
A Structure-based Approach for Dynamic
Services Composition

Canghong Jin

College of Computer Science, Zhejiang University, Hangzhou, P.R.China
Email:{canghong.jin}@gmail.com

Minghui Wu* and Jing Ying

College of Computer Science, Zhejiang Univerisity, Hangzhou, P.R.China
Department of Computer Science, Zhejiang University City College, Hangzhou, P.R.China

Corresponding author email:{minghuiwu}@cs.zju.edu.cn

Abstract—Web service composition needs to increase the
dynamic feature of adapting complex and unstable business
environment. Thus the service selection and evaluation are
very important for service composition. Although previous
studies have stated some approaches to support dynamic
composition, they are unable to balance the flexibility and
verification very well in dynamic environment. Moreover,
most service selection methods only depend on the similarity
of a pair of single services. These methods are useful and
concise to find substitutes for unavailable services, but
sometimes they might be too strict to find a solution. To
overcome these problems, we propose a novel approach
named SPACE architecture with six basic structures, and
define the service composition based on situation calculus
language. SPACE estimates the similarity by the basic
structures and constraints rather than the features of single
service. It can help us to find non-optimal but acceptable
substitutes and guarantee the verifications of composition.
Finally, as a case study we consider a health care scenario to
demonstrate our approach.

Index Terms—web services composition, composite
structure, SPACE architecture, situation calculus

I. INTRODUCTION

Web services are considered to be the web’s next
revolution and the future of e-business. Web services are
“self-contained, self-describing, modular applications that
can be published, located, and invoke across the Web”
[2]. It has become one of the most popular research fields
recently. The process-based approach for web service
composition has gained considerable momentum and
standardizations. However, this service-centric approach
can not run very well in a dynamic environment for its
hard and pre-defined code description. In order to create
dynamic composite systems, developers should not only
define a suitable way to present web services which could
well support environment adaptability, but also need to
design a suitable composite approach which could easily
measured. Currently, there are many approaches of web
service composition. We categorize them into three
different types: template-based composite [9] [11],
interface-based composite [5] [6] [7] and functionality-

based composite [4] [10]. We give the more detail
information about these compositions. Template based
system (TBS) composes an application from a given
service template, and is well structured and validated
easily. TBS limits adaptability. One special template can
only suit for one particular environment. Interface based
System (IBS) uses inputs and outputs information to
connect different components, so it has higher
adaptability, but the correctness of service function can
not be guaranteed. Functionality based System (FBS) is
based on IBS and adds some logic elements such as pre-
condition and post-condition to data flow. FBS is well
organized in special domain and can run well on one
domain, but maybe not fit for others. Developers need to
create a logic rule for each domain, which limit the
reusability of FBS.

Another big problem of dynamic service composition
is how to reselect and re-plan service when original
system is unavailable. Web service has its function
attribute and non-function attribute. The former defines
what the service can do and the later, considered as QoS,
describes the quality of service. Re-selecting and re-
planning of service composition are always according to
these attributes. In this paper, we only consider function
attribute of service and ignore the impact of non-function
attribute though it is also very important for service
composition. Web service semantic is usually considered
to measure similarity among different providers and
approaches based on semantic is used to select web
services. But nowadays semantic web service selection
and replacement methods are lack process information
and hardly validate business process correctness. We also
concern that evaluating the difference between original
services and their substitutions alone and out of their
context environment, which is very popular in industry
and search area and very precise and clear to distinguish
the difference of two services, may be too strict to find a
suitable one in some occasions. Isolated evaluation also
might aggrandize or ignore the influence of whole
business process caused by their dissimilarities. We will
give two simple scenarios to express this phenomenon.

In general, a web service operation is specified by its
Input message, Output message, Precondition and Effect.

