
Towards Semantically Enhanced File-Sharing
Alan Davoust and Babak Esfandiari

Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
Email: {adavoust, babak}@sce.carleton.ca

Abstract— We characterize publication and retrieval of
structured documents in peer-to-peer (P2P) file-sharing
systems, based on the abstract notion of community, em-
compassing a shared document schema, a network protocol
and data presentation tools. We present an extension of
this model to manage multiple communities, and to de-
scribe relations between documents or communities. Our
approach is based on the idea of reifying complex concepts
to structured documents, then sharing these documents in
the P2P network. The design of our prototype P2P client
involves components interacting asynchronously using the
blackboard model. This decoupled architecture allows the
system to dynamically extend its query processing func-
tionality by creating new components that implement the
processing described in downloaded documents.

I. INTRODUCTION

Distributed applications using a peer-to-peer (P2P) ar-
chitecture have become a very active field of research,
mostly because of the scalability offered by the decen-
tralized control model typical of this architecture.

A hugely popular application of this paradigm is Peer-
to-peer File-Sharing which allows users to locate files of
interest in a P2P network and retrieve them to their local
system. The infrastructure required for such an application
is minimal : a protocol to propagate and answer queries
across the network, and a file transfer protocol such as
ftp or http to retrieve files. Generally, no assumptions
are made about whether all query answers are really
relevant to the users information needs, or that all the
relevant documents are listed in the search results.

A first natural extension to this approach is to share
structured data in a P2P network: by managing struc-
tured data the infrastructure can support more expressive
queries and take up the role of a middleware layer
between applications managing structured data.

In this work we describe a P2P application which
can manage arbitrary schemas, with what we consider to
be the defining purpose of file-sharing systems, which
is data retrieval, i.e. the two-step process of locating
then downloading a remote data item. Another defining
feature of P2P file-sharing systems is that each peer has
full control over its local repository, and populates it by
publishing or downloading data from its peers.

In previous work [1] we have contrasted this approach
with P2P database systems (Peer Data Management Sys-
tems, PDMS) which are rather meant to unify a (P2P-)
distributed set of databases into a single large knowledge
repository, over which expressive queries can be answered
using the data in place.

Our prototype application U-P2P is essentially a
schema-based P2P File-sharing system, where the shared
data items are structured XML documents. We have
extended the basic model of schema-based file-sharing in
two ways. First, U-P2P offers the possibility of managing
multiple schemas within the same application.

In the spirit of P2P file-sharing, our approach allows
end-users to create new schemas, or discover and down-
load the schemas published by others, then publish or
download data structured according to the new schemas,
and thus be able to manage a rich variety of data. This
extension was first presented in [2].

The second extension of our system, presented here,
addresses the problem of enhancing U-P2P to manage
semantic data. A semantic enhancement to Peer-to-peer
file-sharing would make this paradigm suitable for the
distributed and emergent creation and sharing of any kind
of knowledge. Such an enhancement would require the
ability to annotate documents, relate documents to one
another, qualify such relations with formal properties,
navigate the relations to surf from one document to
another, and infer implicit relations. The main challenge
is to do so in a purely distributed manner.

Our current solution allows users to describe relations
between documents using different data representations,
and to perform basic navigation of these data relations.
The flexible architecture of our system, based on a
tuplespace, allows easy extensions, such as integrating
semantic reasoning. We describe here the design of our
system, and our method to dynamically extend its func-
tionality.

The rest of this article is organized as follows. We first
briefly present related work, then clearly define the P2P
File-Sharing concepts that we use as basis for our data
model and general approach. In section IV we define the
type of relations that can be expressed in our data model,
and the corresponding navigation query. Finally in section
V we describe the tuple-space based design of our system,
and the process of defining a new relation.

II. RELATED WORK

AmbientDB [3] is a schema-based P2P infrastructure
meant to act as a communication middleware between
various applications, such as household appliances man-
aging music (an IPod, a computer, a cell phone, etc.). The
schema-based approach, which could be described as a
“database with distributed tables”, is fairly close to our
basic model for U-P2P. The purpose of AmbientDB, in

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 787

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.8.787-797



terms of query processing, is to manage relational queries
over the database. While peers may come and go, the
global data schema is static.

