 1 (RDF Terms, Triples, and Variables) 
Assume there are pair wise disjoint infinite sets I, B, and 
L (IRIs, Blank nodes, and literals). A tuple (s, p, 
o)∈(I∪B)×I×(I∪B∪L) is called an RDF triple. In this 
tuple, s is the subject, p the predicate and o the object. We 
denote the union I∪B∪L by T (RDF terms). Assume 
additionally the existence of an infinite set V of variables 
disjoint from the above sets. 

Definition 2 (RDF Graph) An RDF graph is a set of 
RDF triples. 

Figure 2 shows a part of RDF ontology. We use “sub” 
represent relation “subclass” for short. There is a relation 
“write” between concepts “Person” and “Publication”, 
indicating the relationship between authors and their 
works. The relation “belongs to” between “Person” and 
“Organization” indicate what organizations people belong 
to. The relation “per_name” and “per_email” point a per-
son’s name and email. The same applies to “pub_title”, 
“pub_year” and “org_name”. 

B.  Relational Model 
The term relation is used here in its accepted mathe-

matical sense. Given sets D1, D2, …, Dn, R is a relation on 
these n sets if it is a subset of the Cartesian product 
D1×D2× … ×Dn. R is said to have degree n, often called 
n-ary. An n-ary relation R can be represented as a table 
with n column, which has the following properties: 
1. Each row represents an n-tuple of R. 
2. The ordering of rows is immaterial. 
3. All rows are distinct. 

Normally, one column (or combination of column) of a 
given relation has values with uniquely identify each 
element (n-tuple) of that relation. Such a column (combi-
nation) is called a primary key.  

A common requirement is for elements of a relation to 
cross-reference other elements of the same relation or 
elements of a different relation. We shall call a column of 
relation R a foreign key if it is not the primary key of R 
but its elements are values of the primary key of some 
relation S. 

As shown in Figure 3(a), suppose there are two hetero-
geneous relational databases, each has several tables con-
taining information about authors and papers. 

 
Figure 2. Part of RDF ontology 

 
Figure 3. Two heterogeneous data sources 
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C.  XML Model 
Extensible Markup Language (XML) is a simple, very 

flexible text format derived from SGML. While XML 
was originally designed to meet the challenges of large-
scale electronic publishing, it plays an increasingly im-
portant role in the exchange of a wide variety of data on 
the Web [16]. 

XML is an extremely versatile data format that has 
been used to represent many different kinds of data, in-
cluding web pages, books, XML representations of rela-
tional database tables, programming interfaces, objects 
and multimedia presentations. In addition, some systems 
offer XML views of non-XML data sources such as rela-
tional databases, allowing XML-based processing of data 
that are not physically stored as XML. 

The XML data model is a tree with labeled and or-
dered nodes. This means that the order of each node is 
meaningful and important for writing an XML document. 

The W3C XML Schema Definition Language [17] is 
an XML language for describing and constraining the 
content of XML documents. W3C XML Schema is a 
W3C Recommendation. The basic characteristic of the 
XML Schema is that it can define elements and attributes 
that can appear in a document, define which elements are 
child elements, the order of these elements and their car-
dinality. XML Schema provides user with the ability to 
define an element or an attribute into a specific scope. 
User can define complex or simple elements (depending 
on whether they have further structure on not) and cardi-
nalities for them.  

Figure 3(b) shows an XML tree, which describing the 
schema of an XML document about papers and their au-
thors. 

D.  Mapping Relational Schemas to ontology 
To solve the heterogeneity problem, the meaning of the 

relational schema has to be well described, which is 

called “source description” in [18]. Before presenting 
how source descriptions are defined, it is worth consider-
ing how, in general terms, relational schema can be 
mapped to RDF ontology. 

As mentioned above, RDF describes resources using a 
graph model. RDF Schema (RDFS) provides modeling 
primitives for defining classes and properties, range and 
domain constraints on properties, and subclass and sub-
property relations. 

The relational schema is based on entity-relationship 
diagram (ERD). Typically, each entity is represented as a 
database table, each attribute of the entity becomes a col-
umn in that table, and relationships between entities are 
indicated by foreign keys. Each table typically defines a 
particular class of entity, each column one of its attributes. 
Each row in the table describes an entity instance, uni-
quely identified by a primary key. The table rows collec-
tively describe an entity set.  

