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AbstractCollecting data with confidence of the
environment is an important application of the wireless
sensor networks (WSN). In this study, we used a splay tree
based event region fault-tolerant detection algorithm
(STERD) for WSNs to address these problems. Rather than
passing large quantities of raw data through the network,
our network instead sends the coefficients of a regression
polynomial that ssimulates the readings of the sensor nodes
throughout the region of interest. These coefficients
essentially summarize the relevant information over the
region, in effect compressing the data, leading to areduction
in both data volume and energy expenditure. Simulation
results indicate that the proposed STERD can attractively
obtain the high event region detection accuracy and
considerably reduce the false alarm probability.

Keywords: wireless sensor network, splay tree, in-network
process, data aggr egation, fault-tolerant detection .

. INTRODUCTION

One of the critical tasks in designing a wirelessser
network (WSN) is to monitor and report various usef
occurrences of events in the network domain. Ameve
can be defined as an exceptional change in envieatah
parameters such as temperature, pressure, huneitdity
However, an event may occur in many ways. When
particular sensor depicts a smooth variation ovree,t

then the sensors are said to be spatio-temporall%

correlated just as the attribuf&€'EM4  |n accordance
with different scenarios, it is necessary to expdpatio-
temporal

faulty readings) and quickly convey this informatito

the sink node. Reporting the boundary of the even

accurately is a challenging task as it may invdhalty

readings from some sensors, which may affect th?ailure[ﬁl

accuracy of the detected area of the eVEf" 1

Many applications in which the sensor readings haV(?h
a normal distribution within a bounded range, eventg
recognition can be implemented by using a threshold
based scheme, which involves a marginal computaition

overhead, rather than using fairly complicated dales

MOLRNR2LES e to spatial-correlation, at a particular

instant, if the sensed area is larger than theragecof a

characteristics of sensors to detect th
emergence of event boundary accurately (eIiminating

due to the property of temporal correlation. Theref
identification of sudden, irregular readings dewigt
from its readings at the previous instants or highl
different from its neighbors’ readings beyond a-pre
specified threshold helps detect faulty sen&drs

In general, it is best that one deployment carsfati
the needs of a variety of applications in WSN. T#hke
example of a group of sensor networks deployechén t
forest, biologists need to study the environmefiuénce
to the growth of the zoology and botany accordmgts
returned detection value; environment scientigidysthe
environment quality in this region and the influenof
microclimate in the area; and what the forest marsmg
care about is whether this region would have firetber
disaster. Different users have different needs h# t
detection data returned from sensors, if you were t
respond to every request of the user's query, ¢heos
networks need to return the same value of detectiamy
times. Therefore, it is significant to one-off citatily
collect all row data in the detection region (tleecalled
“credible information" is that the data that thekShode
receives in the user's pre-specified error limits
credibility with 100%), which enables the differamser
to conduct the inquiry, analyze and process seglgrad

s to obtain information of their respective needs.

A sensor can give faulty readings (readings differe
om neighboring sensors or its own readings semsed
previous time intervals, beyond a pre-specifiegshold)
due to several reasons. For example, the reliplufithe
%quipment is not high or the different batcheshefsame
actory and the sensor may give wrong readings, tdue
the different manufacturing process and other w@wseen
feasons. These are permanent faults that coulde caus
node to die because of the communication hardware
.The sensor error can be divided into two
categorie$®: one is positive fault, i.e. the sensors report
e incident while the environment is in a normal
ituation; the other is negative fault, i.e., tleasors did
not report while there is a specific incident. Téfere, in
WSN, to guarantee the credibility of the primaryadand
eliminate the effects of the error readings is ohéghe
key questions that the event region detection néeds
solved.

single sensor, neighboring sensors sense similta da

values. Again, a sensor's own reported readingk beil
similar to the reading it reported in the previdnstant
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II.  CONSTRUCTION OFAGGREGATION TREE

The construction of aggregation tree is the foundat
of event region detection process. The goal issthice
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the data transmission capacity and improve theracgu
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introduce the graph Voronoi as well as the Delaunay

of detection. Analysis data aggregation algorithmtriangle network!related to describe the sensor network

indicates M8 that in the case of complete

aggregation, seeking for the optimal aggregatiee s
equivalent to solve NP-Complete problem of the

topology, and based on the definition of Delaunay
triangle, construct splay tree in WSN by taking the
central node as the root. The splay tree is ond kin

minimum Steiner tree. According to this NP-Completebinary tree, and its superiority is that it doe$ need to

problem, it has to consider
computation processing energy consumption and th
transmission energy consumption. In the followiregtp
we will provide a concrete description on the aitdpon.