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 891

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.8.891-898

We view service operations as the operators available to
the composite system. For example, a manager wants to
travel from Hang Zhou to New York to attend a meeting.
Assume there is no direct flight line between these cities.
He needs to book air ticket and train ticket by his credit
card. In this scenario one, we define S2 as
bookTrainTicket and S3 as bookAirTicket. The input
message of S2 is CreditCardNumber and TrainNumber.
The output message of S2 is TrainTicket. The
precondition of this service is checkCreditCard which
means before bookTrainTicket the system should make
sure the manager’s credit card is available. Other Services
and attributes are not the key points in this example. We
could assume S1 is checkTravelDate and S4 is bookHotel.
As all the atomic services are defined, we combine them
together to build business logic (see Figure 1). We call
this structure is AND structure for S2 and S3, which states
S2 and S3 should be finished without exception before S4
begin to run. Detail explanation for AND structure will
be given in Section 3. For some unpredicted reasons,
service S2 is unavailable and S5 is considered as a backup
service. Unfortunately, S5 is not complete the same as S2.
It will not do checkCreditCard (precondition constraint)
before bookTrainTicket. It seems S5 is unsuitable as a
replacer if checkCreditCard is very important for
business logic. But S5 could run well with no problem in
scenario one for AND structure it belongs to (see
Figure3). Because S2 will do the precondition
checkCreditCard for S5 if they use the same credit card,
this composition structure still maintains the original
business logic after service replacement. However, in
scenario two, we suppose this manager will travel from
Hangzhou to Beijing and he can choose either by train or
by flight. The features of web services are the same as
those in scenario one. Business logic is organized as
Figure 2, which presented by XOR structure. If S2 is
replaced by S5 (see Figure 4) in XOR structure, this
structure can not keep the semantic of composite services
and the business logic is changed. That is to say, if
manager choose service bookTrainTicket, system can not
supply the service checkCreditCard for business user.

Although the scenarios we presented are very simple
and might conflict with real life (e.g., why user use the
same credit card in scenario one), it expresses the result
clearly: Even putting the same service into different
structures may generate different impact to original
environment and sometimes these differences are
undetected if only comparing sole services. Although
traditional methods of comparing features of single
service are very useful and effective, sometimes they
might discard those non-optimal services which can run
in original system as well. One goal of this paper is to
find out these non-optimal services as substitutes for
service composition.

S1

S2

S3

S4

Figure 1. service composition in AND structure

Figure 2. service composition in XOR structure

S1

S5

S3

S4

Figure 3. service replacement in AND structure

Figure 4. service replacement in XOR structure

According to the description above, there are two
questions generated: one is how to describe service
function and relationship formally. The other is how to
measure the impact caused by service replacement. We
try to find a proper solution to these questions. We find
the process flow contains business useful information. So
it should be considered during web services re-selecting
and re-planning. Base on this assumption, we propose a
method called Structure Process Analyze based
Composition Environment (SPACE) to define, describe
and evaluate service composition formally. SPACE
method, generated from IBS and FBS, uses some process
structure as its basic unit and expresses its business logic
and constraints by situation calculus. SPACE architecture
still uses IOPE to describe service function and defines
internal constraint and external constraint to document
relationship between atomic services. The influence of
service replacement is according to these constraints.
Finally, SPACE provides a formula to evaluate similarity
(impact of service) of original and changed environment.
Innovative features of SPACE are evaluating web service
composition by both semantic and its structure, which
could ensure the composite correctness of structure,
synaptic and semantic.

This article is structured as follows. In Section 2
introduces the related work. Basic process structures are
expressed and five web service replacement types are
defined in Section 3. In this section, we also give a useful
algorithm to evaluate the similarity of a pair of services
by their structures. In Section 4 demonstrates a health
care scenario to present our SPACE approach and finally
in Section 5, we present conclusions and future work.

II. RELATED WORK

There are various research activities in dynamic
services composition and semantic web service. For
instance, some approaches based on process description
extend existing techniques like BPEL or OWL-S to
present services composition. WS-BPEL, the most

892 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

candidate standard for web services orchestration,
provides some mechanisms to present long-running
transactions and error handling. A formal description
method based on PI calculate and BPEL is used to
present web services process [5]. Abstract state machine
(ASM) defines operational semantics for BPEL and it can
provide a comprehensive and robust formalization [6].
Article [7] establishes formal model of services according
to FOCUS theory [8], and uses data stream to present
architectures, structure and service behaviors. These
approaches mentioned above do not cater for flexible and
adaptive business collaborations because process should
be pre-defined and can hardly be changed.

Other approaches propose to make web services
composition dynamic and self-adapted. Business
Collaboration Development Framework (BCDF) [4]
creates different behaviors and different layers to express
business collaboration. Different types of rules are
defined to describe, constrain and control the operations
and strategies of business. Article [9] introduces a meta-
model which can evaluate parameter values at run time,
so WS-flows flexibility can be improved. Dynamic
Service-Oriented Architecture (DySOA) [10] extends
service-centric applications, it uses four components to
monitor, analysis, evaluate and configure web services.
So DySOA can make services adaptable at runtime.
Mark Carman attempts to view service composition
problem as a planning problem and uses document to
describe service function and user goals [17]. This
approach gives semantic relationship by using WordNet
and chooses web services according with their interface
type matching. Article [18] proposes the semantic
relations by precondition and postcondition. In this paper,
authors define four types of service relationships and four
types of service match. Authors in [1] use situation
calculus to document service composition and user
constraints and propose exception patterns to deduce the
planning procedure. These articles are very useful for our
SPACE architecture and our proposal is based on some of
their ideas and methods.