There are some similarities and differences between 
RDF and the ER model, Berners-Lee discussed this issue 
in [19]. Basically, ERD and RDF Graph have much in 
common. RDF can be viewed as a member of the Entity-
Relationship model family [20]. Class in RDFS corres-
ponds to entity in ERD; property is kind of binary rela-
tionship; subclass and subproperty are subsumption rela-
tions. Therefore, we list some principles below for se-
mantic mapping between relational schema and RDF 
ontology: 

 Primary key of table is mapped to class. 
 Columns in table are mapped to properties. 
 Column value is mapped to property value. 
 Each row key corresponds to an instance. 
 Each row is represented in RDF by a collection of 

triples with a common subject. 
As shown in figure 4, the semantic mappings between 

relational schemas and ontology are marked by arrows 
with broken line. 

Person

Publication

Proceedings

sub

Write

name

title

year

per_name

pub_year

pub_title

database1.person

PK PersonId

Name

database1.proceeding

PK ProceedingId

Title
Year
ISBN
Url

database1.rel

PersonId
ProceedingId

title

paper

string

year

string

author

name email homepage

string string

papers(root)

string

 
Figure 4. Semantic mapping between relational schemas and ontology 
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E.  Mapping XML Schemas to ontology 
Elements and attributes are the two basic building 

blocks of XML documents. Elements can be defined as 
simple types or complex types.  Simple types cannot have 
element content and cannot carry attributes, while com-
plex types can contain elements and attributes. On the 
other hand, all attribute declarations must reference sim-
ple types since attributes cannot contain other elements or 
other attributes. From the perspective of XML Schema, 
these nesting relationships are defined in terms of data 
types (simple or complex type). A well-formed XML 
document contains the hierarchical structure of elements 
and attributes, which contains the following two aspects: 
only complex-type elements can carry attributes and 
attributes can only be of simple types; only complex-type 
elements can allow elements as their children. But child 
elements can be either simple types or complex types. 

No new RDF metadata needs to be defined here be-
cause RDFS Class and RDFS Property are enough for the 
specifications of classes and properties. Taking into ac-
count XML elements, attributes and their relationships, 
we propose some principles below for semantic mapping 
between XML schema and RDF ontology: 

 Attributes is mapped into properties. 
 Simple-type elements are mapped into properties. 
 Complex-type elements are mapped into classes. 

As shown in figure 4, the semantic mappings between 
XML schemas and ontology are marked by arrows with 
solid line. In this example, attributes (like title, name, 
year, etc.) are mapped into properties in ontology. And 
complex-type elements (like author, paper) are mapped 
into RDFS classes. 

F.  Source Description 
After being mapped to ontology, source schemas have 

to be described so that the query rewriting algorithm can 
use them to generate executable query plans efficiently. 
We use SPARQL here.. 

Definition 3 (Source description) Given a data source 
P, its source description DP is a tuple (QP, µ), where QP is 
a SPARQL query and µ is a mapping from variables ap-
peared in QP to corresponding columns in P. 

Each relational table is described by a SPARQL query 
over domain ontology. The semantic of the databases are 
thus explicitly defined, and it is easy to add and delete 
sources. Table database1.person can be described as the 
tuple  

( 
SELECT ?name  
WHERE {?X per_name ?name},  
{?name→Name}  
).  

Table database1.proceeding can be described as the 
tuple  

( 
SELECT ?title, ?year  
WHERE {?X pub_title ?title. 

?X pub_year ?year},  

{?title→Title, ?year→Year}  
).  

Table database1.rel can be described as a tuple 

( 
SELECT ?person, ?proceeding 
WHERE {?person Write ?proceeding}”,  
{?person→ PersonId, 
?preceeding → ProceedingId} 
).  

An XML document can also be described by a 
SPARQL query. The XML tree in figure 3(b) can be de-
scribed as the tuple  

( 
SELECT ?title, ?name, ?year  
WHERE {?X per_name ?name. 

?Y pub_title ?title. 
?Y pub_year ?year. 
?X Write ?Y},  

{?name→/papers/paper/author/name, 
?title→/papers/paper/title, 
?year→/papers/paper/year}  

).  

V.  SEMANTIC OF QUERY REWRITING 

The problem of query rewriting considers how to re-
formulation a query from the mediated schema to the 
underlying relational database. A survey and analysis on 
different algorithms to solve the problem is given in [14]. 
In this paper, we propose an algorithm to execute the 
query rewriting over RDF Graph model. 