A. Network Model

In this paper, supposél static sensor nodes with
resources limited randomly deployed in monitorimgaa
R =(rxr), denoted by a s&=(s; & ..., %), Wheres is
the sensor, as illustrated in Fig.1. Each node itms
location information through triangulatidff, and the
location of a sensor is represented by y;) with each
node has uniquelD, same capacity of calculation

communication and energy resources. The node throud

Time Synchronization Servitd to achieve the loose
time synchronism, and the communication accessce=du
the channel conflict by means of CSMA/CA .The gofl
this paper is to construct the aggregation TwEB (n
this N nodes network, wherAT is consisted oN; nodes
called Tree Node, which is used to receive andegge
data, the othe\ - N) nodes are referred to as Non-Tree
(NT) nodes. EachNT node senses its environmental
parameter and reports it to its nearest tree nbldeAT is
well spread over the entire WSN so thiatree nodes are
uniformly distributed on the network. In this wal,
ensures that the attribute readings sentibyiodes to the
corresponding tree node incur a smaller hop cou
thereby increasing the overall lifetime of tNE nodes.
For simplicity, we usePe.n; (denoted by the dashed
rectangle in Fig.1) to represent an event and trente
region is denoted by the areBgent Where Reventd R .
Normally all the events are assumed to have alrbaéyn
sensed in the network YT. R’ is defined as the portion
of R not occupied by any event, i.&= R - Revent

NT node
Tree node

P, Tegion

Fig. 1 Network model

B. Generation of Tree

The occurrence of some event can trigger excegtiona — geacon

readings of partial nodes in the WSN, possibly whech
is called the isolated spot, also possibly manyortter to
guarantee thaT diffuse to the entire network, the sensor
node transmits the sensed value to the corresppmicia
node by small hops, holding the topological stabitif

the balance of therecord the redundant information used in the badnc

tree. Lete be a spot of plane, then

VR@={pOR| ¢ pes € pp0 & ,ele } (1)
is called the polygon Voronoi. Then graph Voronsi i
defines as

vD(E) = JVR(e) e

i.e. set of all polygons Voronoi in plane, but the
triangular Delaunay network is formed by the polygo
centre for connecting all neighboring. The Delaunay
triangle has many important properti®s it can obtain
the neighboring node information of each node tghou
he Delaunay expression. Moreover, it can be used f
searching the closest node. We can then consthect t
splay tree based on Delaunay description in themen
network: let the target sector b& sensation node
collection in the region is

S={s{x ¥l s A 3)
Where, &,y is the position coordinate of the known
nodes. In addition, let the weighted graph correspondent
by the node collectior5 network isG in the region,
distance of neighbor nodes is the weight of eade si
corresponding. Let external memory of the sensgibmne
is in points seK={ki(x;,y;) | k[JA}, then take node in
the target sector as the centre regarding thefgediots

n'k node extension tree is definitedTashas

4

Where, path( s-> k) is the greatest span path from

T(s-> K =] pat( s=> R, kO &

nodes to nodek, in graphG, its length isl 2. In this
path, the minimum distance between each node gebig
or equal to the minimum distance in any other geim

s to ki and the node number is the smallest in gr@ph
The greatest span path had reflected an extengicuitc
between two nodes. What needs to be pointed dbats
in a specific undirected grapB, the greatest span path
between two spot is not unique, possibly has nstitips.
But for the different extraterritorial node setetlplay
tree of taking the root node as the centre cormedipg is

also not unique.
A A
¢ d a bo c d

—> Probe = Join

Fig .2 Exchange of signals to construct the aggien tree.