 III. SPACE ARCHITECTURE

SPACE architecture in this section splits the
verification in model checking into three different kinds:
syntactic verification, semantic verification and structural
verification. SPACE approach defines features of six
basic structures with situation calculus notations and uses
data stream to connect these structures. We also define
five different replacement rules and give each of them a
weight and calculate impact by these values.

A. Concept and structure of SPACE
Process description methods, such as BPEL or e-flow,

introduce a state model of web services interacting by
exchanging sequences of data between business partners.
In SPACE, business partners are considered as atomic
services which only supply one service or function at one
time. It is need to find a process language to connect
these atomic services and present business logic. The
situation calculus language (SC) [13] is a first-order

logical language for representing dynamical changing
worlds in which all of the changes are the direct result of
named actions performed by atomic service. SC can
create an optimized plan for various domains, so it can be
used to express dynamical world [1]. In situation
calculus, situations are considered as a sequence of
actions. Some notations include means of representing
knowledge are used in our approach. These notations
extend the basic meanings in situation calculus language
to be adapted in SPACE. Table 1 shows these notations
and their related semantic meanings.

TABLE I
 SITUATION CALCULUS NOTATIONS IN SPACE

a (y)s atomic service a in situation s

),...,,(21 sxxF fluent from situation to situation, ix is
argument,

),(sado result of performing a in situation s
),(saPoss atomic service a is possible to perform in

situation s
)',(ssK accessibility relation between situation s

and 's
),(sKnows Φ Φ is available in situation s

),(sKwhether Φ true value of Φ is available in situation
s

),(sKref Φ function value of Φ is available in
situation s

Atomic service a (y)s in our article is the one where a

single Web-accessible computer program, sensor, or
device is invoked by a request message, performs its task
and perhaps produces a single response to the requester
[15]. For simply, we first use situation calculus to present
atomic service and its constraints. Like traditional
methods, we still use input, output, precondition, and
effect (colloquially known as IOPEs) to present a service
behavior and ignore service un-function attributes as cost,
response time and so on. So the semantic meaning of
IOPE could be described as follows:

,s)Kref(...,s)Kref(s)on:Poss(a,Preconditi n1 ϕϕ ∧∧→
nsaPossInput πππ ∧∧∧→ ...),(: 21 , where π is the

input data.
),(),(: sadoorasaPossOutput ∧

)),(,(),,(),(

)),(,(),,(),(:

sadoxFsaxrsaPoss

orsadoxFsaxrsaPossEffect

F

F

¬→∧

→∧
−

+

Giving the semantic meaning of atomic service is not
necessary because the environment is more complex in
real world. It needs more than one atomic services
cooperated to complete a business process. But no matter
how complicate the business flow is, it always can be
divided into some smaller structures unless all of the
services are atomic services. In Article [12], the author
expresses six service composition structures (CS):
Sequential, AND split, XOR split (conditional), Loop,
AND join (Merge) and XOR join (Trigger), see Figure5.
Constraints between atomic services and structures are
similar with user constraints, which contain interface type
matching, semantic domain matching and other un-

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 893

process logic elements. We define two types of
constraints for SPACE: Internal constraint controls the
interface between atomic services. External constraint
controls the communication between structures. Three
verifications could be achieved by basic structures and
their constraints.

a) Syntactic verification which verifies the model is
in conformance with the grammar of the
language. This verification can be guaranteed by
both internal and external constraints.

b) Semantic verification which verify whether the
model is in conformance with the business
process goals. In this process, the contacts in
structure are encapsulated and seem transparent
to outside structures. That is to say, the structures
encapsulate some sub-business logic and make
process present more concisely. We also use
external constraint to maintain semantic
compatible.

c) Structural verification which is used to verify
that the model will not lead to erroneous
execution. In SPACE, internal constraint can
verify the interface between atomic services and
make the basic structures stable.

Figure 5. six composition structures

The key questions are how to formally express these
six structures by atomic elements, which means how to
express external constraint by internal constraint, and
how to give the relationships of atomic services in a basic
structure. We give the definition 1 to definition 6 to
describe these questions.

Definition1 (Sequential Structure) also can be called
serial means a task is enabled after the completion of
another task. Suppose there are two atomic services

ia and ja , then the Sequential Structure)(, jiseq aaCS
constraints could be described by its IOPEs:
 Precondition:

)),(,(...)),(,(),(
...),()),(,(),(

1

1

sadoKrefsadoKrefsKref
sKrefsadoaPosssaPoss

itin

iji

ϕϕϕ
ϕ

∧∧∧
∧∧→∧

Input:

n

iiji saPosssadoaPosssaPoss
πππ ∧∧∧

→⇒∧
...

