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Abstract-Collecting data with confidence of the 
environment is an important application of the wireless 
sensor networks (WSN). In this study, we used a splay tree 
based event region fault-tolerant detection algorithm 
(STERD) for WSNs to address these problems. Rather than 
passing large quantities of raw data through the network, 
our network instead sends the coefficients of a regression 
polynomial that simulates the readings of the sensor nodes 
throughout the region of interest. These coefficients 
essentially summarize the relevant information over the 
region, in effect compressing the data, leading to a reduction 
in both data volume and energy expenditure. Simulation 
results indicate that the proposed STERD can attractively 
obtain the high event region detection accuracy and 
considerably reduce the false alarm probability.  

Keywords: wireless sensor network, splay tree, in-network 
process, data aggregation, fault-tolerant detection . 

I.  INTRODUCTION 

One of the critical tasks in designing a wireless sensor 
network (WSN) is to monitor and report various useful 
occurrences of events in the network domain. An event 
can be defined as an exceptional change in environmental 
parameters such as temperature, pressure, humidity etc. 
However, an event may occur in many ways. When a 
particular sensor depicts a smooth variation over time, 
then the sensors are said to be spatio-temporally 
correlated just as the attributes[1],[2],[3],[4] . In accordance 
with different scenarios, it is necessary to exploit spatio-
temporal characteristics of sensors to detect the 
emergence of event boundary accurately (eliminating 
faulty readings) and quickly convey this information to 
the sink node. Reporting the boundary of the event 
accurately is a challenging task as it may involve faulty 
readings from some sensors, which may affect the 
accuracy of the detected area of the event [5],[6],[7],[8],[9] . 

Many applications in which the sensor readings have 
a normal distribution within a bounded range, event 
recognition can be implemented by using a threshold-
based scheme, which involves a marginal computational 
overhead, rather than using fairly complicated schedules 
[10],[11],[12],[13] Due to spatial-correlation, at a particular 
instant, if the sensed area is larger than the coverage of a 
single sensor, neighboring sensors sense similar data 
values. Again, a sensor’s own reported readings will be 
similar to the reading it reported in the previous instant 

due to the property of temporal correlation. Therefore, 
identification of sudden, irregular readings deviating 
from its readings at the previous instants or highly 
different from its neighbors’ readings beyond a pre-
specified threshold helps detect faulty sensors [14]. 

In general, it is best that one deployment can satisfy 
the needs of a variety of applications in WSN. Take the 
example of a group of sensor networks deployed in the 
forest, biologists need to study the environment influence 
to the growth of the zoology and botany according to its 
returned detection value; environment scientists study the 
environment quality in this region and the influence of 
microclimate in the area; and what the forest managers 
care about is whether this region would have fire or other 
disaster. Different users have different needs of the 
detection data returned from sensors, if you were to 
respond to every request of the user's query, the sensor 
networks need to return the same value of detection many 
times. Therefore, it is significant to one-off creditably 
collect all row data in the detection region (the so-called 
"credible information" is that the data that the Sink node 
receives in the user's pre-specified error limits of 
credibility with 100%), which enables the different user 
to conduct the inquiry, analyze and process separately so 
as to obtain information of their respective needs. 

A sensor can give faulty readings (readings different 
from neighboring sensors or its own readings sensed in 
previous time intervals, beyond a pre-specified threshold) 
due to several reasons. For example, the reliability of the 
equipment is not high or the different batches of the same 
factory and the sensor may give wrong readings, due to 
the different manufacturing process and other unforeseen 
reasons. These are permanent faults that could cause a 
node to die because of the communication hardware 
failure[6] .The sensor error can be divided into two 
categories[15]: one is positive fault, i.e. the sensors report 
the incident while the environment is in a normal 
situation; the other is negative fault, i.e., the sensors did 
not report while there is a specific incident. Therefore, in 
WSN, to guarantee the credibility of the primary data and 
eliminate the effects of the error readings is one of the 
key questions that the event region detection needs to 
solved. 

II. CONSTRUCTION OF AGGREGATION  TREE 

The construction of aggregation tree is the foundation 
of event region detection process. The goal is to reduce 
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the data transmission capacity and improve the accuracy 
of detection. Analysis data aggregation algorithm 
indicates [16],[17],[18] that, in the case of complete 
aggregation, seeking for the optimal aggregation tree is 
equivalent to solve NP-Complete problem of the 
minimum Steiner tree. According to this NP-Complete 
problem, it has to consider the balance of the 
computation processing energy consumption and the 
transmission energy consumption. In the following part, 
we will provide a concrete description on the algorithm. 