B

5

Assume the depth of the tree is p and the tree node
saves the attribute of the same type. Such tree is
considered balanced, which reduced data loss and

dispersion node as far as possible, to maintain th#creased accuracy of data aggregat.iBﬂ. Algorithm
original good sensed coverage area. Therefore, weOrm_AT constructs splay tree with given depth

© 2009 ACADEMY PUBLISHER
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constructs splay tree of aggregation nodes runttiig In splay tree, each node receives and stores data
algorithm. When a node chooses its two childremyilit ~ reported by the recent non-tree node cyclicallyt,tthat
choose the two biggest span nodes, ensuring thdtdb is, the NT (Non-Tree) node is responsible for the
covers more sensed regions as far as possible wheensation and\T node is responsible to store. The value
aggregation. In the process of the multiple regoess it  saved inAT node is regarded as the function value of the
can achieve the high accuracy, and may reduce they coordinate. This process describes by threemeht
redundancy of the dissemination monitor value. Afte  (f, x, y), i.e. f is the attribute value transmitted by eod
splay tree is formed, in each sub-domains all sigrpl located at X, y). Data tuple of node i stored AT
nodes send data to the nearest tree-node away fropmoduces the approach functiofi(x, y), and the
themselves. This paper constructs a tree througketh progressive function fx( y) by the input of the three
kinds of information: Beacon, Probe and JOIN. Fig. variables %, x, y) forms the implementation of multi-
described the process about exchange of diffeignals  polynomial functions, data in such tree node mayoties
to construct the query tree. by multiple regression polynomial function. The
Construction of splay trees algorittarm_ATp,p") following is to discuss the process of carrying the
data aggregation through the polynomial regression

Input: the depth and thevalue. the splay tree.
Output: a binary tre&. rooted at of depth at mosp In general, the form of multi-dimensional linear
and a uniquéD assigned to each nodeTf regression function is as folloW
1: Begin . Y=B,+BX+B,X,++B X +U (®)
2. For each levej from 0 top-1  /* lis the Where Y is the sensed estimate valg=1,2,...K)
largest span path length of inter-node */ are the factors impact to the sensed estimate Véue
For each node i fromto 2’ £(=0,1,2,...K) are k +1 unknown regression parameters,
3:  Mjisanode at levgl+l w is random error item .As parametg§=0,1,2,...k) are
4:  nisanode at levgl unknown, we can carry on estimate to them using the
5. n sendsBeaconpacket containing iis ID  sample observed valug:{ X ,..., % ;Y).Through this,
a, toM; Where distance between andM;<  we get the parameter estimated

r [ ris the correspondence radius */ value, (j=0,1,2,...K).Substitute the unknown parameter

6: M, choosesn as its parent with probability > p" ) . )
7. M sendsProbepacket to B (=0,1,2,..., k)of the regression model with the
8 n waits NWAIT time (wr|1ich is a sufficienty Parameters estimated value the, then multi-dimesio
' i P H ; e
loog fixed time period) to receivierobe packet linear samApIe regression anuanon IS
from eachM, who selectedh, as parent Y =B +BX tB,% t+[ X (6)
9: End WhereY (i=1,2,--,n)is sample regression value of

] Y;.Then the residua@ between observed valig and the
For the sensor network, the node in the path of th?egression valu¥ is:

largest span has good dispersion, which reduced the A A A -
influence of capacity of network-sense due to the e=Y-Y=Y-(B+B xt+B, ¥ @)
overlapping covera_ge,.therefore these dis.p'elrsived d0 We can see by the least squares tfﬁat(jzo,l,z,...,k)
node needs to maintain. Through the definition tod t should make the square between aIIJthe observalions

splay tree, determined nodes set need to be madatdn . .
. and the residuak the regression value the smallest,
the sensor network. For this set of nodes, the sode '

overlapping coverage for the corresponding adjustme even if o . .
of the distribution network will effectively imprevthe Q(B,. B, B, ,B.)= Z € = Z(Y— Y)*

overall perception of ability. _ Z(Y Ny X -3 X, = 3 x)° ®)