),()),(,(),(
21

Output:

))),(
,(,())),(,(,())),(
,(,()),(,,()),(,(

sa
doadoyKrefsadoadoyKwhethersa
doadoyKnowssadoaxrsadoaPoss

i

jiji

jijij

∧∧
→∧

Effect:

)),(,,(
)),(,(),,(),(:

/

/

sadoaxr
sadoaPosssaxrsaPossEffect

ijF

ijiFi

−+

−+ ∧∧∧

Internal Constraint:
),()),(,(sadosadoaPoss iij →

Definition2 (ANDsplit Structure) also be called parallel
split or fork means a single service splits into multiple
services which can be executed in parallel. The form of
ANDsplit is),...,,(10 nANDS aaaCS where 0a is an initial
service and rest ia are split services. The IPOEs of
ANDsplit Structure are:
Preconditon:

)),(,(...)),(,(),(0010 sadoaPosssadoaPosssaPoss n∧∧∧
Input:

0 1 2 nPoss(a ,s) π π ... π→ ∧ ∧ ∧

Output:
0 0

0 0

0

(, (,)) (, , (,)) (, (,
(,))) (, (, (,))) (,
(, (,)))

i i i

i

i

Poss a do a s r x a do a s Knows y do a
do a s Kwhether y do a do a s Kref y
do a do a s

∧ →
∧ ∧

Effect:

/ /
0 0 0

0

(,) (, ,) (, (,)) (, ,
(,))

i iF FPoss a s r x a s Poss a do a s r x a do
a s

+ − + −∧ ∧ ∧

Internal constraint:
1 0 0

0 0

(, (,)) (,) ... (,
(,)) (,)

nPoss a do a s do a s Poss a
do a s do a s

→ ∧ ∧
→

Definition3 (XORsplit Structure) also be called
conditional routing or switch means process on a
condition, one of services branches is chosen. The form
of XORsplit is),...,,,...,,(110 nnXORS ccaaaCS , where 0a is
an initial service, ia will be chosen when ic condition is
occurred. The IPOEs of XORsplit Structure are:
Precondition:

0 i 0 i 0 0FPoss(a ,s) (Poss(a ,do(a ,s)) r (c ,a ,s) do(a ,s))+∧ ∧ ∧
Input:

0 1 2(,) ... nP oss a s π π π→ ∧ ∧
Output:

0 0 0

0

0 0

(, (,)) (, , (,)) (,)
(, (, (,))) (, (,

(,))) (, (, (,)))

i i

i i

i

Poss a do a s r x a do a s do a s
Knows y do a do a s Kwhether y do a do
a s Kref y do a do a s

∧ ∧ →
∧

∧

Effect:
/

0 0 0

/
0 0

(,) (, ,) ((, (,))

(, , (,)) (,))

iF

iF

Poss a s r x a s Poss a do a s

r x a do a s do a s

+ −

+ −

∧ ∧

∧ ∧

Internal constraint:
0 1 0 0(,) { (, (,)),..., (, (,))}ndo a s Poss a do a s Poss a do a s∈

Definition4 (Loop Structure) means single service will be
repeated until the condition is met. The form of Loop
Structure is),(λaCSLoop , where a is a service, λ is a
condition. The IPOEs of Loop Structure are:
Precondition:

(,) (, (,)) (, (, (,))) ...Poss a s Poss a do a s Poss a do a do a s∧ ∧ ∧
Input:

1 2(,) ... nPoss a s π π π→ ∧ ∧
Output:

…

Cn

C1

Cn

C1 S1

Sn
S0

S0
Sn

S1

S0
Sn

S1

Si Sj

Sn

S1

S0

… …

…

Sequential Loop

AND Split AND

XOR Split XOR Join

Si

894 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

(,) (, (,)) (, (,))
(, (,))

Poss a s Knows y do a s Kwhether y do a s
Kref y do a s

→ ∧
∧

Effect:
((,) (, ,)) (((, (,)) (, ,

(,)))) ...
F FPoss a s r x a s Poss a do a s r x a

do a s
λ

λ

+ +∧ ∧ ∨ ∧
∧ ∨

Internal constraint:

((, (,)) (,)) ((, (, (,)))
(, (,))) ...