Pérez introduce the formal semantics of SPARQL in 
[21]. The SPARQL query language is based on matching 
graph patterns. Graph patterns contain triple patterns that 
are like RDF triples, but with the option of query va-
riables in place of RDF terms in the subject, predicate or 
object positions. Combining triple patterns gives a basic 
graph pattern, more complex graph patterns can be 
formed by combining smaller patterns. 

The triple patterns of a SPARQL query over domain 
ontology can be considered as a sub-graph of the RDF 
Graph. 

Definition 4 (Query Sub-graph) Given a SPARQL 
query Q, its Query Sub-graph GQ is a set of RDF triples 
that satisfy the query.  

In Section IV we define the source descriptions of data 
source using SPARQL queries. Each SPARQL query 
corresponds to a sub-graph of the RDF Graph of domain 
ontology. Consequently, the contents of a data source can 
be considered as a sub-graph of RDF Graph. 

Definition 5 (Source Sub-graph) Given a data source 
P, its Source Sub-graph GP is a set of RDF triples that 
satisfy the queries in source description of the data source. 

Given a SPARQL query over domain ontology, query 
rewriting algorithm finds proper data sources whose sub-
graph cover the SPARQL query, generates the query 
plans and unit the results together. The semantic of query 
rewriting is defined below:  
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Definition 6 (Query Rewriting) Given a SPARQL 
query Q over domain ontology, a query rewriting answer 
is a set of data sources whose sub-graph cover the 
SPARQL query. The results of all possible query rewrit-
ing answers of Q make up the final result of Q. 

VI.  QUERY REWRITING ALGORITHM 

As implied by the previous section, a semantically cor-
rect query plan amounts to finding proper data sources 
whose sub-graph cover the SPARQL query. In this sec-
tion, we present the query rewriting algorithm to generate 
semantically correct and executable query plans under the 
RDF Graph model. Our algorithm proceeds in two stages. 
In the first stage, we find all relative data sources and 
decompose them to Minimal Connectable Units (MCU) 
according to source descriptions. In the second stage we 
join MCUs to produce query plans that are semantically 
correct and executable. 

A.  Generating MCUs 
A MCU is a subset of RDF triples in source descrip-

tion that can be joined with other MCUs and executed on 
heterogeneous data sources. Intuitively, a MCU 
represents a fragment of semantic mapping from the 
query to the rewriting of the query. 

Formally, we define MCUs as follow: 
Definition 7 (Minimal Connectable Units) Given a 

SPARQL query Q, a data source P and its source descrip-
tion DP = (QP, µ), a MCU m for P is a tuple of the form (Υ, 
µ’) where: 

- Υ is a subset of triple patterns in QP. 
- µ’ is a partial mapping from variables appeared in QP 

to corresponding component in P. 
The algorithm for creating the MCUs is shown in Fig-

ure 5. We say a set of triple patterns Y connectable if the 
following conditions hold: (1) Each return variable of Q 
is also return variable in Y. (2) If x is not a return variable 
in Q, then for every triple pattern t that includes x, t∈Y. 

Consider a SPARQL query asking for titles of papers 
written by an author called “Andy”: 
SELECT ?title  
WHERE {?X per_name “Andy”. 

?X Write ?Y. 
?Y title ?title. } 

findMCUs(Q, DP) 
/*Q is a SPARQL query, DP is the source description of 

a data source P, has the form (QP, µ). */ 
Initialize M = Ф; 
for each triple pattern t in Q, do 
for each triple pattern t’ in QP, do 
 if exist a mapping τ that map t to t’, then 
 find the minimal subset (denoted by Y) of triple 

patterns of QP that is connectable. 
 find the subset (denoted by µ’) of µ that relative to 

Y. 
 M = M ∪ < Υ, µ’ >; 
end for 
end for 
return M; 

Figure 5. Finding the MCUs 

TABLE I 
MCUS FORMED 

No. Y µ’ 

1 ?x per_name ?y ?y →person.Name 

2 ?x pub_title ?y ?y →proceeding.Title 

3 ?x Write ?y ?x→rel.PersonId 
?y →rel.ProceedingId 

4 ?x per_name ?y ?y →persons.Name 

5 ?x pub_title ?y ?y →papers.Title 

6 ?x Write ?y ?x→rel_person_paper.PerID 
?y →rel_person_paper.PaperID 

7 
?x per_name ?n 
?y pub_title ?t 
?x Write ?y 

?n→/papers/paper/author/name 
?t→/papers/paper/title 

The MCUs that will be created are shown in table1. 
We notice that the last MCU in Table 1 contain all the 
three triple patterns in its source description. This is be-
cause variable ?x and ?y are not return variables, accord-
ing to the two conditions we defined, they must be in a 
same MCU. 

