
Binary Activity Chain Modes for Compositional
Web Service and Its Compliance Verification

Bo Chen Chungui Li Qixian Cai

Department of Computer Engineering, Guangxi University of Technology, Liuzhou, 545006, China
cb31@sina.com lcg6881@tom.com cqx_gx@163.com

Abstract—requirement-driven behavior verification for
compositional Web service is one of hot research issues for
Web computing. Modeling and analysis of the behavior
requirements of compositional Web service plays an
important role in behavioral verification. Traditional
methods are expressing requirements as LTL like logic
specifications which are based on activities or as MSC like
graph forms which are based scenarios. In this paper, we
propose the concept of behavior specification based on
activity chain in which its atomic granularity is between
activity and scenario. Four behavioral modes such as chain
existence mode, chain absence mode, chain precondition
mode and chain response mode are adopted to express usual
requirement specifications. Encode them on Labeled
Transition System LTS and then give them operation
semantics. Check compositional Web services based on LTS
corresponds with behavior modes or not. Give the sufficient,
necessary condition and algorithm for checking.

Index Terms—Specification, Stateful Web Services,
Composite Web Services, Model checking

I. INTRODUCTION

 A fundamental goal of web services is to combine
today’s simple Web services into more complex ones in
order to achieve more sophisticated application purposes.
The composite service adds two dimensions by
comparison to the simple ones; they are stateful and they
obey to an operational behavior. This raises many
theoretical and practical issues which are part of ongoing
research [1]. Recently, the works on web service
verification are mainly focus on the following three
issues 1) whether communication activities of
compositional service accord with specification; their
interactions are compatible? A given service can be
replaced by another? [1], [2], [3]. 2)whether the control
and data flows of compositional service processes are
correct? and whether the subservices comply with the
constraint rules among them? [4], [5], [6]. 3) whether a
compositional service is compliant with specific
requirements of the user (requirement-driven compliance
verification)?

The ultimate motivation of web service composition
is to offer satisfactory behavioral functions for users. It is
important to study concise methods to express the

requirements for behavior of compositional service and
check whether the behavior is compliant with the
requirement of user after checking that service process is
correct and communication is available. Some works on
this issue have been published. Pistore [12] expressed the
goals and requirements of different roles in compositional
service with formal Tropos language. Also the internal
constraints and external dependencies to implant these
goals and requirements have been formally presented.
But the requirements are only for some component of
specific roles, nor a whole behavior requirements of an
user for a compositional service. Furthermore, the
expressions of such requirements are in some LTL like
forms not in concise manners. Rouached [13] expressed
the time, casual and results of events occur in
compositional web service with event calculus and
attributes of behavior are expressed with first order logic.
But a requirement expressed in such manner is in essence
relation among some single events not relation among
certain event sequences and its expression manner is
more abstract. More existed works[7-13]generally
expressed behavioral requirements in two methods such
that one is in LTL,CTL like temporal logic specifications
and another is in MSC, UML like graphic specification.
The former’s basic element is activity. The latter’s basic
element is scenario. The specifications describe some
relation among activities or scenarios. In case of
compositional web service, requirements for service
behavior are often demands for composite behavior that
are temporal relations between activity chains which
belong to different subservice component. Since the
direct object described by LTL like logic and MSC like
graphic language is activity and scenario respectively, it
is not suitable for LTL and MSC to direct describe such
temporal relations based on activity chain which its
granularity is between activity and scenario. It is nature to
consider to transform the temporal relation based on
activity chain to the temporal relation based on activity
and then to express indirectly such behavioral
requirement with LTL like logic. However, such a
behavioral requirement contains two hierarchy temporal
relations that first is the temporal relation between two
activity chains and second is the chain order of activities
in a specific activity chain. So obtained LTL formula after
transformation will be very complicated. Not only is this
formula difficult to read and understand, it is even more
difficult to write correctly without some expertise in the
idioms of specification language [15]. It is still a problem

∗ Supported by Guangxi Sci. & Tec. Program under grant of
0992006-13, Guangxi Nature Science foundation under grant of
0481016

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 907

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.8.907-914

to be explored how to suitably express the behavioral
requirement based on activity chain in certain concise
manner.

In current existed work on requirement-driven
compliance verification, the principal approach is to
translate a service behavior (BPEL process) into a
mathematically well-founded model, considering only the
semantic of elements that are relevant for the property to
be verified. Then, model checking methods can be
applied to the formal representation of the composite
service behavior [1]. The behavior requirements to be
checked are temporal relations based on activity or
scenario. Fu [7] modeled the asynchronous
communication of partners in compositional web service
as a guarded mealy automaton. The global message chain
observed by virtual observer is as the session model of
compositional web service. In the case of finite input
message queue, checked whether the session behaviors
comply with the communication specification which is a
LTL formula based on message. In his specification, the
basic element is activity which sends or receives a
message. Betin-Can [8] designed an interface protocol as
communication contract expressed with guarded
automata and checked whether a service complies with
the contract by Java PathFinder. But the contract is only
the specification of subservice not that of global
compositional service. Mongiello [9] abstracted a BPEL
process as an execution chain and verified the chain
against a specification expressed in CTL. The basic
element of a specification was still activity. Foster [10]
expressed behavior requirements with MSC and the
obligation of service with fluentLTL and verified
compliance of a compositional service in LTS. The basic
element of a specification is scenario or activity with
effect. Aalst [11] intercepted the flow of SOAP message
of a compositional web service and translated them into
Petri net as behavior model. The corresponding BPEL
process was also translated into Petri net as a
specification. The service implementation compliance
verification was carried out in accordance with the
specification which was a Petri net. Note that the basic
elements of all specifications in above works are activity,
scenario or even a state transition system. Their
granularities are too small or too large to suitable to
express such behavior requirements which granularity is
middle level that is activity chain. How to express such
behavior requirement in certain concise specification
manner and how to verify that a compositional web
service is compliant with such a specification or not? It is
still an issue to be explored.