Poss a do a s do a s Poss a do a do a s
do a do a s

→ ∧
→ ∧

Definition5 (ANDjoin Structure) also be called
rendezvous or synchronizer means multiple parallel
services converge into one single service. The form of
ANDjoin Structure is),...,,(10 nANDJ aaaCS where 0a is a
converged service and rest ia s are initial services. The
IPOEs of ANDjoin Structure are:
Precondition:

1 2 1(,) (,) ... (,) (,)
... (,)

n

n

Poss a s Poss a s Poss a s Kref a s
Kref a s

∧ ∧ ∧ →
∧ ∧

Input:
1 1 2(,) ... (,) ...n nPoss a s Poss a s π π π∧ ∧ → ∧ ∧

Output:
0 0 0

0

(,) (, (,)) (, (,))
(, (,))

Poss a s Knows y do a s Kwhether y do a s
Kref y do a s

→ ∧
∧

Effect:
/ /

0 0 0

0

(,) (, ,) (, (,)) (, ,
(,))

i iF FPoss a s r x a s Poss a do a s r x a do
a s

+ − + −∧ ∧ ∧

Internal constraint:
0 1 1 0(, (,)) (,) ... (, (,))

(,)
n

n

Poss a do a s do a s Poss a do a s
do a s

→ ∧ ∧
→

Definition6 (XORjoin Structure) also be called
asynchronous join or merge means two or more
alternative branches merge to one service. The form of
XORjoin Structure is),...,,,,...,,(2110 nnXORJ cccaaaCS ,
if condition ic is triggered then ia will be merged to

0a . The IPOEs of XORjoin Structure are:
Precondition:

0 0 0 0(,) ((, (,)) (, ,) (,))i iFPoss a s Poss a do a s r c a s do a s+∧ ∧ ∧
Input:

1 2 1 2(,) (,) ... (,) ...n nPoss a s Poss a s Poss a s π π π∧ ∧ ∧ → ∧ ∧
Output:

0 0 0

0

(,) (, (,)) (, (,))
(, (,))

Poss a s Knows y do a s Kwhether y do a s
Kref y do a s

→ ∧
∧

Effect:
/

0

/
0

((,) (, ,)) ((, (,))

(, , (,)) (,))

i i iF

i iF

Poss a s r x a s Poss a do a s

r x a do a s do a s

+ −

+ −

∧ ∧ ∧

∧

Internal constraint:
0 1(,) { (,),..., (,)}nPoss a s do a s do a s∈

All the structures are defined by IOPE of atomic
services. We can use structure rather than atomic service
as basic unit to organize business logic. With internal
constraint and external constraint, business logic and
service composition structure can be verified and
maintained. Moreover, the impact of service replacer to

business process does not only depend on change of
single service but also depend on change of structure
which this atomic service belongs to.

B. Evaluate the Impact of Service Replacer by
Constraints

In above section, we use situation calculus to present
six structures which seem as basic elements to build
business logic. According to formal structure express and
two types of constraints, we propose a novel approach to
evaluate the influence by atomic service replacement and
select a suitable (maybe not optimal) service as substitute.
As mentioned in Section 1, if there is no absolutely
compatible candidate service could be chosen, the non-
optimal substitute should maintain the structure of
composite logic and limit the influence to other logic
process.

a) Make the structure as complete as possible
means the new candidate service should not
change the structure which can be guaranteed by
its internal constraint. If basic structure is
changed, the correctness of syntactic and
structure verification would be broken up.

b) Make the service semantic as close as possible
means the new candidate service should try to
keep the semantics the more the better outside
the basic structure. This goal can be guaranteed
by service external constraint.

There are many approaches to document the
relationship of two single services. SPACE extends these
methods and promotes them to fit structure comparison.
We use IOPE to describe the semantic of replacement
type as well. Five categories are defined for our SPACE
architecture. The input and output variables can be either
primitive type or complicate type. In this paper, we
assume them are only complicate type, which contains
the basic data format and special domain they belong to,
so we can use ontology to draw the hierarchical
relationship and their semantic meanings. If we say the
input data of service A is equal with that of service B, it
means not only their data format types are compatible but
also their object domains are alike equally. Now, five
types of replacement are defined as follows, in which IC
means internal constraint and EC means external
constraint.

Definition7. Equivalent Replacement (EQU): service

ia and ja are equal means

jiii

jijiji

IOPEcsIOPEcsICcsIOPEa
ECaECaICaICa),aEQU(a

=∧⊆
⇔=∧=≡

EQU states both internal and external constraints of two
services are the same.

Definition8. Include replacement (INC): service ia and

ja are include means

)
(

EE),(

jij

ijijiii

jijiji

EcsEcsPcs
PcsOcsOcsIcsIcsICcsIOPEa

CaCaICaICaaaINC

⊂∨
⊂∨⊂∨⊂∧⊆

⇔⊂∧≈≡

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 895

INC states internal constraints of two services are
compatible and at least one of external constraint of
serviceTwo(e.g. Input is Man) is contained by the one of
serviceOne(e.g. Input is person).