Distributed Hash Tables (DHT), such as Chord [4] or
CAN [5], are distributed storage systems, and support
optimized data retrieval based on unique identifiers. DHTs
require a structured network, and do not give peers full
control of their local storage space, since a system-wide
optimization algorithm determines the storage location of
the documents published to the shared repository.

Peer Data Management Systems (PDMS), such as
Piazza [6], are database systems related by P2P schema
mappings. They support expressive query answering over
the schema, with some constraints on the network topol-
ogy. As we have mentioned in the introduction, such
systems are designed for expressive query answering
over static data, as opposed to the File-Sharing purpose
of replicating the data. Furthermore, in contrast to our
approach of managing multiple schemas, in PDMS each
peer manages a single relational schema which it relates to
its neighbors schemas by semantic mappings, in order to
propagate queries across the mappings. We have, however,
explored the idea of mapping schemas in U-P2P in [7].

As we will discuss in section V-D, schema mappings
can be considered to be a particular type of relation
between documents, for which we hope to provide navi-
gation through the new approach presented in this paper.
This specific scenario is, however, future work.

Edutella [8] is a slight variation between the principles
of file-sharing and of PDMS. Edutella is a PDMS where
each peer maintains a local database of RDF metadata
about educational resources, such as books or online
courses. Edutella is built on a super-peer topology, where
the super-peers collaborate to distribute and rewrite com-
plex queries to the “leaf” peers.

The answers to the queries are the URLs of the edu-
cational resources of interest to the user, which can then
be retrieved by a separate protocol such as HTTP, based
on their URLs. Despite the ultimate file-sharing goal, the
data of interest to Edutella – the meta-data – is static,
which conforms to the principles of PDMS.

Bibster [9] is a schema-based P2P file-sharing system
to share bibliographic data, based on the widely used
Bibtex format. Bibster uses a rich ontology to support ex-
pressive queries and topic-related browsing, which could
be from a user perspective the ultimate goal of our
project U-P2P. However, Bibster is specifically tailored
to the domain of bibliographic data, and all the semantic
knowledge in Bibster which supports the expressiveness
of the querieswas input by the designers of the system.
End-users can simply contribute their own bibliographic
data, but cannot contribute to building the ontology of
bibliographic data.

The fact that the end user should be able to contribute
the data at all levels providing new schemas, defining new
relations is an important aspect of our approach. From
this perspective our work can be related to the so-called
Web 2.0, which is characterized by a shift towards user-

produced content. This shift is embodied by wikis, social
networking, “tagging”, and online repositories of content
uploaded by end-users, such as Flickr1 or YouTube2.

An important difference between the Web 2.0 approach
and the P2P approach is that in a Wiki web site, or on
Flickr, users do not have the ultimate control over the data
they publish. Registration to online repositories comes
with a contract, where the host typically asserts its right
to edit or modify data at its discretion, and use it with
few restrictions.

In a P2P file-sharing system a peer may lose control of
what happens to copies of its data – just as Flickr loses
control of photographs downloaded by end-users – but the
peer retains full control of the data in its local repository.
The data stored by a peer cannot be modified by another
user; if other peers download and modify a document,
then multiple versions will co-exist in the network.

Sweet Wiki [10] is a project of a community-built
repository of semantic data, based on the “wiki approach.
While we do not claim that U-P2P supports a full-fledged
semantic knowledge base, our approach is still compara-
ble: users of Sweet Wiki may define new concepts and
populate them with instances of the concept.

The general principles of Linked Data, as outlined in
[11], also parallel our work, as the fundamental principle
of Linked Data is the definition of URIs, and of links
based on these URIs, to describe relations between data
items of different repositories.

III. MODEL OF P2P FILE-SHARING

A. Basic Model

We first present a general model for schema-based P2P
file-sharing systems, which we will use as basis for our
discussion. A full formal definition of these concepts can
be found in [12].

1) Documents: In traditional file-sharing systems, the
data items which are managed by the system are files,
with their name, extension, date, and size, as meta-data
attributes. In addition, a file has a binary “payload”. In
these systems, search queries are usually understood to
be keyword-matching searches on the file name.

In some specialized file-sharing applications dedicated
to sharing music such as Napster3, some music-specific
meta-data attributes are extracted from the shared files
and can be used as search filters.