A. Network Model 

In this paper, suppose N static sensor nodes with 
resources limited randomly deployed in monitoring area 
R = ( )r r× , denoted by a set S=(s1, s2, …, sN), where si  is 

the sensor, as illustrated in Fig.1. Each node has its 
location information through triangulation [18], and the 
location of a sensor, si is represented by (xi, yi) with each 
node has unique ID, same capacity of calculation 
communication and energy resources. The node through 
Time Synchronization Service[15] to achieve the loose 
time synchronism, and the communication access reduces 
the channel conflict by means of CSMA/CA .The goal of 
this paper is to construct the aggregation  Tree (AT) in 
this N nodes network, where AT is consisted of Nt nodes 
called Tree Node, which is used to receive and aggregate 
data, the other (N - Nt) nodes are referred to as Non-Tree 
(NT) nodes. Each NT node senses its environmental 
parameter and reports it to its nearest tree node. The AT is 
well spread over the entire WSN so that Nt tree nodes are 
uniformly distributed on the network. In this way, it 
ensures that the attribute readings sent by NT nodes to the 
corresponding tree node incur a smaller hop count, 
thereby increasing the overall lifetime of the NT nodes. 
For simplicity, we use Pevent (denoted by the dashed 
rectangle in Fig.1) to represent an event and the event 
region is denoted by the area, Revent where Revent R⊆ . 
Normally all the events are assumed to have already been 
sensed in the network by AT. R′ is defined as the portion 
of R not occupied by any event, i.e., R′= R - Revent. 

B. Generation of Tree 

The occurrence of some event can trigger exceptional 
readings of partial nodes in the WSN, possibly one which 
is called the isolated spot, also possibly many. In order to 
guarantee that AT diffuse to the entire network, the sensor 
node transmits the sensed value to the corresponding tree 
node by small hops, holding the topological stability of 
dispersion node as far as possible, to maintain the 
original good sensed coverage area. Therefore, we 

introduce the graph Voronoi as well as the Delaunay 
triangle network [1]related to describe the sensor network 
topology, and based on the definition of Delaunay 
triangle, construct splay tree in WSN by taking the 
central node as the root. The splay tree is one kind of 
binary tree, and its superiority is that it does not need to 
record the redundant information used in the balanced 
tree. Let e be a spot of plane, then 

' ' '( ) { | ( , ) ( , ), , }nVR e p R d p e d p e e e e E= ∈ ≤ ∀ ≠ ∈   (1) 

is called the polygon Voronoi. Then graph Voronoi is 
defines as 

( ) ( )i
i

VD E VR e=∪                                 (2) 

i.e. set of all polygons Voronoi in plane, but the 
triangular Delaunay network is formed by the polygon 
centre for connecting all neighboring. The Delaunay 
triangle has many important properties [5], it can obtain 
the neighboring node information of each node through 
the Delaunay expression. Moreover, it can be used for 
searching the closest node. We can then construct the 
splay tree based on Delaunay description in the sensor 
network: let the target sector be A, sensation node 
collection in the region is 

{ ( , ) | }
i i i i

S s x y s A= ∈                          (3) 

Where, (xi,yi) is the position coordinate of the known 
node si. In addition, let the weighted graph correspondent 
by the node collection S network is G in the region, 
distance of neighbor nodes is the weight of each side 
corresponding. Let external memory of the sensed region 
is in points set K={ ki(xi,yi) | ki∉A},  then take node si in 
the target sector as the centre regarding the set of points 
K node extension tree is definited as T, has  

( ) ( ),
i i i i

i

T s K path s k k K− > = − > ∈∪         (4) 

Where, ( )iip a th s k− >  is the greatest span path from 

node si to node ki in graph G, its length is l [12]. In this 
path, the minimum distance between each node is bigger 
or equal to the minimum distance in any other path from 
si to ki and the node number is the smallest in graph G. 
The greatest span path had reflected an extension circuit 
between two nodes. What needs to be pointed out is that 
in a specific undirected graph G, the greatest span path 
between two spot is not unique, possibly has multi-strips. 
But for the different extraterritorial node set, the splay 
tree of taking the root node as the centre corresponding is 
also not unique. 