In this paper, we focus on the expression of binary
behavior requirement based on activity chain and attempt
to formally define such behavior specifications. Then we
give the methods on checking the compliance of
compositional web service against such specifications.

II. THE BASIC CONCEPT OF ACTIVITY CHAIN IN SERVICE
AND EXAMPLE

A. The Definition of Activity Chain
Definition2.1. the activities of a compositional web

service is inductively defined as below
WS= {ws1, ws2 ,…,wsk, wsorch }is a set of web service

instance names, Where wsorch is an orchestration engine.
Ows= {ows|ows= op [? m] or op [! m]} is the set of

operations in the port type of service ws, where op is a
operation name, m is a message name, ?m means recei-
ving a message m, !m means sending a message m.

Aws= {aws|aws= receive[o]wsorch or reply[o]wsorch} is a
set of basic activities of service ws. Activities are
classified in two categories that one is receive a request
for operation o of ws from service wsorch and another is
answer to the request for operation o.

Aorch= {aorch|aorch= receive[o]ws or reply[o] ws or
invoke [ows] } is the set of basic activities of service
wsorch. invoke [ows] means wsorch invokes an operation
ows of service ws.

O=∪{ows|ws∈WS} is the set of operations of
compositional web service WS.

Act=∪ { aws| aws∈Aws, ws∈WS} is the set of
activities of compositional web service WS.

In the definition above, every operation of a service
must abide by the specification of WSDL. It belongs to
one of four categories that is notification, solicit, request-
response and solicit- response expressed in definition as
o[!m],o[?m],o[!m, ?m],o[?m, !m] respectively. Since the
so-called two-way operations of two latter categories are
easily transformed into one-way operations of two former
categories, we adopt only one-way operations such as o [!
m] and o [? m] in this paper and let o, a represents
symbols of operation and activity respectively in case of
unambiguity.

Definition2.2.an activi ty chain of a composition-
al web service with length n, C=<a1, …, an>,
ai∈Act,1≤i≤n,, is a tuple of finite activities occurred one
after another in an execution of service.

Specially, if one infinite activity chain is composed of
all activities occurred sequently in one execution of
service, it is called a trace of service. Denote itσ.

B. Binary Activity Chain ModesDefinitions
Definition2.3. Let C=<a1,… , an> an activity chain of

service WS with length n, σ=<σ1,…,σk,…>，σi∈Act,1≤i,
is a trace of WS. If there is a finite subchain of σ with
length n, σi= <σi1,…,σin>, that σij=aj, 1≤j≤n, then call C
occurs in σ .

Definition2.4. Let C an activity chain of service WS
with length n and a is an activity of WS. If for any trace σ
that C occurs in σ , a must occur in σ precedence of C,
then C and a satisfy chain precondition mode and is
written a C_PR C.

Definition2.5. Let C an activity chain of service WS
with length n and a is an activity of WS. If a occurs in
traceσ, it will lead to C occur in σ after a occurs in σ.
Then C and a satisfy chain response mode and is written a
C_RE C.

908 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

C. An Example
Flight and Hotel are two existed web services, which

provide separately flight and hotel booking service for the
Client. Travel agency F_H is the compositional service
orchestrator, which provides integrated service for client.
F_H is responsible for invocation Flight operation and
Hotel operation, and interact with client at the same time
to provide integrity service process. Figure 2.1 describes
an interactions scenario of compositional service. F_H
accepts the request from the client, and invokes Flight
subservice and Hotel subservice concurrently, returns
sorted flights list, lodging suggestions, then provides
appointed flight and lodging plan according to client’s
request, and waiting for client’s confirmation. At last,
F_H provides the client with services (the ticket and
lodging order). We omit some communications between
F_H and Hotel for the sake of simplicity. Interactions of
services are described by MSC like graph language. The
difference here is that we use activity instead of message
to label the transition of MSC. ⎯→⎯a denotes the
execution of the activity a, the label a on the row denotes
an activity of service, the arrow denotes control flow
direction when executing activities in interaction process.