In our model, peers can share data structured according
to any schema, and we define the notion of document to
model a uniquely identifiable data item, representable by
a set of attributes. These attributes can be either meta-data
(with string or numerical values) or else binary.

This representation allows us to represent a complete
file by a single abstract data item, rather than separating
the file from its metadata, as is done in many knowledge
representation approaches. For example, a music file can

1http://flickr.com
2http://www.youtube.com
3http://www.napster.com, no longer existing in its original form

788 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER



be represented by a document containing both the meta-
data attributes (artist, title, etc.) and the binary “payload”,
which is in our case simply an attachment.

We define two classes of attributes : meta-data at-
tributes, and attachments, which are binary. We also
distinguish one meta-data attribute with a special sig-
nificance: this attribute called documentId is a unique
identifier of a document, in the sense that two documents
with different content (i.e. any different attributes) will
not have the same identifier. In our prototype application,
the identifier is system-generated using the one-way hash
function MD5 [13].

2) Community: We define a community as an abstract
grouping tool to access a collection of documents sharing
the same schema.

A Community has:
• A unique name;
• A data schema, which is the schema of any document

shared in this community;
• A protocol, which connects the peers who store

documents shared in the community: a protocol can
be defined as a function which maps a peer to a set
of reachable peers. Notation: we note prot(p) the set
of peers accessible to p through the protocol prot.

• A set of data presentation templates which can be
used by the application to present the documents
shared in the community to a human user, or to
generate a query interface based on the community
schema, for example.

A community is the foundational structure that supports
the sharing of documents in a P2P File-sharing system.
In practice, a traditional file-sharing application such as
Kazaa4 or Limewire5 defines a community, with its own
schema and protocol. We note that several communities
may have the same protocol.

In the following, we will say that documents are
shared-in communities, meaning that they are described
by the community schema and stored by a peer which is a
member of 6 the community; and we will use the notation
DC to represent the set of all documents shared in the
community C. We will refer to the unique name of a
community as its communityId.

3) Peer: A peer is an abstract entity representing a
human user, which interacts with a community and stores
part of DC . A peer has a unique identifier, and some
storage space (a database or file system for example). A
peer may join a community, which is typically done by
downloading an application (e.g. Limewire) implement-
ing the community protocol and capable of answering
queries over the community schema. The peer may then
contribute documents to the community: such documents
must conform to the community schema and be placed in
the peer’s local repository.

Notation: we will note Dp
C the documents of commu-

nity C stored on peer p.

4http://www.kazaa.com, no longer existing in its original form
5http://www.limewire.com/
6this notion will be defined in the next subsection

4) Operations: A peer p which is member of a com-
munity C offers an interface to C consisting of the
following operations:
• publish(document d): d is added to Dp

C .
• delete(document d): if d exists in Dp

C , then d
is removed from Dp

C
7

• search(expression expr), where expr is a
boolean expression over attributes of C:
The result of the search is a list of pairs (pk, di)
defined by the following conditions:

– expr evaluates to true over di;
– the peer pk is in prot(p) and di is in Dpk

C

The function returns a virtual view over the collec-
tion of search results {(pk, di)}, containing only the
metadata attributes of each document.
Intuitively, the search results leave out the attach-
ments, which form the bulk of each document, while
showing the attributes which are directly human
readable. The user will decide which documents to
download according to the partial view offered by
the metadata.

• download (document d, peer p2): if d ex-
ists in Dp2

C and p2 is part of prot(p) then d is copied
to Dp

C .
5) Example: We consider the community Cinema

which is a community to share documents represent-
ing movies. The basic schema of the community is
(title, director, year, data), where title, director, and
year are meta-data attributes, and data is an attachment
storing the actual video file8.

Peers P1 and P2 are members of this community. P1

stores the document nosferatu with the attributes (nosfer-
atu, ‘Nosferatu’, ‘F. W. Murnau’, 1922, [nosferatu.mov]),
P2 stores the documents metropolis and twotowers with
the attributes (metropolis, ‘Metropolis’, ‘F. Lang’, 1927,
[metropolis.mov]) and (twotowers, ‘The two Towers’,
‘Peter Jackson’, 2002, [towers.mov]), respectively. The
square brackets indicating that the value of the attribute
data cannot really be represented here. In the following
examples we will leave out the documentId from the
tuple-representation of documents, using instead the nota-
tion: document documentId with attributes (a1, a2 . . . an).