obtains the minimum. According to the extreme value

The main .|dea of a tre_e pased data aggreganomeory of the multiple function®) makesthe first partial
algorithm is using the transmission model thathike @o derivatives respectively for,@ (i=0,1,2,..K), and let
fit more monitor data instead of the monitor dafa o i AR
transmission nodes to reduce the capacity of datftem equal to zero.
transmission, as the result, it saves the energyhef O_Q_O =12, K 9
sensor nodes. Hence, it needs to consider theorsat 0B (=120 k) ©)
between the cost of the return model and data gyant ! ] .
may fit. The smaller the cost of transmission modes  After simplified, we get the following equation:
more data it can express, and the more energy .saves XY= X XB. (20)
Because the monitor value of node is often subject A A A te, .
many factors, we expect to fit the most data wbr‘ﬁa ¢ where =[4, 5, MA] . let RX) = K+, X'Xis

minimum cost mode. The multiple linear regression(K+1) step square formation, thet! Xis non-singular,
models are totally in line with this goal.

C. Data Aggregation

© 2009 ACADEMY PUBLISHER
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and its inverse matrix is existent, therefore theltest designated area, Sink firstly informed of the htite
square estimate vector pfs: value of each point location to calculate the maxim
[; _ (xtX)'l Xty (11) value. When Sink needs to know the data of (xityill
send this inquiry to the root, the inquiry by thel A

Using the polynomial regression, we obtain theofolhg spreading down until the leaf nodes of the laselay

equation.
1y, ¥ x x% x¥% % Xy x¥¢ . EVENT REGION DETECTION
X = 1Y, ¥5 % %% %% % %y% %% In case of most applications, we use the
A . : (12)  function o(i,t)=F(v,,v,,...,) to characterize the
readings (e.g., temperature, humidity etc.) by asse
Ly, yﬁ X % ﬁ” )i ﬁ' % % s’ iON at instance where y is a parameter that impacts the
F(XWVW=B +BV+B YV + 8 x+ 0 sensor reading. In most sensor applications, dkedan
(%) ’62’ 'Bly ,G’Zy '83 ’3“ka and unknown factors, it is not clear whether thacéx
B +BX+B Ry B XY (13) expression of the function can be derived. Exceptes
5 6 7 8

R particular cases, it is not easy to model thes®fasince
From the equation (13), we can compfke¢hrough a they may affect the readings in a time-varying neann

given location (x, y) and obtain the value of f (¢, ~ and in a linear or non-linear way. Rather thannigyto
which is property value of (x, y) nodes from (13).0btain an exact expression, we can formulate trecba

Ty . : . roperties of the function F, thereby analyzing skasor
As X' X is certainly the m+4" step non-singular, in P oF y analyzing

other words,n>>nr+l1land X cannot denote for weighted reading4a(i.t)).

linear combination of any other row set. The datan General Properties of Sensor Readings
aggregation algorithm mentioned in this paper isoedt

to the input of the width priority with each treede has

a coefficient from the formula (13) and sends the 2t
coefficient set to its parent node. Nodes of eagblluse g FTE);;Z Sg;;?'?vtlo'sc'gﬂgf;rgelm ;)fngtger S?Qﬁg{f'
the coefficient which obtains from its children renew . o oomn max

sensor attribute value, and these data combine withatCun <0(i,t)<Cy,) providing the lower and upper
detection value of node itself to calculate the newbound respectively of the normal readings fromresee
coefficient set, and then transfer to a higher lleiethe 3) Within the range @minCmad, O(i,t) is statistically
process, to identify the even atiribute value @ gion  continuous and admits a probability distributiohe.(a
is the key of the matter. Because they have a WiréGormal distribution). Thus, a continuous probapilit

bearing on the accuracy of the aggregation, it @oul yongjty function (i.e4(i)) can be used to express the
identify the region through the upper and lower fugiof distribﬁtion (ie4()) P

thfe_coordlnates Of the X Yiin Xnax Ymar}» Where the It formulates those applications in which the senso
minimum and maximum value from the Son of the fathe readings follow the above properties. Property 1

of the current node in the tree under all the senedes.  inyyitively explains that a sensor independentlysss the
As in Fig. 3, we set a as the current aggregatamerand  enyironmental changes. Property 2 gives the bounded
data value in the region updates through nad&’he  yariable space of normal sensor readings. It tsetaoted
scope of the region defines by the subtree of nade that different applications have different valug fhe

which passed through the smallest and largest cuaies N\ i ;

of the sensor nodes. Thus, nodegets the border pararT]eteq)(l) given by prgperty 3 and variable spgces. n

coordinates of the region from its children. practice, the assumption can be qscertamed by
applications that can approximately fit as normal

distribution such as daily air temperature, windexp etc.