Client F_H F H
Receive[flight_hotel]C

Invoke[flights_list]F
Invoke[hotel_offers]H

Receive[flights_list]F
Receive[hotel_offers]H

Invoke[flights_sort]F
Receive[flights_sort]F

Receive[flights_hotels_filter]C
Invoke[flights_filter]F

Receive[flights_filter]F
Invoke[offers]C

onMessage[nack]C
Invoke[offers-nextt]C

Invoke[hotels_filter]H

Receive[hotels_filter]H

Figure 2.1. An execution scenario of F_H
Before using the compositional service, the user need

validate whether compositional service is compliant with
requirement. The requirement for behavior usually only
involves local activities or activity chains of
compositional service, which present as temporal
relations of activities or activity chains. The following are
two types of behavior requirements in example.

TABLE 2.1. THE BINARY BEHAVIOR REQUIREMENTS BASED ON ACTIVITY CHAINS IN EXAMPLE

requirements Behavior mode activity chains
R2.(3) a C-PR C1 a=receive[hotel_offers]H,C1=<receive[flights_hotels_filter]C, invoke [flights_filter]F>
R2.(4) a C-RE C1 a =invoke[nack]C ,C1= <invoke[offers]C,onMessage[nack]C>

R1:(1) The service must provide optional flights sorted
by price after have received the client request.

(2) The service must not provide tickets and lodging
orders after the user refusing to acknowledge
finally.

R2:(3)Hotel candidate offers provision must be
precondition of providing flights filter.

(4) If client reply nack for offers, then service will
not provide final service.

R1.(1) is a liveness property that can be expressed as:
G(receive[flight_hotel]C→true U invoke [flights_sort]F)
which is based on activity receive[flight_hotel]C and
activity invoke[flights_sort]F. Similarly, R1.(2) is a
safety property based on activities.

R2 are behavior requirements based on activity
chains.

The table 2.1 lists R2 bebavior requirements in
example.

III THE SEMANTICS OF BINARY ACTIVITY CHAIN MODES

In order to verify the compliance of compositional
web service, it is need to give operation semantics for
activity chain modes. The labeled transition system
(LTS) is widely used to describe the dynamic semantic
of distributed concurrent system [16]. In this section, we
encode the activity chain modes presented in section 2
into LTS and give these modes the precise interpretation

Definition3.1. An LTS is a tuple L=(S,A,→, s),where
S is the set of finite states. A=αL ⊆Act is the set of finite
activities. →⊆S×Aτ×S is a transition relation.
Aτ=A�{τ}. s is initial state and τ is internal activity that
is invisible to extern.

When L executes an activity a, a∈Aτ, (s, a, s’)∈→,
then it may become L’, L’=(S, A,→, s’). Denote it
L ⎯→⎯a L’, iff s ⎯→⎯a s’, here, s ⎯→⎯a s’ is the same mean that
of (s, a, s’)∈→.

Definition3.2.Let LTS L1, L2 are two LTS. The
parallel of two LTS is the LTS L denoted as L=L1||L2.
The rules of parallel operation of two LTS are listed
below

2
2

'
121

'
11 ,

||||
)1(La

LLLL
LL

a

a

α∉
⎯→⎯

⎯→⎯
1'

2121

'
22 ,

||||
)2(La

LLLL

LL
a

a

α∉
⎯→⎯

⎯→⎯

21'
2

'
121

'
22

'
11 ,

||||
,

)3(LLa
LLLL

LLLL
a

aa

αα ∩∈
⎯→⎯

⎯→⎯⎯→⎯

Definition3.3. Let L=<S, A,→, s0>,A=αL, is a LTS.
ρ=s0a1s1a2 s2…is an infinite or finite alternating chain of
states and activity labels, where si∈S, i≥0, aj∈A,j≥1, si-

1 ⎯→⎯a si, i≥1. ρ is called an execution of L. σ=<a1,a2…> is
called the trace corresponding to ρ.

Definition3.4. Let L=<S,A,→,s0>,A=αL, is a LTS.
s∈S, a∈αL∪{τ}，Post(s, a)={s’| s ⎯→⎯a s’} is the set of
direct successive states of s related to activity a. Post(s)
=∪a∈αL∪{τ}Post(s, a) is the set of direct successive states
of s

A state s is called termination state of L when
Post(s)= Φ. An execution of L is called finite termination
iff after finite steps of execution of L, ρ=s0a1s1…sn and
Post (sn) =Φ.

In this paper, a web service is expressed as a LTS and
a compositional web service is expressed as the parallel
of finite LTSs that is L=L1||L2||…||Lk ， Li, 1≤i≤k,

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 909

© 2009 ACADEMY PUBLISHER

represents a subservice. L is a dynamic behavior model
of compositional web service. In order to facilitate users
to express the behavior requirements based on activity
chains, such requirements are expressed as two binary
behavior modes in section II. However, the exact
meaning of every mode, that is its operation semantic, is
still needed to be interpreted by LTS. The mapping rules
from behavior modes to LTS have been listed in figure
3.1 below. LTSs (3),(4)in figure 3.1 are extended with
accepting states and accepting activity. The detailed
interpretations are in section IV.