Assume the depth of the tree is p and the tree node 
saves the attribute of the same type. Such tree is 
considered balanced, which reduced data loss and 
increased accuracy of data aggregation  [18]. Algorithm 
Form_AT constructs splay tree with given depth 

Fig. 1 Network model 

Fig .2  Exchange of signals to construct the aggregation  tree.   
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constructs splay tree of aggregation nodes running this 
algorithm. When a node chooses its two children, it will 
choose the two biggest span nodes, ensuring that the tree 
covers more sensed regions as far as possible when 
aggregation. In the process of the multiple regressions, it 
can achieve the high accuracy, and may reduce the 
redundancy of the dissemination monitor value. After the 
splay tree is formed, in each sub-domains all surplus 
nodes send data to the nearest tree-node away from 
themselves. This paper constructs a tree through three 
kinds of information: Beacon, Probe and JOIN. Fig. 2 
described the process about exchange of different signals 
to construct the query tree. 

Construction of splay trees algorithm Form_AT(p,p") 
 
Input: the depth and the b-value. 
Output: a binary tree Tc rooted at r of depth at most p 

and a unique ID assigned to each node of Tc. 
1: Begin 
2: For each level j from 0 to p- l    /*  l is the    

largest span path length of inter-node */ 
For each node i from l to 2

j  
3:    iM is a node at level j + l  
4:    in is a node at level j 
5:    in  sends Beacon packet containing ni’s ID 

ina to iM  Where distance between ni and iM < 
r  /*  r is the correspondence radius  */ 

6:  iM chooses in as its parent with probability > p"  
7:  iM sends Probe packet to in  
8: in waits NWAIT time (which is a sufficiently 

loog fixed time period) to receive Probe packet 
from each iM who selected in  as parent 

9: End  
 

For the sensor network, the node in the path of the 
largest span has good dispersion, which reduced the 
influence of capacity of network-sense due to the 
overlapping coverage, therefore these dispersive good 
node needs to maintain. Through the definition of the 
splay tree, determined nodes set need to be maintained in 
the sensor network. For this set of nodes, the nodes 
overlapping coverage for the corresponding adjustment 
of the distribution network will effectively improve the 
overall perception of ability. 

C. Data Aggregation  

The main idea of a tree based data aggregation  
algorithm is using the transmission model that is able to 
fit more monitor data instead of the monitor data of 
transmission nodes to reduce the capacity of data 
transmission, as the result, it saves the energy of the 
sensor nodes. Hence, it needs to consider the relations 
between the cost of the return model and data quantity it 
may fit. The smaller the cost of transmission model, the 
more data it can express, and the more energy saves. 
Because the monitor value of node is often subject to 
many factors, we expect to fit the most data with the 
minimum cost mode. The multiple linear regression 
models are totally in line with this goal. 

In splay tree, each node receives and stores data 
reported by the recent non-tree node cyclically to it, that 
is, the NT (Non-Tree) node is responsible for the 
sensation and AT node is responsible to store. The value 
saved in AT node is regarded as the function value of the 
x-y coordinate. This process describes by three- element 
(f, x, y), i.e. f is the attribute value transmitted by node 
located at (x, y). Data tuple of node i stored in AT 
produces the approach function fi(x, y), and the 
progressive function f (x, y) by the input of the three 
variables (z, x, y) forms the implementation of multi-
polynomial functions, data in such tree node may denotes 
by multiple regression polynomial function. The 
following is to discuss the process of carrying out the 
data aggregation through the polynomial regression on 
the splay tree. 

In general, the form of multi-dimensional linear 
regression function is as follows [7]:  

0 1 1 2 2 k k
Y X X Xβ β β β µ= + + + + +⋯               (5) 

Where Y is the sensed estimate value, Xj(j=1,2,…,k) 
are the factors impact to the sensed estimate value Y, 
βj(j=0,1,2,…,k) are k +1 unknown regression parameters, 
µ is random error item .As parameters βj(j=0,1,2,…,k) are 
unknown, we can carry on estimate to them using the 
sample observed value (x1i, x2i ,…, xki ;Yi).Through this, 
we get the parameter estimated 

value ˆ
j

β (j=0,1,2,…,k).Substitute the unknown parameter 

βj (j=0,1,2,…, k)of the regression model with the 
parameters estimated value the, then multi-dimensional 
linear sample regression equation is:  