o O In this paper, we determine the conditions of tbemral
o o readings and error readings are as follows:
Normal Reading- In general caseg(i,t)is in the range

The function F which characterizes sensor readings
possesses the following properties:

o

g o o" g

& Ly o« N ) [ChinCmad a@and admits a given normal distribution
e o . N (Xb»Y,..a..)O"/" . %ﬂ oY) (i.e.,¢()).1f |o(,t)-E{)kr,for existing variable, >0.
- It says that the sensor reading is beyond the rHorma
O Treenode ® Sensing node . g
Fig. 3 a node calculate the boundary of the reading ranges (specified) Iby. The more number of
region for data regeneration sensors satisfy this condition, the higher proligbdf an

Through the construction based on the splay tree an€Vent has occurred. , B ,
the above description about the process of regnessi Faulty Read!ng- A sensor is classified as faulty if for a
answer queries every specified time, such as "SELECSensor i, ¢(i) satisfies any of the following three
temperature FROM sensors WHERE location = (x, y)",conditions.
or “the highest temperature in target scope “ofiéss In
the latter case, generate set of (x, y) coordinatethe
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1)0t,|o(t)-E({) k7, for existing variables,>7,>0. deviation greater tham, (i.e.,|d, —E(d) P 7, ). Again,
When a senstreading is beyond the normal range, it isall the children ofB lie inside Reny Therefore, the
possible that the sensor is faulty. If a sensayfemtly or  polynomials received byB from its two children are
continuously gives such readings, the probabilitthe  flagged (i.e.,Psag). SinceB itself also receives readings
faulty sensor increases. from nearestNT nodes with deviation greater than the

2) For several consecutive periods of data repgriin  threshold, it generates a ne®y,y with its own reported
hado(i,t +1)-o(t ) Cout for each of its neighboring da_ta and regenerated data (obtained fFQgg_sent by its
sensors (), |0, ¢ +1)-c 1) [>c, where ¢ is constant. children). The newPy,¢ and the corresponding range are

) - . . then transmitted to its parent nodleln Fig.1 in the sub-
This condition considers the spatial property ofisse

] on ¢ ; : - ShK tree parented a, one of its childrenD lies in Ryent
readings. It implies that if the neighboring sessexhibit  \yhereas another childE lies in R C receives

time-varying readings and the sensor's reading lma polynomials,Py,, ,P and the corresponding coordinates
constant all the time, there is a high probabilitat the Yaumine Xourmax Ynmax @M X Yinin Xmae Yimax (tAKEN OVET
sensor is faulty. With the same logic, if its ndighing || the sensing nodes in the sub-tree under eaciodis
sensors sense a minor change in the reading foare®m g p and E respectively). By observing the approximate
period (i.e.,|o('¢+1)-o('t)F () and the sensor span of areas by its two children and its own regbr
records a high range in the sensing readingeadings,C it can be concluded th#@ lies in the same

(.e.|o,t+1)-of t)[c, where ¢ is a constant), the region as with it. Therefore, it regenerates thadiggs

sensoli may be faulty.