Figure 3.1. mapping rules of activity chains and LTSs

IV COMPLIANCE VERIFICATION WITH ACTIVITY CHAIN
MODES

Compliance verification is to check whether every
execution of specific compositional web service
complies with the activity chain mode. In general, a
specific LTS presents a ceaseless reactive system which
its executive path is infinite. Thus if it goes into a
terminate state, that is Post(s) =Φ, s must be its deadlock
state. However, a LTS represents a web service in this
paper and its normal execution may be infinite or finite
normal conclude. If a state s is a terminate state, it may
be possible a deadlock state or possible normal finite
conclusion state. Compliance verification must go on in
normal execution of web service. So it is necessary to
exclude the deadlock situation from a web service first

A. The Extension of LTS and Exclusion of Deadlock
States

Assume the LTS LW=L1||L2||…||Lk is a compositional
web service is terminated in state s= (s1,…,sk), si,1≤i≤k,is
corresponding subservice state of the service, post(s)=Φ.

Definition4.1. If a state s is a termination state of a
compositional web service, then

(1) s is a normal conclusion state(also called
accepting state) iff ∀i. 1≤i≤k. Post(si)=Φ and si
is Li normal conclusion state.

(2) s is a deadlock state iff ∃i. 1≤i≤n. Post(si)≠ Φ.
To pick out deadlock state, we extend the LTS model

L below.

1. If si is an accepting state of Li, add a self-loop
transition with activity label @Li called accepting
activity label.

2. If LTS L=L1||…||Lk and there are more than one
subcomponents have accepting states, then regard
their accepting activity labels as same , that is
@Li=@Lj, i≠j.

3. The executions of accepting activities comply
with parallel rule (3) in section 3.

When service LW goes into accepting state s=
(s1,…,sk), all of its subservices go into their accepting
states and they will execute the same accepting activity
labeled with @LW. Thus a normal finite execution with
accepting state will become infinite execution with
postfix of @LW s @LW s…@LW…., where s is a
accepting state. If LW goes into a deadlock state s, there
is at least one state si which Li is not terminated and it is
waiting for another subservice synchronization step. So
an execution with final deadlock state of LW will be
finite execution. Figure 3.1(3),(4) is an extended LTS.

The real deadlock checking of extended LTS LW may
be completed with DFS algorithm through the whole
graph space of LW by judging whether its state s has
successive state.

Let LW=L1||…||Lk represents compositional web
service. LTS LM represents the activity chain mode LTS.
L=LW||LM. We give preconditions of no deadlock state
for compositional web service compliance verification
below.

Precondition1: Li has no deadlock state.
Precondition 2: LW has no deadlock state.
Precondition3: L has no deadlock state.
The preconditions above hold under the deadlock

checking described above and deadlock repairing.

B. The Compliance Verification forActivity Chain
Precondition Mode

In this section, we first give the definition of
compliance verification and then the characteristics
about activity chain modes. Finally, check the
compliance of web service for activity chain modes with
reachable analysis of LTS.

Definition4.2. let LM=<SM,AM,→M,sM0> is a LTS of
activity chain in figure 3.1. AM=AM1∪AM2∪{@L} or
AM=AM1∪AM2 ， where AM1⊆ Act is normal activity
labels, AM2={!a|a∈ AM1}, @L is an accepting activity
label defined in 4.1.If a∈ AM, b∈Act, then b is called
matching with a, iff a∈AM1∧ b =a or a∈AM2∧a=!c∧b≠c.
denote it b∼a. If b is an accepting activity label @L’,
then b is called matching with a, iff a ∈AM2 or a=@L.
denote it b∼a.

If b∈ Act ∪{@L} and ∃a∈ AM satisfy that b∼a, then
denote b∈ AM.

Definition4.3. let LW =<SW,AW,→W,sW0>,LM=<SM,
AM,→M,sM0> is LTS of compositional web service and
activity chain mode respectively. ω is an infinite or finite
activity chain of LW. The projection ↓M：AW*→AM* is
defined inductively below.

(1) (.)↓M=().

S0 S1 S2

Sn

...a1 a2 a3 an
!a2&!a1||a

!an&!a1||a

!a1 a1
a1 a1

!a3&!a1||a

!a

Sn

@LC-PR

(3) C-PR mode LTS LC-PR

s0 S1 S2 ...a1 a2 a3 an

!a2&!a1||a
!an&!a1||a

!a1 a1
a1

a1

!a3&!a1||a

Sn+1
a

!a

(4) C-RE mode LTS LC-RE

S01
a

@LC-RE

rul e3: 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

rule4:4.1

 4.2

 4.3
 4.4

 4.5
 4.6
 4.7

Sj-1 aj Sj, 1=j=n

Sj!aj&!a1||a

Sn @LPR Sn

S0,1=j=n

Sj a1 S1,1=j=n

S0
!a1 S0

S01
a S0

S01 !a S01

Sj-1 aj Sj, 1=j=n

Sj!aj&!a1||a

Sn+1@LPR Sn+1

S0,1=j=n
Sj a1 S1,1=j=n
S0 !a1 S0

Sn a Sn+1
Sn !a p

910 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

(2) If a∈ AM，then ((a)⌢σ)↓M=(a) ⌢ (σ↓M)
(3) If a∉ AM，then ((a)⌢σ)↓M=σ↓M
Where, ⌢ is a connector between two symbols. In

fact, ↓M is a filter function for traces of service that only
reserve the symbols in AM and discard the symbols not in
AM.