0 1 1 2 2
ˆ ˆ ˆ ˆˆ

i i i k ki
Y x x xβ β β β= + + + +⋯                 (6) 

Where ˆ ( 1, 2, , )
i

Y i n= ⋯ is sample regression value of 
Yi .Then the residualie between observed value Yi and the 
regression valuêY

i
is: 

           
0 1 1

ˆ ˆ ˆˆ ( )
i i i i i ki ki

e Y Y Y x xβ β β= − = − + + +⋯          (7) 

We can see by the least squares that ˆ
j

β  (j=0,1,2,…,k) 
should make the square between all the observations Yi 

and the residual ie  the regression value the smallest, 
even if 

2 2

0 1 2
ˆ ˆ ˆ ˆ ˆ( , , , , ) ( )

k i i i
Q e Y Yβ β β β = = −∑ ∑⋯  

2

0 1 1 2 2
ˆ ˆ ˆ ˆ( )

i i i k ki
Y x x xβ β β β= − − − − −∑ ⋯            (8) 

obtains the minimum. According to the extreme value 
theory of the multiple functions, Q makesthe first partial 
derivatives respectively for ̂

j
β (j=0,1,2,…,k), and let 

them equal to zero. 

0, ( 1, 2, , )
ˆ

j

Q
j k

β
∂

= =
∂

⋯                               (9)  

After simplified, we get the following equation: 
ˆt tX Y X Xβ= .                                   (10) 

where
10

ˆ ˆ ˆ ˆ[ , ,, ]
k

tβ β β β= ⋅ ⋅ ⋅  , let R(X) = K+1, 
tX X is 

(K+1) step square formation, then 
tX X is non-singular, 
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and its inverse matrix is existent, therefore the smallest 
square estimate vector of β is:  

                           
1ˆ ( )

t t
X X X Yβ −=                               (11)  

Using the polynomial regression, we obtain the following 
equation. 

2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

1

1

1 n n n n n n n n n n n

y y x x y x y x x y x y

y y x x y x y x x y x y
X

y y x x y x y x x y x y

                

                
=

                                                  
                

1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2
n

 
 
 
 
 
 
   

     (12) 

2

0 1 2 3 4
ˆ ˆ ˆ ˆ ˆ( , )f x y y y x xyβ β β β β= + + + + +       

2 2 2 2 2

5 6 7 8
ˆ ˆ ˆ ˆxy x x y x yβ β β β     + + +  

              (13) 

From the equation (13), we can computeβ̂ through a 

given location (x, y) and obtain the value of f (x, y) 
which is property value of (x, y) nodes from (13). 

As
T

X X  is certainly the m+1[15] step non-singular, in 
other words, n>>m+1and X cannot denote for weighted 
linear combination of any other row set. The data 
aggregation algorithm mentioned in this paper is accord 
to the input of the width priority with each tree node has 
a coefficient from the formula (13) and sends the 
coefficient set to its parent node. Nodes of each level use 
the coefficient which obtains from its children to renew 
sensor attribute value, and these data combine with 
detection value of node itself to calculate the new 
coefficient set, and then transfer to a higher level. In the 
process, to identify the even attribute value in the region 
is the key of the matter. Because they have a direct 
bearing on the accuracy of the aggregation, it could 
identify the region through the upper and lower bounds of 
the coordinates of the {min min max maxx ,y ,x ,y }, where the 

minimum and maximum value from the Son of the father 
of the current node in the tree under all the sensor nodes. 
As in Fig. 3, we set a as the current aggregation node and 
data value in the region updates through node a. The 
scope of the region defines by the subtree of node a, 
which passed through the smallest and largest coordinates 
of the sensor nodes. Thus, node a gets the border 
coordinates of the region from its children.  

Through the construction based on the splay tree and 
the above description about the process of regression, 
answer queries every specified time, such as "SELECT 
temperature FROM sensors WHERE location = (x, y)", 
or “the highest temperature in target scope “of issues. In 
the latter case, generate set of (x, y) coordinates in the 

designated area, Sink firstly informed of the attribute 
value of each point location to calculate the maximum 
value. When Sink needs to know the data of (x, y), it will 
send this inquiry to the root, the inquiry by the AT 
spreading down until the leaf nodes of the last layer. 