3 .G, <0l 1)<C 01+ 17,
C.n <0(i,t+2)<C,,.0(@t+3)>7,, This condition
implies that the sensor is faulty if the readingaagensor

from nodeD and combines those readings with its own
reported readings to generate a néy,. C then sends
this Priag aNdXnmin Ynmine XumaxYnmax (denoted by the bold
rectangle comprising of the area given by the dotte
rectangles spanned individually by nodeésand D) and

changes irregularly. If a sensor continues to dkhib Unchanged® andXminYminXmax Ymaxt0 A. Xnmin Ynmin Xumax,

irregular reading with time, it has a high probpibf

Ynmax gives the range of the area and this range keeps

being faulty. This conditon has some variations ingetting modified as it is passed along the AT ity

irregular readings. For example, a sensor’s readin
changes from normal reading to the event readirdy an

back to normal reading periodically or intermitignt

B. Single Event Detection

When a leaf node collects readings from
surroundingNT nodes, it computeB;.gfor an event (i.e.,
event polynomial) o for a normal phenomenon (i.e.,
normal polynomial) depending on whether, is
exceeded or not. While receiving the reports fram i
child nodes, the parent node has also collectedirrga

from its own surroundingNT nodes and has determined

whether an event has occurred or not in its regiba.
parent node also lies in the same region as aitg ohild

nodes, it regenerates the child node's reading an

computes a new polynomial with its own reportedadat
This polynomial can again b,y or P, depending on
whether the parent node is inside the event regiamt.

If the event regions of a parent node and th
corresponding child nodes are different, the chitdle’s
data packet is sent up unchanged. The processhuesti
and the root finally receives two polynomials arh t
corresponding ranges. From the receigg, and the
corresponding area from a child node, the root reate
get an estimation of the event boundary from thenev
location information. It analyses the correspondinga,
Xnmine Ynmine Xnmax Ynmax (Where the suffix N represents an
event) to get an estimation of the coveragBLf Fig. 1
shows a part of thAT detectingPeyent IN Fig. 1,Peyenthas
occurred insiddR.en; at the corner oR. We observe that
in the sub-tree with the parent nodeas well as its
children B and C fall in the event regionReyen; In this
case, botlB andC receive readings frofNT nodes, with

© 2009 ACADEMY PUBLISHER

e area involving multiple tree nodes lying Rayent
hen the root node receivBSmin Ynmin Xumax.Ynmax from
a child node also sendinBg.g, it can roughly get an
estimated value according to evdhiedenoted by the
boundary betweeR andReenin Fig.1 and the span of its

itsarea.

C. Multiple Events Detection

In contrast to single-event, the exchange of data
packets and computational complexity between tree
nodes will increase when multiple events occur.htie
increase of the event sources, the effect of eaehtewill
reduce. As the packets are sent up to the treagifof the
child nodes of a sub-tree approximates the datgeras
gwat of the parent, then a new polynomial is fornhbgd

ombining both the data sets. However, if the ddta$
none of the child nodes is the same as that op#nent,
only their data range and range of area span ataipeto
the tree. In this case, their areas are combinddrto a

E]arger area if both of two child nodes approximdte

same data value.

Boundary between

R and|R
AN
\1

c{
Xn \6
Peventl .F/

Fig. 4. Occurrence of two new eveRt§enin andPeyenta

event2

Boundary betwe
R and|R

event]
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Suppose in a rectangular area, there are two uhusugormal distribution of temperature data in the eBd-
events and a normal phenomenon. As shown in Fig. 45 1, =T, is set to 2.5, since E(di,, =C__ -E(di). =
two eventsPeven @nd Pevenrz OCCUT in regiorR B detects 5 5 pq event area is call® e as we describeob‘.l is
event Peyenz, While its children node<C and D detect C o
Pevenzand a normal phenomenon separately. In this casget to 2.5, S'nCGE(U(' D) =Ciin = Crax = (i) =2.5
C and D transmit respective Polynomial and the@d 7o = 7 teshoid IS Set o 45. The following
coordinate SCOPe Xmin Yemin Xemax Yemax } @s well as performance metrics are obtained for multiple raunél
{ Xamin, Yamin XdmaxYamax } t0 B. B calculates the maximum sensing when the event(s) has occurred and théngsad
and minimum data value of the two nodes receivedhave been reported by thT nodes to the nearest tree
getting the scope of their data. B will transform podes:

SmaxSmin, C, as well as the coordinates scope of (1) Event boundary: we compare the actual event
SimnSimax D to A. If using single event detection, we poundary (of different shapes) and the detectechteve
need six packets, three of which are correspontting boundary. (2) Percentage errotdsing he final
three polynomials and the other three to the ramje polynomial, the root can obtain readings at thessen
areas. Furthermorey's other childG approximates the |ocations where approximation of the actual reading
same phenomenon d3. Therefore,A combines their Therefore, the event area detected based on these
ranges together and senses the same &ght Then,A  readings differ slightly from the actual boundandahis
recreates a new polynomial and sends its polynontsal deviation can be expressed as a percentage. This,
range and it's maximum and minimum to its patenA\t  percentage Error is defined as the absolute dewiatf

the same time, M’s estimated value is the saméhas t the approximated reading (i.&,) from the true sensor

sent bYA and sends its coefficients to the_rqot aﬁerreading (say, z) taken over all the sensors preseithe
combining N’s regenerated data. As bbtlandl lie in R, boundary of the event:

the event region OPgyen is Not modified further byH vz, -2

and is sent to the root unchanged giving the apprated E=(Q (—-—-x100)/n,)< &, (18)
event region and boundary. In this way, both thenév k1 &

Pevent1 and Peveniz are detected with limited computation Where &, = 10% is the error threshold givep (number
overhead as only one polynomial regression is ped  of sensors present on the boundary).(3) Event rétiog
at each tree. delay: This is defined as the period between the tof

occurrence of an event and the final event.
IV. SIMULATION RESULTS ANDDISCUSSION

10
This paper accesses simulation results using déscre
event simulation platform NS2,which assumes a sioti
and contention free MAC protocol with simulation 60
parameters shown in table 1, which focus the data
aggregation algorithm for performance evaluation.

80

40

Table 1 Values of simulation parameters used 20
Parameter Variation 0
Area A 800x800 0 10 20 30 40 50 60 70
Communicate radius R 40m Fig 5. Event boundary approximated by STERD
Nodes total D 1630
Node density A/D 0.0025 A. Detection of an Event Boundary
Event area A 400x400 We implemented STERD according to the above
Father node choose probability P 0.33 configuration and obtained an approximated boundéry
Tree depth p 4 the event. To study the performance of STERD on
Average of reports 12 occurrence of multiple events with boundaries of

different shapes, a second ev@gen»iS generated at a
Place randomly about 250 sensor nodes in the squag@rer ofR with the temperature range from 5<€0Fig.
of 800x 800 units, changes in the temperaturéC385°C S depicts the boundaries of these two evéhis (i.e.,
for normal and consider the temperaturéC3@9°C for  the bold rectangle) anBeyen: (.., the bold oval shape).
. e . The detected boundaries are given by the dashed
abnormal as it may be on fire in the region. Thptdef : :
h . he d . dlielated rectangles. The shaded dots in the figure repretsent
the tree s set to 4. From the data _SEt_'t can ) ate tree nodes The experimental results from our rm’ryial
a normal distribution (i.e.¢(i) ) in case of no event. The 7.8% error and 8.5% error foPeyeny and Pevent
CminCmax @nd E(i) are 30, 35, and 32.5 respectively andespectively. From these approximated boundaries, w
the variance of@(i) is 1.2. After validation of the observe that the outlines of the reconstructed teven
assumption, a random location is selected inRided a  'egions (i.e., the dash rectangles) match the hetuent
single eventPeen: is generated at the centre with a boundary (i.e., bold rectangle and bold oval), thus
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confirming the accuracy of STERD. However, since th communication delay is almost 77% of the total gela
area approximated by STERD will always be a redeang Once the aggregation tree is fixed, the commurioati
(as the event region is reconstructed iteratively b delay remains almost constant and is independettieof
utilizing the ranges of the smaller approximateédasr density of theNT nodes. When the node density increases,
which themselves are rectangles), the event whggifi the number ofNT nodes around each tree node also
is rectangular is approximated better as compaced tincreases. However, the result also shows that the
other shapes (e.g., oval). computational overhead for event recognition and th
B Error Rate construction of the polynomifal remain aIr_nost consta