Definition9. Coverage replacement (COV): service ia
and ja are coverage means

)
(

),(

ji

jijijiii

ijjiji

EcsEcs
PcsPcsOcsOcsIcsIcsICcsIOPEa

ECaECaICaICaaaCOV

⊃∨
⊃∨⊃∨⊃∧⊆

⇔⊂∧≈≡

Contrary to INC, COV means semantic of substitute can
contain those of original one.

Definition10. Intersect replacement (INT): service ia
and ja are intersect means

)
(

),(

ji

jijijiii

ijjiji

EcsEcs
PcsPcsOcsOcsIcsIcsICcsIOPEa

ECaECaICaICaaaINT

∇
∨∇∨∇∨∇∧⊆

⇔∇∧≈≡

)\()(φφ ≠∧≠∩=∇ BABABA
INT states internal constraint of two services is
compatible, and external constraints of services are only
partially compatible. For example, output of service
buyFordCar is INT with that of service buyHondaCar.

Definition11.Exclusion replacement (EXC): service ia
and ja are exclude means

⊥∨¬⊂∨¬
⊂∨¬⊂∨¬⊂∨⊄

⇔¬⊂∨≠≡

)
(

E),(

iji

jijijii

ijjiji

EcsEcsPcs
PcsOcsOcsIcsIcsICcsIOPEa

ECaCaICaICaaaEXC

EXC states either internal or external constraint of two
services is absolutely incompatible.

Until now, five replacement types are given. In actual
world, one atomic service replacer might relate more than
one different replacement types. We evaluate similarity
of two services not only by their input, output,
precondition and effect but also by the basic structure
they belong to. The reason has been given before. For
example, there are two services ServiceA and ServiceB.
Input, Output and Effect of ServiceB may be equivalent
to those of ServiceA. But precondition and composite
structure of ServiceB are totally different from those of
ServiceA. The similarity value between ServiceA and
ServiceB should combine all these facts.
 The last part of SPACE is how to evaluate the impact
of service replacement. The impact measure depends on
the basic structures, constraints and replacement types
defined above. The impact measure system is

THfRTS ,,,,µ where:

• µ is the weight value for each feature of service which
is set by user’s preference.
• S is the concept similarity of two services. It depends on
external resources to store semantic information. But the
types of interface of two services should be compatible.
• RT is the types of replacement. We set a value to each
type for calculate. In order to keep the semantic
consistency, the values of are set by following rule:
1= EQC>INC>COV>INT>EXC=0

• f is the function feature of service. It is consisted by
input, output, precondition and effect.
• TH is the threshold value for service replacement. The
candidate service wouldn’t be chosen if its value can not
exceed theTH . The value of TH setting should consider
the value ofµ .

Measuring the semantic similarity or relatedness
between a pair of concepts is a complex task. There exist
many approaches in AI area to research and improve the
algorithm for measuring, as lch(Leacock & Chodorow
1998), wup (Wu & Palmer 1994) and jcn (Jiang &
Conrath 1997) [19]. Because estimating of semantic
relatedness between words is not the key point in SPACE,
we just choose a simple but resolute formula to calculate
similar for S .

α
α

+
=

),(
),(

21
21 WWDis

WWSim (1)

Where),(21 WWDis is the distance of two services and
α is the adjustable parameter whose value equals the
words distance when their similarity is 0.5. In SPACE,
one atomic service always belongs to more than one
structure (e.g. Service WC in health check scenario is in
both SEQ and ANDS structures), thus we need to consider
all the related structures when estimating the influence.
 ∑∑ ⋅⋅=

∈

NMRTS fff
CSi

/)/)((IM µ (2)

where f is set of IOPE, M is number of IOPE, CS is set of
structures which atomic service belongs to and N is
number of CS. From equation (1) and (2), two services
are more similar and the influence is smaller if the values
of these equations are higher. Value is zero states the
substitute is completely incompatible in original
environment.

IV. CASE STUDY: SIMPLE HEALTH CHECK

 In order to demonstrate SPACE is applicable and
useful, we use it to organize web services in a health care
scenario which is also introduced in article [14]. This
scenario is very simple and clear. It describes a patient
goes to do health check and comprises sub scenarios as
follows: firstly he does blood pressure and gains a
warning level which based on blood pressure. Then
according to the level of warning, both MD (medical
department) and ED (emergency department) will assign
their nurses or doctors to help the patient. There are six
different web services in this scenario: service BPC
(blood pressure check) returns the BP (Blood pressure) of
a patient who has an identify PID (patientID) and an
ADDR(X) (address of device X); service SA (staff
assignment) return the supervisor (person) or a physician
of an ORG (organization); service WC (warning
classification) returns a WL (level of warning) and given
BP(Blood pressure); service AED (assign emergency
department) returns the ED and is given a level of
warning; service AO (assign organization) returns the
Organization and is given a level of warning. The process
of this health care scenario, related web services and CS
(composite structure) are presented in Figure 6.