Definition4.4. (compliance for activity chain
mode) let LW=L1||L2||…||Lk is a compositional web
service. LM is an activity chain mode defined in 2.2. LW
and LM satisfy preconditions in section 4.1. If LM and
σ↓M is a trace of LM for any trace of LW, σ, then call
compositional web service LW is compliant with activity
chain mode LM and denote it LW⊨LM.

Lemma4.1. let σ is a trace of LW=L1||L2||…||Lk.
LM=Li. then σ↓i must be a trace of Li.

Proof: let σ=<a1a2…>,σ↓i=<ai1ai2…>. From the
definition4.3, aik∈Ai,k=1,….so σ↓i is a activity chain of
Li. the activity labels a1,a2,…aik-1 occurred before ai1 are
not in Ai. So ai1 is first activity label in σ of L that is also
in Ai. ai1 is first activity label in Li from initial state
related to the σ. Similarity σ has no any other activity
label in Ai between aij and aij+1. So σ↓i is a Li trace. �

Lemma4.2. assume that LC__PR is an activity chain
precondition mode. If no considering the repetition of
accepting activity label @LC_PR, the normal conclusion
execution trace of LC__PR will be the form of(!a)*a
(!a1)*a1(!a2)* a2…(!an)*an.

The proof of theorem is obvious. In figure 3.1 (3), for
every normal conclusion execution of LC_PR ,ρ, ρ must
start from initial state and go into accepting state sn and
followed by infinite accepting activities @ LC_PR. So the
trace generated by ρ must be (!a)*a
(!a1)*a1(!a2)*a2…(!an)*an (@LC_PR)ω. The lemma holds
without considering the infinite accepting activities
postfix (@LC_PR)ω.

It is clear that every normal conclusion execution of
LC_PR, ρ, must contains all activities occurred in the order
of that in C and activity a. Activity a is the first activity
apart from initial state and finally the execution must
contain activities in C. So the chain precondition mode a
C_PR C holds. Conversely, if a behavior specification is
expressed as a C_PR C, C and a must occur in any
execution of compositional web service,ρ, then ρ must
generate traces of the sub form (!a)*a(!a1)*a1(!a2)*
a2…(!an)*an,. Since the parallel operation rule in
definition3.2, the LTS of the specification must also be
such form. So LC_PR reflects the exact operation semantic
of activity chain precondition mode.

Theorem 4.3.Assume that LW=<SW, AW,→W,sW0> is
a compositional web service. C=<a1, a2,…an> is an
activity chain. LC_PR=<SC_PR, AC_PR, →C_PR, sC_PR0> is an
activity chain precondition mode LTS.
L=LW||LC_PR=(S,A,→,s0). Then compositional web
service LW is compliant with a C_PR C iff any ring in L
is initial reachable and must contains the transition
labeled with activity @LC_PR.

Proof: for sufficient case, let ρ is any execution of L.
ρ must be infinite execution because of preconditions. ρ

must have a ring for only finite states. The transition
labeled with the activity @LC_PR must occur in ρ due to
sufficient condition. Let σ is a trace corresponding to
ρ.So @LC_PR must occur in σ. Let σ↓C_PR is a projection
on AC_PR. σ↓C_PR must be a trace of LC_PR related to ρ for
the lemma 4.1. Thus @LC_PR must occur in σ↓C_PR. The
accepting state sn of LC_PR must reach through the
execution of ρ.then conclude that σ↓C_PR must be the
form of (!a)*a (!a1)*a1(!a2)*a2 …(!an)*an and σ must
contain activity chain C and a. meanwhile a must occur
before C. Because ρ is any execution of L. So a C_PR C
holds.

For the necessary case, if there is a reachable ring
that contains no @LC_PR. If (sW, sn) occur in this ring
which sn is accepting state of LC_PR. Then sn has only one
successor activity @LC_PR and @LC_PR must not occur
for the assumption. So it is only the case that the direct
successor activity of (sW, sn) will be a∈A\AC_PR. The
compositional web service LW has the infinite execution
disjoint with LC_PR and sn must not occur in this
execution. It is a contradiction. So (sW, sn) does not occur
in ring and the activity chain Q does not exist. �

An algorithm for checking the compliance of
compositional web service can be obtained from the
theorem4.3 listed below.

Check_C_PR_Chain(LTS Li, activity chain Q)
(1) Constructing activity chain mode LC-PR for Q

according the rule1 in figure 3.1.
(2) Extending LC-PR and Li according to the rules in

section IV A..
(3) L=L1||…||Lm|| LC-PR. DFS search throughout L,

pick out every ring in L if possible or if no any
ring in L goes to (5).

(4) For every ring picked out, checking whether @
LC-PR is in the ring or not. If not, then LW is
incompliant with a C-PR C and exit. If yes, goes
to (3).

(5) If there is a ring in L, then LW is compliant with a
C-PR C, otherwise, LW is incompliant with a C-
PR C.