B. Fundamental Properties of P2P File-Sharing Systems

P2P File-sharing systems — a set of peers interacting
sharing documents within one or several communities,
using the operations defined above — share a number
of properties:

7we note that the document is only removed from the local repository
of peer p.

8according to our definition, the binary content of an attachment
attribute is part of the document; in this example it may seem that the
document simply references a video file which would be separate, but
conceptually the attribute value is the full binary file and not a reference,
so the video file cannot be dissociated from the document. In fact this
specification leaves the implementation open, in the sense that the video
file could be directly included into an XML document as a #CDATA
section, for example.

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 789

© 2009 ACADEMY PUBLISHER



• the system is unstructured : we consider that peers
are free to connect with any peer they choose, and
hence we can make no assumption regarding the
topology of the resulting network;

• the system is highly dynamic: peers may join or leave
at any time, creating a potentially high level of churn;

• each peer has full control over its local storage,
i.e. peers store documents on their local storage
space because they choose to, as opposed to DHTs
for instance, where the storage location of each
document is decided according to an optimization
algorithm.

• ’best effort’ query answering : At any given time, a
peer accessing a community through searches and
downloads, can only access documents stored by
peers which are reachable via the community proto-
col at that time. This limited view of the community
implies a ‘best-effort’ query answering, typical of
P2P file-sharing.

We consider that these properties best reflect the decen-
tralized control which is the basis of the “peer-to-peer”
paradigm.

C. Communities as “Active Documents” with
application-specific semantics

1) Reifying the Concept of Community: The concepts
and discussion in this paper are implemented in a proto-
type file-sharing application, U-P2P (for Universal Peer-
To-Peer, first presented in [2]), which allows peers to si-
multaneously interact with several communities, and even
to create new communities by defining new document
schemas.

This feature relies on the idea of “reifying” the concept
of a community, i.e. describing the community in a
community definition document, in order to share this
document with other peers.

Such community definition documents are structured
according to a schema — communityId, schema, protocol
— and can be shared in a special bootstrap community
based on this particular schema. Peers can join and search
this community — the Community community — in order
to discover or create (and publish) new communities. We
note that the communityId is used as documentId in the
community definition document.

Figure 1. Data Model of U-P2P

Figure 1 illustrates how communities become special
documents by this “reification” process. Based on this
principle, a peer can join a community simply by down-
loading the community definition document; thisdocu-
ment effectively provides an interface to the community,
in the form of the community protocol and schema.

2) Example: We extend the example in section III-A.5.
Peers P1 and P2 must now be members of the Community
community, and store locally a copy of the document
defining the community Cinema. In addition, P1 may
now create a new community Actors in which documents
describing Actors are shared. The community schema is
(name, bio, photo), where name and bio are meta-data
attributes (bio is a short text about the actor), photo is
an attachment containing a photograph of the actor. P1

also includes a rendering template which allows users to
view a nice multimedia document with a description of
the actor and her picture. In this community P1 stores the
documents depp with attributes (‘Johnny Depp’, ‘Johnny
Depp was born on 09th of June 1963, and...’, [jd.jpg]),
and livtyler with attributes (‘Liv Tyler’, ‘Liv Tyler is the
daughter of... ’, [lt.jpg]). The data stored by the peers is
illustrated in Figure 2.

Figure 2. Example peers and documents stored by these peers in a
scenario with multiple communities. Within each peers, the documents
are grouped by community.

3) Semantics and Active Documents: In our model,
Community definition documents have the special property
that peers automatically join a community simply by
downloading and interpreting such documents.

This interpretation – and its reverse operation of “reify-
ing” the definition of a community to a document, imply
a special semantics associated with the Community com-
munity.

Concepts of the material world (e.g. films or actors) can
be described in structured documents, but the file-sharing
application does not in any way manage the semantics of
such data.

Our approach is to enable the application, our prototype
U-P2P, to selectively manage the semantics of U-P2P
specific concepts, i.e. to be capable of interpreting a
specific class of documents with these semantics.