896 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

Figure 6. health care scenario composited by atomic services

The candidate services of servceA are named as
serviceA’, serviceA’’. For example, BPC’ is considered to
replace BPC. Services are described on their IOPEs
which are showed in table2 and the composition
structures these web services belong to are also showed in
the same table.

TABLE II
CONSTRAINTS OF INITIAL SERVICE AND THEIR REPLACE SERVICE

Service Input Output Precondition Effect CS

BPC PID,
ADDR(BP)

BP Patient Log SEQ

SA ORG Person NULL NULL SEQ

WC BP WL BPC NULL SEQ, ANDS

AED WL ED WC NULL ANDS,ANDJ

AO WL MD WC NULL ANDS, ANDJ

BPC’ PID,
ADDR(BP)

BP Person Log

NT(Neural
Test)

PID,
ADDR(X-ray)

Chest X-ray Patient Log

SA’ MD DOC NULL NULL

SA’’ Kennel Dog NULL NULL

WC’ BP constantWL NULL NULL

AO’ WL ORG WC Log

Figure 7 an e-healthcare taxonomic relationships or classes

 As we mentioned above, we need external resources,
like ontological language, to store information about
IOPE. Figure7 shows the ontology taxonomic
relationships in health care scenario. These relationships
will be used to categorize replacement types. In this
scenario, we suppose Effect is more important than IOP
and the distance of two words is the length in hierarchy
tree. Other parameters for influence measure are set in
Table 3. Table4 gives the types of replacement by
SPACE and similarity value of a pair of services.

TABLE III
 PARAMETER VALUES FOR INFLUENCE MEASURE

parameters value
α 1

µ -Effect 2
µ -IOP 1

EQC,INC,COV,INT,EXC 1, 0.8, 0.5, 0.3, 0

TABLE IV
TYPES OF SERVICE REPLACEMENT AND SERVICE SIMILARITY

 External Constraint Internal
Constrai

nt

Similarity

Input Output Precon
dition

Effect

BPC,
BPC’

EQU EQU INC EXC compat
ible

0.85

BPC, INT INT EQU EQU compat 0.78

NT ible

SA,
SA’

COV COV EQU EQU compat
ible

0.875

SA,
SA’’

EXC EXC EQU EQU incomp
atible

0

WC,
WC’

INC(
)

INC EQU EQU compat
ible

0

AO,
AO’

EQU COV EQU EQU compat
ible

1.06

From table 4, we find that only AO’ could be chosen if
user set value of threshold is one. Actually, set threshold
process is very complex. It depends on the various
parameters of formulas and user’s preference. For service
BPC, we can infer that BPC’ is better than NT. There are
two candidate services, SA’’ and WC’, are completely
unacceptable in our measure. SA’’ uses Kennel as its
input and Dog as its output which are completely
incompatible with original IO parameters according to
Figure 7. So its value should be zero. For WC’, although
it only change a little about output, the influence is not so
small as it seems. If we ignore the structure, the
relatedness of output of WC and WC’ is INC. It is correct
in SEQ structure as well. However, WC is also in the
structure ANDS, SPACE definition 2 states output of WC
should contain both input of AED and AO. In our scenario,
output of WC’ is constant and it can not cover all the
input situation thus it conflict with internal constraint.
The structure ANDS will be changed to SEQ by the
impact of WC’. So the similarity of WC and WC’ should
be zero for violating the structure verification.

V. CONCLUSION

Current web service composition methods either need
pre-define process or just connect by service interface,
the disadvantages of these approaches are preclude the
business dynamics or too flexible to verify service
correctness. The challenge is how to balance the
flexibility and correctness of service composition.

In this paper, we propose a novel approach called
SPACE architecture which uses situation calculus to
express basic structures of business process and defines
the internal and external constraints. Business logical
process could be divided into atomic services and re-
combined with these structures. Moreover, SPACE
classifies the service replacement categories based on
these structures and constraints. A similar estimating
formula is also given to measure the impact of service
replacement. Based on these features, SPACE can
provide more “fairly” and precisely solution to choose a
substitute for unavailable service.