) when the number of nodes,{) increases. It is due to the

Without changing the network size and the number ofncrease of node numbens) (in the entire network does
nodes, we employ STERD to detect a single event anfot cause any significant increasergfSTERD reduces
the Extended STERD to detect two events. Fig.6aiepi the complexity of event recognition and event répor
the actual percentage error in event detection Witl’because of the fo”owing reasons. Firstly’ event
variation of communication range. The Observedrecognition and p0|ynomia|_based data aggregation d
percentage errors for different communication ran@e ot involve any complicated computation in STERD.
within 10% for both cases of STERD as shown in6ig. secondly, the tree-based network architecture méies
However, the percentage error of using Multi-STERDeyent recognition localized. Thirdly, when the neth
(error range from 6.8-8.9) to detect event is 6%hbr  sjze () increases, the number of tree nodes increases

than using single STERD(error range from 6.4-7H8t  accordingly so that STERD is made scalable.
single event detection with STERD, the range ighsly

smaller because the approximate boundary can be mor
accurately pinpointed by regenerating data valuem f 5 8
the final Pyyg Which is not available with the Multi- P
STERD scheme. As shown in Fig. 6 that the erroellev g . —#—STERD 250
i ignifi i @ - —=—STEERD 500
for the e_ven_t detection doe_s not significantly \_/amzh 8 e e
communication range, unlike[3]Jwhere error increases @ z | +*Mﬂti_5TERD 500
substantially with the communication range. With g
increase in the communication range, more sensiths w 5 10 15 a0 25 30

readings from region &Ky Mmay report to a tree. In

STERD, since the tree nodes generate different _ Communication range
polynomials corresponding to readings indicating Fig. 6. Perce”t:r?gsgdoé Y, communication range
different events, the overall error rate is indejent of Y

the communication ranges of each sensor. It can be Y23

observed from the result in Fig.6 that with an @age in 8 ozl ,d__._——o—o——v—’“
the density ofNT nodes, the error percentage increases § -—~I——I—I——"“".
slightly. With increase in the node density, the §D'15 I —+— Total delay
probab|!|ty of a tree node lying at the bor.der lo¢ two 0:: 0l ¢t :E;ﬁwﬁﬁfgﬂiﬁg
events increases, and therefore, the fractioNDhodes 005 | —a— Frent recosnition delaw
lying at the boundary between events in the network ° h——k————e——t——k.
increases. Again, with an increase in the node ifens u

accuracy of the approximated polynomial increasss, 250 400 5500 00 2501000
more readings are considered by tree nodes froortexp Node denisity

sensors, re|ative|y |arger area is covered and teerbe Fig. 7. Delay distribution in event detection velaaensity
approximation is provided of the sensed parameter o

the region [18]._Th(_a latter positive effect on aemyr V. CONCLUSION

controls a massive increase in the percentage éu®to

increase in the node density. This paper has studied high energy efficiency fault

tolerant detection of the wireless sensor networkne
C. Delay Incurred in Event Detection region. Firstly, we proposed a novel data aggregati
Fig. 7 shows that the delay in the event detectioralgorithm through the construction of the splayetsnd
remains almost constant with increase in the nahsity. this algorithm can also be able to detect the event
This is because the size of the tree is fixedspeetive of attribute value lacking of the sensor node posjtigsing
the number of nodes in the network. Event detectiorthe spatio-temporal correlation of the detectechewsmd
delay mainly results from three parts: computationathe error rate in the range of acceptable. In auditon
delay for event recognition (called event recogniti this basis, an event region detection fault-toleran
delay), computational delay for polynomial (called algorithm based on the splay tree was proposed, the
computation delay), and the delay for event refyrt algorithm can detect a number of events and identif
packets (called transmission delay). It can be @rptl  event that occurred in the boundary region andtyfaul
from Fig.7 that the event recognition and thesensor nodes, keeping the error ratio of the oleral
computational delay for the polynomial are muchlégna aggregated data reported to B®under control, quickly
than the communication delay. It suggests thatonveying of this information to tH8S thereby reducing
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the energy consumption and the delay in data
transmission. Results show that with the generatioa
large number of packets in the network, error negdi

detection has nothing to do with the accuracy efribde [16]

density; and a faulty sensor can be detected with a

average accuracy of 94% and it increases with thé&'"]

increase in the node density, which plays a very

important role in the application of sensor netvgork [18]
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