III.  EVENT REGION DETECTION  

In case of most applications, we use the 
function 1 2( , ) ( , ,..., )ki t F v v vσ = to characterize the 

readings (e.g., temperature, humidity etc.) by a sensor 
i ∈N at instance t where vk is a parameter that impacts the 
sensor reading. In most sensor applications, due to known 
and unknown factors, it is not clear whether the exact 
expression of the function can be derived. Except some 
particular cases, it is not easy to model these factors since 
they may affect the readings in a time-varying manner 
and in a linear or non-linear way. Rather than trying to 
obtain an exact expression, we can formulate the basic 
properties of the function F, thereby analyzing the sensor 
readings( ( , ))i tσ .  

A. General Properties of Sensor Readings 

The function F which characterizes sensor readings 
possesses the following properties: 

1) F for a sensor i∈N is independent of other sensors. 
2) There exist two constants Cmin and Cmax (such 

that min max( , )C i t Cσ≤ ≤ ) providing the lower and upper 

bound respectively of the normal readings from a sensor. 
3) Within the range [Cmin,Cmax], ( , )i tσ is statistically 

continuous and admits a probability distribution, (i.e.,a 
normal distribution). Thus, a continuous probability 
density function (i.e., ( )iϕ ) can be used to express the 

distribution. 
It formulates those applications in which the sensor 

readings follow the above properties. Property 1 
intuitively explains that a sensor independently senses the 
environmental changes. Property 2 gives the bounded 
variable space of normal sensor readings. It is to be noted 
that different applications have different value for the 
parameter ( )iϕ given by property 3 and variable spaces. In 

practice, the assumption can be ascertained by 
applications that can approximately fit as normal 
distribution such as daily air temperature, wind speed, etc. 
In this paper, we determine the conditions of the normal 
readings and error readings are as follows: 
Normal Reading- In general case, ( , )i tσ is in the range 

[Cmin,Cmax] and admits a given normal distribution 
(i.e., ( )iϕ ).If 1| ( , ) ( ) |i t E iσ τ− ≥ for existing variable1τ >0. 

It says that the sensor reading is beyond the normal 
reading ranges (specified) by1τ . The more number of 

sensors satisfy this condition, the higher probability of an 
event has occurred. 
Faulty Reading- A sensor is classified as faulty if for a 
sensor i, ( )iϕ satisfies any of the following three 

conditions. 

Fig. 3  a node calculate the boundary of the 
region for data regeneration   
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1) 2,| ( , ) ( ) |t i t E iσ τ∀ − ≥ ,for existing variables 2τ > 1τ >0. 

When a sensor′ reading is beyond the normal range, it is 
possible that the sensor is faulty. If a sensor frequently or 
continuously gives such readings, the probability of the 
faulty sensor increases. 
2) For several consecutive periods of data reporting, it 

has| ( , ( 1) ( , ) | 0i t i tσ σ+ − ≈ but for each of its neighboring 

sensors (i′), ' '| ( , ( 1) ( , ) |i t i tσ σ+ − >c, where c is constant. 

This condition considers the spatial property of sensor 
readings. It implies that if the neighboring sensors exhibit 
time-varying readings and the sensor’s reading remain 
constant all the time, there is a high probability that the 
sensor is faulty. With the same logic, if its neighboring 
sensors sense a minor change in the reading for a given 
period (i.e., | ( ', ( 1) ( ', ) | 0i t i tσ σ+ − ≈ ) and the sensor 

records a high range in the sensing reading 

(i.e., ' '| ( , ( 1) ( , ) |i t i tσ σ+ − ≥c, where c is a constant), the 

sensor i may be faulty.  

min max 23) , ( , ) , ( , 1) ,t C i t C i tσ σ τ   ∀ < < + >

min max 2( , 2) , ( , 3) ,C i t C i tσ σ τ< + < + > This condition 

implies that the sensor is faulty if the reading of a sensor 
changes irregularly. If a sensor continues to exhibit 
irregular reading with time, it has a high probability of 
being faulty. This condition has some variations in 
irregular readings. For example, a sensor’s reading 
changes from normal reading to the event reading and 
back to normal reading periodically or intermittently. 