C. Compliance Verifications for Chain Response Mode
Chain Response mode requires that when activity

chain C occurs in certain trace of LW, σ, it must lead to
activity a occur in the certain time of future. Their
corresponding activity chain mode LTS may be extended
by the rule in section IV A. Figure 3.1.(4) LC_RE is its
corresponding LTS extended. LC_RE are similar with
chain precondition mode LC_PR in structure. The
compliance verifications is similar with the compliance
verification for chain precondition mode.

Theorem4.4.Assume that LW=<SW,AW,→W,sW0> is a
compositional web service. C=<a1,a2,…an> is an activity
chain and a is an activity. LC_RE=<SC_RE,AC_RE,→
C_RE,sC_RE0> is an LTS of activity chain precondition
mode. L=LW||LC-RE= (S,A,→,s0). Then compositional
web service LW is compliant with a C_RE C iff any ring
in L is initial reachable and must contains the transition
labeled with activity @LC-RE.

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 911

© 2009 ACADEMY PUBLISHER

V EXAMPLE ANALYSIS

In this section, we analysis the example presented in
section II and check its compliance for Binary activity
chain modes. In Figure 5.1, we give the LTS description
of F_H and activity chain mode LTS. For the sake of
simplicity, we omit other LTSs and its parallel of F and
H. Because F and H only interact with F_H in the
orchestration service and the client also interacts with
F_H only. The activities in modes are activities of LF_H
which are focused by Client. So we simply use LF_H
instead of the parallel with LF and LH. It can be seen that
there is a ring of LF-H||LC-PR that the activities labeled are

not matching with the accepting activity @L=@LC-

PR=@LF-H. In fact, the ring is (13, 2)e2 (15,2) e*(13,2).
So the service is not compliant with activity chain
precondition mode. Similarity, LW is not compliant with
the activity chain mode a RE C.

VI CONCLUSION

In this paper, we propose the concept of behavior
specification based on activity chain. Its basic element is
activity chain and its granularity between

(2) LC-PR in example

s01
b2

s0 s1 s2
c c1

!c1&!c

!c c

@LEX

!b2
(3) LC-RE in example

s0 s1 s3
e f1

!e

@LPR

!f1

(1) LTS LF_H

s1

s22

s21

s31

s32

s33

s41

s42

s43

s51

s52

s53

s61

s62

s0 s7 s13
s14

s15

a

a2
a3 a4

b1

b2a1
b1

b2

a4

b2 a4

b1

b2

a2

a3

b1

b2
a1 a2

a3 c1 e1

e2

f

s112

s12

s103

c
c2 d2

s8

s101
s91 s111

d2

s16
b1

a1
s92d1

s102

c2

d1
c1

d2

d1

c1

c2
@LF_He

e*

a=receive[flight_hotel]C b2=receive[hotel_offers]H e=invoke[offers]C
a1=Invoke[flights_list]F c=receive[flights_hotels_filter]C e1=onMessage[ack]C
a2=receive[flights_list]F c1=invoke[flights_filter]F c2=onMessage[nack]C
a3=invoke[flights_sort]F c2=receive[flights_filter]F e*=invoke[offers_next]C
a4=receive[flights_sort]F d1=invoke[hotels-fiter]H f=invoke[flight_hotel]C
b1=Invoke[hotel_offers]H d2=receive[hotels_filter]H f1=invoke[nack]C

!e2&!e

s2
e2

e

f1

0,01

61,01 7,0

a

b2
!b2

(4) LF_H||LC-PR

!b2&!a

52,01 b2

!b2&!a4

a4

62,0
!c&!a4

a4

42,01 53,0

a3

b2

!b2&!a3

!c&!a3

a3

32,01

22,01

42,0

32,0
!b2&!a2

!b2&!a1

b2

b2

!c&!a2

!c&!a1

a2

a1

!c

8,1

c

⋮
⋮
⋮

⋮

0,0

91,2

92,0d1
⋮

c1

⋮ 13,2 15,2
e2

e*

e1⋮
16,2 @L

16,0

f1

8,0

!c&!c1&!d1

!c

c

d1

c1
91,0
...

!c&!c2&!d1

!c1&!d1&!c

12,0 13,1

15,2 16,3

...a e
e2

f1

!e&!a !e

!e2&!e&!e1

e
13,0

14,0e1

!e&!f
16,0f

!e

13,2
e*

e2

@L

!e&!e1&!e2

e1

(5) LF_H||LC-RE

Figure 5.1. The LTSs of compositional web service F_H and modes and paralle

activity and scenario. Referencing the idea of attribute
patterns based on activity, we propose two binary
behavior modes based on activity chain that are
precondition mode, response mode. These modes can be
used to describe behavior requirements for compositional
web services. They are suitable for many practical cases.
The scope in attribute pattern can not adopted in activity
chain modes. The reason is that the scope can also be
regarded as the result of “and” operation of multi modes,

for example, the scope “before” can be seen as a
precondition mode. Without the scope, activity chain
modes can be more simple and concise. In order to verify
the compliance for above modes, we extend LTS model
to exclude deadlock state. Encode modes into LTS. Also
by translating BPEL process into LTS, we give out the
sufficient and necessary condition to check the
compliance of compositional web service for modes.
Finally, an example and its analysis are illustrated in

912 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

paper. Future work may be consideration of optimization
of verification.