Work for future research will foremost focus on
incorporation of structure, semantic and QoS. SPACE
would support service composition and selection by both
service function attribute and service non function
attribute. This states SPACE can use structure function
selection to choose more candidate services, then SPACE
can double choose these services by their non function
attributes. Moreover, six structures we mentioned in this
paper are only basic control flow elements, we need to
extend them to meet more complex composition

SEQ SEQ

SEQ SEQ
ANDJ ANDS SEQ SEQ

AED

WC BPC

AO

SA

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 897

environment. We are also working on building the
platform of SPACE.

ACKNOWLEDGMENT

This work was supported in part by the National High-
Tech Foundation (863), China (Grant
No.2007AA01Z187).

REFERENCES

[1] Ken Nariai, Incheon Paik, Mitsuteru Shinozawa, Planning
and Composition of Web Services with Dynamic
Constraints Using Situation Calculus, CIT, 2005.

[2] D.T Tesemetizis, I.G. Roussaki, I.V. Papaionnou, M.E.
Anagnostou, QoS awareness support in Web-Service
semantics, AICT/ICIW 2006.

[3] Shankar R. Ponnekanti, Armando Fox, SWORD:A
Developer Toolkit for Web Service Composition, The 11th
International WWW2002.

[4] Bart Orriens, Jian Yang, Mike Papazoglou, A Rule Driven
Approach for Developing Adaptive Service Oriented
Business Collaboration, ICSOC 2005, LNCS 3826, pp.61-
72.

[5] Roberto Lucchi, Manuel Mazzara, A pi-calculus based
semantics for WS-BPEL, The Journal of Logic and
Algebraic Programming 70(2007) 96-118.

[6] Roozbeh Frarhbod, Uwe Classer, Mona Vajiholahi, A
Formal Semantics for the Business Process Execution
Language for Web Services.

[7] Manfred Broy, IngolfH Kruger, Michael Meisinger, A
Formal Model of Services, ACM Transactions Software
Engineering and Methodology, Vol.16, No.1,Article5,
February,2007.

[8] Broy M, Stolen K, Specification and Development of
Interactive Systems: Focus on Streams, Interfaces, and
Refinement, Springer Verlag, New York, 2001.

[9] Dimka Karastoyanova, Frank Leymann, Alejandro
Buchmann, An Approach to Parameterzing Web Service
Flows, ICSOC 2005, LNCS 3826, pp.533-538, 2005.

[10] Johanneke Siljee, Ivor Bosloper, Jos Nijhuis, Dieter
Hammer, DySOA: Making Service Systems Self-adaptive,
ICSOC 2005, LNCS 3826, pp.255-268, 2005.

[11] Uwe Zdun, Carsten Hentrich, Schahram dustdar, Modeling
Process-Driven and Service-Oriented Architecture Using
Patterns and Pattern Primitives, ACM Transactions on the
Web, Vol.1, No.3, September, 2007.

[12] Tao Yu, Yue Zhang, Kwei Jaylin, Efficient Algorithms for
Web Services Selection with End-to-End QoS Constraints,
ACM Transactions on the Web, Vol.1, No1. May, 2007.

[13] Srini Narayanan, Sheila Mcilraith, Analysis and Simulation
of Web services, Computer Networks: The International
journal of Computer and Telecommunications Networking,
2003, 42 (5): 675~693.

[14] Freddy Lecue, Alain Leger, Semantic Web Service
Composition Based on a Closed World Assumption,
ECOWS, 2006.

[15] OWL-S: Semantic Markup for Web Services, w3c Member
Submission 22 Nobember, 2004.

[16] Nicholas Gibbins, Stephen Harris, Nigel Shadbolt, Agent-
based semantic Web services. Journal of Web Semantics:
Science, Services and Agents on the World Wide Web,
2004, 1(1): 141-154.

[17] Mark Carman, Luciano Serafini, Paolo Traverso, Web
Service Composition as Planning, ICAPS, 2003.

[18] Lin Lin, Arpinar I.Budak, Discovering Semantic Relations
between Web Services Using Their Pre and Post-
Conditions, ICWS apos, 2006.

[19] Ted Pedersen, Siddharth Patwardhan, Jason Michelizzi,
WordNet::Similarity-Measuring the Relatedness of
Cocepts, AAAI, 2004.

Canghong Jin, born in 1982, Master of Engineering Science.

His research interests include service oriented software
engineering and aspect-oriented software development.

Minghui Wu, born in 1976, Ph.D. candidate, Associate

Professor. His research interests include software engineering,
artificial intelligence and internet application.

Jing Ying born in 1971, Ph.D., Professor. His research

interests include software engineering and software automation

898 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