B. Single Event Detection 

When a leaf node collects readings from its 
surrounding NT nodes, it computes Pflag for an event (i.e., 
event polynomial) or P for a normal phenomenon (i.e., 
normal polynomial) depending on whether thτ is 

exceeded or not. While receiving the reports from its 
child nodes, the parent node has also collected readings 
from its own surrounding NT nodes and has determined 
whether an event has occurred or not in its region. If a 
parent node also lies in the same region as any of its child 
nodes, it regenerates the child node’s reading and 
computes a new polynomial with its own reported data. 
This polynomial can again be Pflag or P, depending on 
whether the parent node is inside the event region or not. 
If the event regions of a parent node and the 
corresponding child nodes are different, the child node’s 
data packet is sent up unchanged. The process continues 
and the root finally receives two polynomials and the 
corresponding ranges. From the received Pflag and the 
corresponding area from a child node, the root node can 
get an estimation of the event boundary from the event 
location information. It analyses the corresponding area, 
xNmin, yNmin, xNmax, yNmax (where the suffix N represents an 
event) to get an estimation of the coverage of Pevent. Fig. 1 
shows a part of the AT detecting Pevent. In Fig. 1, Pevent has 
occurred inside Revent, at the corner of R. We observe that 
in the sub-tree with the parent node A as well as its 
children B and C fall in the event region, Revent. In this 
case, both B and C receive readings from NT nodes, with 

deviation greater than thτ (i.e.,| ( ) |i i thd E d τ− > ). Again, 

all the children of B lie inside Revent. Therefore, the 
polynomials received by B from its two children are 
flagged (i.e., Pflag). Since B itself also receives readings 
from nearest NT nodes with deviation greater than the 
threshold, it generates a new Pflag with its own reported 
data and regenerated data (obtained from Pflag sent by its 
children). The new Pflag and the corresponding range are 
then transmitted to its parent node A. In Fig.1 in the sub-
tree parented at C, one of its children, D lies in Revent 
whereas another child, E lies in R. C receives 
polynomials, Pflag  ,P and the corresponding coordinates 
xNmin, yNmin, xNmax, yNmax and xmin, ymin, xmax, ymax (taken over 
all the sensing nodes in the sub-tree under each of nodes 
D and E respectively). By observing the approximate 
span of areas by its two children and its own reported 
readings, C it can be concluded that D lies in the same 
region as with it. Therefore, it regenerates the readings 
from node D and combines those readings with its own 
reported readings to generate a new Pflag. C then sends 
this Pflag and xNmin, yNmin, xNmax, yNmax (denoted by the bold 
rectangle comprising of the area given by the dotted 
rectangles spanned individually by nodes C and D) and 
unchanged P and xmin,ymin,xmax, ymax to A. xNmin, yNmin, xNmax, 

yNmax gives the range of the area and this range keeps 
getting modified as it is passed along the AT reflecting 
the area involving multiple tree nodes lying in Revent. 
When the root node receives xNmin, yNmin, xNmax, yNmax from 
a child node also sending Pflag, it can roughly get an 
estimated value according to event Pevent denoted by the 
boundary between R and Revent in Fig.1 and the span of its 
area.  

C. Multiple Events Detection 

In contrast to single-event, the exchange of data 
packets and computational complexity between tree 
nodes will increase when multiple events occur. With the 
increase of the event sources, the effect of each event will 
reduce. As the packets are sent up to the tree, if one of the 
child nodes of a sub-tree approximates the data range as 
that of the parent, then a new polynomial is formed by 
combining both the data sets. However, if the dataset of 
none of the child nodes is the same as that of the parent, 
only their data range and range of area span are sent up to 
the tree. In this case, their areas are combined to form a 
larger area if both of two child nodes approximate the 
same data value. 

Fig. 4. Occurrence of two new events Pevent1 and Pevent2. 
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Suppose in a rectangular area, there are two unusual 
events and a normal phenomenon. As shown in Fig. 4, 
two events Pevent1 and Pevent2 occur in region R.B detects 
event Pevent2, while its children nodes C and D detect 
Pevent1 and a normal phenomenon separately. In this case, 
C and D transmit respective Polynomial and the 
coordinate scope {xcmin, ycmin, xcmax, ycmax } as well as 
{  xdmin, ydmin, xdmax,ydmax } to B. B calculates the maximum 
and minimum data value of the two nodes received, 
getting the scope of their data. B will transform 
Scmax,Scmin,, C, as well as the coordinates scope of 
Sdmin,Sdmax, D to A. If using single event detection, we 
need six packets, three of which are corresponding to 
three polynomials and the other three to the range of 
areas. Furthermore, A’s other child G approximates the 
same phenomenon as D. Therefore, A combines their 
ranges together and senses the same event Pevent2. Then, A 
recreates a new polynomial and sends its polynomial, its 
range and it’s maximum and minimum to its parent H. At 
the same time, M’s estimated value is the same as that 
sent by A and sends its coefficients to the root after 
combining N’s regenerated data. As both H and I lie in R, 
the event region of Pevent2 is not modified further by H 
and is sent to the root unchanged giving the approximated 
event region and boundary. In this way, both the events 
Pevent1 and Pevent2 are detected with limited computation 
overhead as only one polynomial regression is performed 
at each tree. 