REFERENCES
[1] M.Tarek, C. Boutrous-Saab. “Verifying correctness of Web services

choreography,” Proceedings of the European Conference on Web
Services, 2006, pp.306-318.

[2] R.Kazhamiakin, M. Pistore. A parametric communication model for the
verification of BPEL4WS Compositions. Lecture Notes in Computer
Science, 2005, v3670, pp.318-332.

[3] L.Bordeaux, G.Salaun, D.Berardi,M. Mecella. When are two Web
services compatible? Lecture Notes in Computer Science, 2005, v3324,
pp.15-28.

[4] C.Ouyanga,_E. Verbeekb, V.D. Aalsta. Formal semantics and analysis
of control flow in WS-BPEL. Science of Computer Programming, ,
67(4),pp.162–198, 2007.

[5] S.Nakajima. Model-checking behavioral specification of BPEL
application. Electronic Notes in Theoretical Computer Science,
151(2),pp.89-105, 2006.

[6] Z.Qiu, S.Wang, G.Pu, X.Zhao. Semantics of BPEL4WS-like fault and
compensation handling. Lecture Notes in Computer Science, v3582,
pp.350-365, 2005.

[7] X.Fu, T. Bultan, J.Su. Analysis of interacting BPEL Web services.
Proceedings of the 13th International Conference on World Wide Web,
2004, pp. 624-630.

[8] A.B.Can, T.Bultan, X.Fu. Design for verification for asynchronously
communicating Web services. Proceedings of the 14th International
Conference on World Wide Web, 2005, pp.750-759.

[9] M. Mongiello, D.Castelluccia. Modeling and verification of BPEL
business processes. Proceedings of the 4th Workshop on Model-Based
Development of Computer-Based Systems.2006, pp.144-148

[10] H.Foster, S.Uchitel, J.Magee, J. Kramer. Model-based verification of
Web service compositions. IEEE International Conference on
Automated Software Engineering, 2003, pp.152-163.

[11] V.D. Aalst. Conformance checking of service behavior. ACM
Transactions on Internet Technology, 8(3):1-13, 2008.

[12] M. Pistore, M. Roveri, P.Busetta. Requirements-driven verification of
Web services. Electronic Notes in Theoretical Computer Science, 105(3),
pp. 95–108,2004.

[13] M.Rouached, C. Godart. Requirements-driven verification of WSBPEL
processes. IEEE International Conference on Web Services, 2007,
pp.354–363.

[14] Hu jun, Yu xiao-feng, Zhang yuan, etc.. checking Component-based
Design for Scenario-baesd specifica- tions. Chinese Journal of
Computer. 29(4), pp.513-525,2006.

[15] M.B. Dwyer, G.S. Avrunin, J.C. Corbett. Patterns in property
specifications for finite-state verification. Proceedings of the 1999
International Conference on Software Engineering, 1999, pp.411-420.

[16] J. Yu, T.P. Manh, J. Han, U. Jin, Y. Han, J.W. Wang. Pattern based
property specification and verification for service composition. Lecture
Notes in Computer Science, 4255, pp.156-168, 2006.

[17] S.C. Cheung J. Kramer. Checking safety properties using
compositional reachability analysis. ACM Transactions on
Software Engineering and Methodology, 8(1),pp. 49-78.,1999.

[18] D. Giannakopoulou. Model checking for concurrent software
architectures. Imperial College of Science, Technology and
Medicine University of London. Ph.D.thesis, 1999.

Bo Chen, born on Dec.1963, graduated from
Chinese Science Institute for M.S. degree in
the field of control theory in 1990 and now is
a Ph.D. candidate of Tongji University in the
field of software theory. His major study
interests include trusted software and model
checking.

He has been for teaching and researching
work for about twenty years in Guangxi
Unoversity of Technology, Liuzhou, China.

As an assistant professor, he has lectured many courses in computer
science such as software engineering, database system, etc. He has
published about twenty research papers in academic journal and
international conference such as Computer Science, Geomatics and
Information Science of Wuhan University, Chinese Journal of
Computer, Niss 2008, APCIP 2009, etc.

Chungui Li, born on Aug. 1968, graduated
from Beijing Institute of Technology for Ph.D.
in artificial intelligence science in 2003. His
main research interests include machine
learning, intelligent systems, information
retrieval and data mining.
 He has been teaching and researching in
Guangxi University of Technology, Liuzhou,
China for many years. As an associate
professor, he has published many papers in

national academic Journal and international conference.

Qixian Cai, born on Sept. 1948, as a
graduate student, graduated from SouthEast
University electronics in 1986, Nanjing,
China. His major fields of study include
temporal database technique, computer
architecture, and computer based education.