B.  Joining MCUs 
In this phase we consider combinations of MCUs, and 

for each valid combination we create a conjunctive re-
writing of the query. The final result is a union of con-
junctive queries. Given a set of MCUs, the actual rewrit-
ing is constructed as shown in Figure 6. 

Continuing the above example, the algorithm will find 
eight possible rewritings: {1, 2, 3}, {1, 2, 6}, {1, 5, 3}, {1, 
5, 6}, {4, 2, 3}, {4, 2, 6}, {4, 5, 3}, {4, 5, 6} and {7}. 
Take the rewriting {1, 2, 3} for example, which can be 
translated to SQL query like: 
SELECT proceeding.Title 
FROM person, proceeding, rel 
WHERE person.Name = ‘Andy’ 
AND person.PersonId = rel.PersonId 
AND proceeding.ProceedingId = 

rel.ProceedingId 

And the rewriting {7} can be translated to XQuery like: 
for $x in doc(“example.xml”)/papers 
where $x/author/name = ‘Andy’ 
return $x/title 

Executing each conjunctive query on data source and 
union the result, we get the result of the example 
SPARQL query.  

joinMCUs(Q, M, A) 
/* Q is a SPARQL query, M is a set of MCUs, M = 

{m1, …, mn}, where mi = (Υi, µi’), A is a set of rewritings*/ 
Initialize A = Ф; 
for each minimal subset {m1,…, mk} of M such that 
 Υ1 ∪ Υ2 ∪ …∪ Υk cover all triple patterns of Q. 
 Create the conjunctive rewriting Q’ contain all 

relative tables to {m1,…, mk} 
 Add Q’ to A 
end for 
return A 

Figure 6. Joining the MCUs 
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C.  Optimizing Rewriting on Relational Queries 
We notice that some MCUs have the same triple pat-

terns, which means they have the same semantic. This 
reminds us that some optimization work can be done. As 
shown in figure 7, MCU No.1 and No.4 has the same 
triple patterns, so are the No.2 and No.5, No.3 and No.6. 
There are eight different ways joining these three kinds of 
MCUs, as we get in former step.  If we union the same 
kind of MCUs before join them, the number of rewritings 
can be drastically reduce. In this example, rewritings are 
reduced from eight to only one. 

 
Figure 7. Optimize the rewriting 

After the optimization, we get this SQL query: 
SELECT title 
FROM 
((SELECT Name as Name, PersonId as 

PersonID FROM database1.person) UNION 
(SELECT Name as Name, PerID as 
PersonID FROM database2.persons)) as 
Person, 
((SELECT PersonId as PersonID, 

ProceedingId as PaperID FROM 
database1.rel) UNION (SELECT PerID as 
PersonID, PaperID as PaperID FROM 
database2.rel_person_Paper)) as Write, 
((SELECT Title as Title, ProceedingId 

as PaperID FROM database1.proceeding) 
UNION (SELECT Title as Title, PaperID 
as PaperID FROM database2.papers)) as 
Paper 
WHERE Person.Name = 'Andy' 
AND Person.PersonID = Write.PersonID 
AND Paper.PaperID = Write.PaperID 

VII.  CONCLUSION 

The integration of data from multiple heterogeneous 
sources is an old and well-known research problem for 
the database and AI research communities. In this paper 
we considered the problem of integrating heterogeneous 
data sources using ontology. We discussed the main is-
sues and also solutions. We use ontology as the mediated 
schema for integration. A novel data integrating architec-
ture based on ontology was presented. We first analyze 
the similarities and differences among RDF schema, rela-
tional model and XML schema, and then discuss how to 
map relational schema and XML schema to ontology. A 
data source describing method based on SPARQL is de-
fined. Heterogeneous data source schemas are described 
using queries defined by SPARQL. Based on RDF Graph 
model, the semantic of query rewriting is defined and a 
query rewriting algorithm is presented.  

The architecture and approach we provided in this pa-
per can be extended for other data source (i.e. RDF, OWL, 

web forms, etc.); some of the complex semantic (i.e. 
CONSTURCT, ASK) are not discussed. We leave these 
problems for future work. 
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