This class of documents, encoding behavior, can thus

790 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER



be considered to be “active documents”, as defined by
[14].

Community definition documents are the first example
of this class of documents: a U-P2P client will for
example extract schema information in order to provide
a query interface tailored to the community schema, and
use data presentation templates to render documents in a
community-specific way.

In this work, we further extend our model by defining
a second class of “active documents”, that will encode
query processing directives. Users will be able to publish
such documents, U-P2P clients will be able to interpret
such documents and automatically extend their function-
ality.

IV. RELATED DOCUMENTS

Our multiple-community model allows us to share
documents with different schemas, which in a more
knowledge-representation perspective, allows us to model
instances of different concepts. Our users in the running
example of this paper can share movies as well as
documents about their favorite actors. The next step in
knowledge representation will be to be able to model
relationships between entities.

Our solution to this problem is to relate the documents
modeling these entities. In this section, we show how
our model can be further extended to manage relations
between documents; this includes both the issues of
representing and querying these relationships.

A. A graph of related documents

We consider a model of documents with attributes,
related by binary relations. We use the abstract mathe-
matical definition of a relation : a relation R is a set of
couples (A, B), where A and B are documents. To each
relation R we associate a label LR.

All the documents and their relations then form a
directed graph, where the nodes are documents, and there
is an edge with a label LR from a node A to a node B
iff (A, B) is in R.

a) Example: In the running example of this paper,
featuring Movies and Actors, we could define for example
a relation with the label Sequel, which would contains
couples of movies, and a relation with the label stars-in,
with couples from Actors×Movies (cartesian product).
An example graph of related documents is illustrated in
Figure 3.

B. Representing Relations in the U-P2P Data Model

1) A U-P2P-specific URI Scheme: The first point to be
noted is the fundamental requirement to describe relations
between any entities is a naming scheme such as a
URI [15] to identify these entities. In our setting, this
means that documents must be named, or identified in an
unambiguous way.

As noted in section III-A.1, each document of a com-
munity has a special attribute documentId that uniquely

Figure 3. Example graph of Documents and Relations

identifies a document within this community. With each
community being uniquely identified within the Com-
munity community, by the comunityId, we thus have a
two-level hierarchical naming scheme, which allows us
to unambiguously refer to any document.

In our multiple-community framework we thus obtain
the following URI scheme, which was introduced in [12]:
up2p:communityId/documentId. A specially interesting
characteristic of this scheme is that it identifies any copy
of a replicated document, and we will use a search-based
dereferencing mechanism (described below) that will al-
low us to retrieve any available copy of the document.
This way we can retrieve a document even if the peer
that first published it has disconnected from the network,
as long as it has been downloaded (and is made available)
by other peers.

Based on this addressing scheme, we introduce an
additional type of attribute, which we will call an endpoint
attribute. The values that endpoint attributes can take are
well-formed up2p: URIs.

The simplest way of representing a Relation is to
use endpoint attributes. If a document A in community
C, has an endpoint attribute named “a-name” with the
value up2p:communityId2/docIdB, then this at-
tribute can represent the fact that the document A and the
document B with the documentId “docIdB”, in the com-
munity identified by the communityId “communityId2”,
are related by a relation with the label “a-name”. To
uniquely identify this relation, we can use the identifier
of C in combination with the endpoint attribute name “a-
name”.

2) Example: In our running example about movies and
actors, the relation ’stars-in’ could for example be repre-
sented by a multi-valued endpoint attribute in the schema
of the Actors community. The community schema would
then be : (name, bio, photo, acts-in+), the + indicating
that the attribute is multi-valued. The document represent-
ing Liv Tyler could then be : (‘Liv Tyler’, ‘Liv Tyler is the
daughter of... ’, [lt.jpg], up2p:Cinema/twotowers)

3) Alternative Representations: We note that the use
of endpoint attributes is a requirement to represent re-
lations, but this particular representation is not the only
possibility. In some cases, documents will exist without
any linkage, and creating the link a posteriori should

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 791

© 2009 ACADEMY PUBLISHER



still be possible, for example by representing the link
in an external document, in the spirit of the Resource
Description Framework (RDF, [16].