IV.  SIMULATION RESULTS AND DISCUSSION 

This paper accesses simulation results using discrete 
event simulation platform NS2,which assumes a collision 
and contention free MAC protocol with simulation 
parameters shown in table 1, which focus the data 
aggregation  algorithm for performance evaluation.  

Place randomly about 250 sensor nodes in the square 
of 800× 800 units, changes in the temperature 30℃-35  ℃
for normal and consider the temperature 39℃-49  for ℃

abnormal as it may be on fire in the region. The depth of 
the tree is set to 4. From the data set it can be validated 
that the values of temperature are distributed according to 
a normal distribution (i.e., ( )iϕ ) in case of no event. The 
Cmin,Cmax, and E(i) are 30, 35, and 32.5 respectively and 
the variance of ( )iϕ  is 1.2. After validation of the 
assumption, a random location is selected inside R and a 
single event Pevent1 is generated at the centre with a 

normal distribution of temperature data in the range 55-
65℃ 1 thτ τ= is set to 2.5, since E(di)-minC = maxC -E(di). = 
2.5 The event area is called Revent as we described. 1τ  is 
set to 2.5, since min max( ( , )) ( ( , ))E i t C C E i tσ σ− = − = 2.5 
and 2τ  = τ threshold is set to 4.5. The following 
performance metrics are obtained for multiple rounds of 
sensing when the event(s) has occurred and the readings 
have been reported by the NT nodes to the nearest tree 
nodes: 

 (1) Event boundary: we compare the actual event 
boundary (of different shapes) and the detected event 
boundary. (2) Percentage error: Using he final 
polynomial, the root can obtain readings at the sensor 
locations where approximation of the actual reading. 
Therefore, the event area detected based on these 
readings differ slightly from the actual boundary and this 
deviation can be expressed as a percentage. This, 
Percentage Error is defined as the absolute deviation of 
the approximated reading (i.e., z ) from the true sensor 
reading (say, z) taken over all the sensors present on the 
boundary of the event:  

1

|
( ( 100) / )

bn
k k

b th
k k

z z
E n

z
ε

=

−
= × ≤∑              (18) 

Where thε  = 10% is the error threshold given nb (number 

of sensors present on the boundary).(3) Event recognition 
delay: This is defined as the period between the time of 
occurrence of an event and the final event. 

A. Detection of an Event Boundary 

We implemented STERD according to the above 
configuration and obtained an approximated boundary of 
the event. To study the performance of STERD on 
occurrence of multiple events with boundaries of 
different shapes, a second event Pevent2 is generated at a 
corner of R with the temperature range from 5-10℃. Fig. 
5 depicts the boundaries of these two events Pevent1 (i.e., 
the bold rectangle) and Pevent2 (i.e., the bold oval shape). 
The detected boundaries are given by the dashed 
rectangles. The shaded dots in the figure represent the 
tree nodes. The experimental results from our polynomial 
functions (i.e., Pflag ) show the accuracy of approximation: 
7.8% error and 8.5% error for Pevent1 and Pevent2 
respectively. From these approximated boundaries, we 
observe that the outlines of the reconstructed event 
regions (i.e., the dash rectangles) match the actual event 
boundary (i.e., bold rectangle and bold oval), thus 

Table 1 Values of simulation parameters used 

Parameter Variation 
Area A 800×800 

Communicate radius R 40m 
Nodes total D 1630 

Node density A/D 0.0025 
Event area As 400×400 

Father node choose probability P＂ 0.33 
Tree depth p 4 

Average of reports ns 12 

 

Fig 5. Event boundary approximated by STERD 
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confirming the accuracy of STERD. However, since the 
area approximated by STERD will always be a rectangle 
(as the event region is reconstructed iteratively by 
utilizing the ranges of the smaller approximated areas 
which themselves are rectangles), the event which itself 
is rectangular is approximated better as compared to 
other shapes (e.g., oval).  