He was engaged in higher education
work for 30 years，and once served as a
vice-director of Computer engineering
department, vice-director of Academic

administration etc. Now, he is professor of Dept. of computer
engineering of GuangXi University of Technology, in LiuZhou city of
GuangXi province of China. He published 12 books and 3 softwares.
Was a first author totaled to publish more than 50 papers in academic
journals. The major publishing books and papers have: Computer
Architecture, Beijing, China: Electronics Industrial Publisher;
Computer Application in Education:Principle and Practice, GuiLin,
China: GuangXi Normal University publisher; C Programming and
Application, Beijing, China: Electronics Industrial Publisher; Research
into C-Temporal Relation Data Model, Journal of Natural Science of
Hunan Normal University, Changsha, China, 2004, vol.27, no.1, pp.18-
22; Researching into the Method of Key-Time based on the C-TRDM
and the Time Filtration Operator, Journal of natural science of Hunan
Normal University, Changsha, China, Vol.28 No.3 Mar., 2004. pp13-
17．

APPENDIX A：BPEL PROCESS OF COMPOSITIONAL WEB
SERVICE F_H

<? xml version="1.0" encoding="UTF-8"?>
<process name=”F_H”
targetNamespace=”http://F_Htravel.com/bpel/travel/”
xmlns:tns=”http://f_htravel.com/bpel/travel/”
xmlns=”http://schemas.xmlsoap.org/ws/2004/3/03/businessprocess/”
xmlns:trv=”http://f_htravel.com/bpel/travel/”
xmlns:fli=”http://flighttravel.com/bpel/flight/”
xmlns:hot=”http://hoteltravel.com/bpel/hotel/”>
<partnerlinks>
 <partnerlink name=”Travel” partnerLinkType=”trv: TravelLT”

myRole=”F_HService” partnerRole=”TravelCustomer”/>
<partnerlink name=”Travelfilter” partnerLinkType=”trv:

TravelFilterLT” myRole=”F_HFilterService”
partnerRole=”TravelFilterCustomer”/>

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 913

© 2009 ACADEMY PUBLISHER

 <partnerlink name=”FlightList" partnerLinkType=”fli:
FlightListLT” myRole=”FlightListRequester”
partnerRole=”FlightListProvider”/>

 <partnerlink name=”FlightSort” partnerlinkType=”fli:
FlightSortLT” myRole=”FlightSortRequester”
partnerRole=”FlightSortProvider”/>

<partnerlink name=”FlightFilter” partnerlinkType=”fli:
FlightFilterLT” myRole=” FlightFilterRequester”
partnerRole=”FlightFilterProvider”/>

 <partnerlink name="HotelOffer" partnerLinkType=”hot: HotelLT”
myRole=”HotelOfferRequester” partnerRole="HotelProvider"/>

 <partnerlink name=”HotelFilter” partnerLinkType=”hot:
HotelFilterLT” myRole=”HotelFilterRequester”
partnerRole=”HotelFilterProvider”/>

<partnerlink name=”ack” partnerLinkType=”trv: ackLT”
myRole=”ackservice””/>

<partnerlink name=”nack” partnerLinkType=”trv: nackLT”
myRole=”nackservice””/>

 </partnerlinks>
<variables>…</variables>
<sequence>

 <receive partnerlink=”Travel” portType=”trv: TravelPT”
operation=”flight_hotel” createInstance=”yes”/>

 <flow superessJoinFailure=”yes”>
 <links>
 <link name=”XtoY”/>
 </links>

<sequence>
 <invoke partnerlink=”FlightList” portType=”fli: FlightPT”

operation=”fligh_list”/>
 <receive partnerlink=”FlightList” portType=”fli:

FlightCallbackPT” operation=”flight_listCallback”/>
 <invoke partnerlink=”FlightSort” portType=”fli: FlightPT”

operation=”fligh_sort”/>
<receive partnerlink=”FlightSort” portType=”fli:

FlightCallbackPT” operation=”flight_sortCallback”/>
 </sequence>
 <sequence>
 <invoke partnerlink=”HotelLT” portType=”hot: HotelPT”

operation=”hotel_offers”/>

 <receive name=”X” partnerlink=”HotelLT” portType=”hot:
HotelCallbackPT” operation=”hotel_offersCallback”
sourcelinkname=”XtoY” Tc=”getLinkStatus ('XtoY')”/>

</sequence>
</flow>

 <receive name=”Y” partnerlink=”TravelFilter” portType=”trv:
TravelFilterPT” operation=”flights_hotels_filter”
targetlinkname=”XtoY”/>

 <flow>
 <sequence>

<invoke partnerlink=”FlightFilterLT” portType=”fli: FlilgtPT
operation=”flights_filter”/>

<receive partnerlink=”FlightFilterLT” portType=”fli:
FlilgtCallbackPT” operation=”flights_filtCallback”/>

 </sequence>
 <sequence>

<invoke partnerlink=”HotelFilterLT” portType=”hot: HotelPT”
operation=”hotels_filter”/>

<receive partnerlink=”HotelFilterLT” portType=”hot:
HotelFilterCallbackPT” operation=”hotels_filterCallback”/>

 </sequence>
 </flow>
 <invoke partnerlink=”TravelFilter” portType=”trv:

TravelFilterCallbackPT” operation=”offersCallback”>
 <pick createInstance="no">

<onMessage partnerlink=”ackLT” portType=”trv: ackPT”
operation=”flight_hotelCallback”> </onMessage>

 <onMessage partnerlink=”nackLT” portType=’trv: nackPT”
operation=”offernextCallback”> </onMessage>

 </pick>
</sequence>

</process>

914 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