The link between some documents A and B (with
label lbl) would be represented by a third docu-
ment L in a special community “RDFLinks” with the
following schema:(documentId, doc1, label, doc2). The
document L would then be : (L, up2p:C/A, lbl,
up2p:communityId2/docIdB ).

We consider it important not to commit to particular
representation choices, as the purpose of this system is
to accomodate new documents and schemas input by end
users, whose ideas and choices we cannot predict and do
not wish to constrain.

4) Dereferencing a URI: The different representation
that may be chosen for a relation will be important if
we want to support automated queries of the graph of
documents, but the basis of any algorithm will the URI
dereferencing mechanism, which will always be the same:

1) if the peer is a member of the community comId,
then the peer may jump directly to step 4.

2) Community.search(communityId=comId); [results
include (pj , comId)]

3) Community.download(pj, comId);
4) comId.search(documentId=docId)
This search-based dereferencing mechanism has a high

cost, but we note that (a) the communityId significantly
reduces the search space and (b) not identifying a docu-
ment by its location provides the opportunity of getting
any one of multiple copies, which makes the dereferenc-
ing more robust to churn (i.e. if a peer disconnects the
documents it was storing are not necessarily unavailable).

C. Navigation

In this section we discuss how users may query the
graph of documents.

We consider that the most basic information needs
of the users do not require the full expressiveness of a
graph query language such as SPARQL [17], and we
consider for now the most simple graph query, which we
will define as the navigation query. This query can be
expressed as follows:

Definition 1: Navigation query: Navigate(document A,
Relation R): given a document A, a relation R, find the
documents B such that (A, B) is in R.

This query allows users to browse the graph of docu-
ments: view a document A, follow a relation R to a related
document B.

In the next section we will discuss how such navigation
can be supported in a P2P file-sharing system.

D. Supporting Navigation in U-P2P

Answering the navigation query Navigate(A,R) in U-
P2P may involve different processing, depending on the
representation of R. It may be for example:
• dereferencing an ’endpoint’ attribute of A

• doing reverse navigation, i.e. searching all endpoint
attributes of potential B documents, for references
to A.

• if the relation is described in a document L separate
from A and B, then searching the community (or
communities) storing candidate documents for L,
then then dereferencing URIs listed in L to obtain
B.

Any of these query processing algorithms can be eas-
ily implemented using the elementary search operation
defined in our original model (see section III), and the
dereferencing operation9 described in section IV-B.4.

In order to avoid committing to a particular represen-
tation for Relations, our solution is to define navigation
algorithms as scripts, i.e. sequences of search, download,
and dereference operations, in documents which can be
dynamically loaded and interpreted by U-P2P (active
documents). We detail this solution the following section.

V. EXTENSIBLE QUERY PROCESSING BASED ON A
TUPLE-SPACE DESIGN

In this section we describe the design of our proto-
type application U-P2P, which implements a multiple-
community File-Sharing application, extended to support
navigation across links, as presented in section IV.

We first describe the implementation of the fundamen-
tal file-sharing operations presented in section III-A.4.
These fundamental operations constitute simple building
blocks that can be combined to perform more complex
processing.

Our design in based on a tuple-space architecture,
where the three major components of our application —
user interface, local database, and network adapter —
interact to perform these basic operations.

This extensible design allowed us to seamlessly in-
tegrate the additional processing necessary to support
navigation queries, by adding software agents interacting
with the tuple-space, which in turn use the existing
building-block operations.

Finally, we will show how this architecture can support
dynamic addition of agents to further extend the query
processing functionality of the application.

A. Basic P2P functions

The high-level design of U-P2P comprises three major
components, interacting via a tuple-space:
• A user interface collects input from the user and

submits queries to the tuple-space. When the user
performs searches, the User Interface generates a
unique identifier for this query, which is used to track
the query and the responses to it; when responses ar-
rive, the user interface stores a temporary collection
of Responses.

9we note that the dereferencing procedure itself only involves searches
and downloads, which shows that the entire navigation process will
eventually be implemented by the basic operations search, download,
publish, remove.

792 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER



• The local repository stores documents of the com-
munities that the peer is member of, and responds
to searches, and retrieval queries (documents or
document attribute values).