B.  Error Rate 

Without changing the network size and the number of 
nodes, we employ STERD to detect a single event and 
the Extended STERD to detect two events. Fig.6 depicts 
the actual percentage error in event detection with 
variation of communication range. The observed 
percentage errors for different communication ranges are 
within 10% for both cases of STERD as shown in Fig.6 
However, the percentage error of using Multi-STERD 
(error range from 6.8-8.9) to detect event is 6% higher 
than using single STERD(error range from 6.4-7.6). For 
single event detection with STERD, the range is slightly 
smaller because the approximate boundary can be more 
accurately pinpointed by regenerating data values from 
the final Pflag which is not available with the Multi-
STERD scheme. As shown in Fig. 6 that the error level 
for the event detection does not significantly vary with 
communication range, unlike[3]where error increases 
substantially with the communication range. With 
increase in the communication range, more sensors with 
readings from region Revent may report to a tree. In 
STERD, since the tree nodes generate different 
polynomials corresponding to readings indicating 
different events, the overall error rate is independent of 
the communication ranges of each sensor. It can be 
observed from the result in Fig.6 that with an increase in 
the density of NT nodes, the error percentage increases 
slightly. With increase in the node density, the 
probability of a tree node lying at the border of the two 
events increases, and therefore, the fraction of NT nodes 
lying at the boundary between events in the network 
increases. Again, with an increase in the node density, 
accuracy of the approximated polynomial increases, as 
more readings are considered by tree nodes from reported 
sensors, relatively larger area is covered and a better 
approximation is provided of the sensed parameter over 
the region [18].The latter positive effect on accuracy 
controls a massive increase in the percentage error due to 
increase in the node density. 

C. Delay Incurred in Event Detection 

Fig. 7 shows that the delay in the event detection 
remains almost constant with increase in the node density. 
This is because the size of the tree is fixed, irrespective of 
the number of nodes in the network. Event detection 
delay mainly results from three parts: computational 
delay for event recognition (called event recognition 
delay), computational delay for polynomial (called 
computation delay), and the delay for event report by 
packets (called transmission delay). It can be explained 
from Fig.7 that the event recognition and the 
computational delay for the polynomial are much smaller 
than the communication delay. It suggests that 

communication delay is almost 77% of the total delay. 
Once the aggregation tree is fixed, the communication 
delay remains almost constant and is independent of the 
density of the NT nodes. When the node density increases, 
the number of NT nodes around each tree node also 
increases. However, the result also shows that the 
computational overhead for event recognition and the 
construction of the polynomial remain almost constant 
when the number of nodes (nnt) increases. It is due to the 
increase of node numbers (n) in the entire network does 
not cause any significant increase of ns .STERD reduces 
the complexity of event recognition and event report 
because of the following reasons. Firstly, event 
recognition and polynomial-based data aggregation do 
not involve any complicated computation in STERD. 
Secondly, the tree-based network architecture makes the 
event recognition localized. Thirdly, when the network 
size (n) increases, the number of tree nodes increases 
accordingly so that STERD is made scalable. 

V. CONCLUSION 

This paper has studied high energy efficiency fault-
tolerant detection of the wireless sensor network event 
region. Firstly, we proposed a novel data aggregation  
algorithm through the construction of the splay tree and 
this algorithm can also be able to detect the event 
attribute value lacking of the sensor node position, using 
the spatio-temporal correlation of the detected event and 
the error rate in the range of acceptable. In addition, on 
this basis, an event region detection fault-tolerant 
algorithm based on the splay tree was proposed, the 
algorithm can detect a number of events and identify 
event that occurred in the boundary region and faulty 
sensor nodes, keeping the error ratio of the overall 
aggregated data reported to the BS under control, quickly 
conveying of this information to the BS, thereby reducing 
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the energy consumption and the delay in data 
transmission. Results show that with the generation of a 
large number of packets in the network, error reading 
detection has nothing to do with the accuracy of the node 
density; and a faulty sensor can be detected with an 
average accuracy of 94% and it increases with the 
increase in the node density, which plays a very 
important role in the application of sensor networks. 
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