• A Network Adapter propagates the queries to other
peers reachable through community protocols, and
also inputs queries originating from other peers (to
be evaluated against the local repository). The Net-
work Adapter also performs Downloads (retrieves
documents stored by other peers), and outputs the re-
trieved documents into the tuple-space in Download
Response tuples. The Adapter maintains a “Routing
table” of Search and Download Requests in order
to return responses to the peer that originated the
corresponding request.

Each of these three components inputs and outputs
tuples to the tuple-space via a proxy agent, which manages
a set of templates specific to the component. Each time
that a tuple in the tuple-space matches a template of the
agent, the tuple is retrieved and processed by the agent.
Responses, if any, are output into the tuple-space.

The architecture of U-P2P is illustrated in Figure 4.

Figure 4. Architecture of U-P2P

Queries and responses are encoded as tuples with a
verb in the first field, and appropriate parameters in the
following fields. Searches have a special query identifier
field that is generated by the user interface of the peer that
outputs the original query, and used to track and route
responses appropriately.

The fundamental P2P File-sharing operations are im-
plemented as tuples exchanged by the different Proxy
Agents. The Tuple representation of the requests and
responses, as well as the agents which may output each
type of tuple are listed in table I.

Each of these Request and Response tuples will trigger
certain processing from the different Proxy Agents. The
processing triggered by each tuple for the different Proxy
Agents is as described in the two-entrance table II. N/A
indicates that the Proxy Agent does not use a template
matching the tuple.

Proxy Agents that process tuples do not remove these
tuples from the Tuple-space, but they store a copy of each

processed query until it disappears from the tuple-space.
An additional agent, the Cleaning Agent, monitors all the
tuples in the tuple-space and removes them after a short
lifetime in the tuple-space. The lifetime is an adjustable
parameter of the application; it must be long enough for
all agents to read the tuple at least once, and short enough
for tuples to be removed before another identical Tuple is
likely to appear. This situation is unlikely to occur with
only the basic Agents present, but in dynamic extensions
where new agents may be created, this type of “collision”
must be avoided.

B. URI Dereferencing and Navigation

The extended model presented in section IV, which
adds the concept of Relations to connect documents in
a graph, introduces the additional elementary operation
Dereference (URI), and the complex Navigation query.

In order to support URI dereferencing, a new type of
tuple has been created, the Dereference Request Tuple.
This tuple has the following fields: (“DereferenceURI”,
uri, queryId). An additional Agent has been created,
which listens for “DereferenceURI” request tuples, and
translates them to searches as described in section IV-B.4,
and outputs these Search Request tuples into the tuple-
space. The Search Request tuples have the same query
identifier as the input DereferenceURI query.

The simplest navigation, involving only a URI deref-
erencing, is now supported by U-P2P: the user interface
generates the Dereference Request Tuple, with the appro-
priate URI parameter and a new queryId, outputs it to
the tuple-space, then listens for Search Request responses
with the same queryId. The open architecture of the tuple-
space allows such extensions to be very easily integrated
into the application.

In order to support navigation of Relations that require
more complex processing, we have chosen to provide
indirect support by dynamically creating new agents
which implement the appropriate sequence of searches,
downloads, and dereference requests. For this, repeat-
ing our approach of reifying communities into active
documents, we define a special community Agents, for
which we associate a special semantics: this semantics
is materialized by a schema by which query processing
directives can be specified to be implemented in the agent.

U-P2P then interprets the agent definition (its query
processing directives) at runtime, creating new agents in
interaction with the internal tuple-space.

C. Agent Definition Language

In order to define a Navigation algorithm, we have
defined a simple tree schema (implemented using XML)
to define the behavior of an Agent as a set of forward-
chaining rules based on the Linda coordination language
[18]. Each rule is formed by a Head, which is a template
matching tuples that will activate the rule, and a Tail,
which is a sequence of tuple-instructions (tuple inputs
and outputs) to be executed when the rule fires. Each

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 793

© 2009 ACADEMY PUBLISHER



Operation Tuple Representation Output by
Publish (‘Publish’, communityId,

Document)
user interface

Remove (‘Remove’, communityId,
documentId)

user interface

Search Request (‘Search’, communityId, expr,
queryId)

user interface, network adapter

Search Response (‘SearchResponse’,
communityId, documentId,
peerId, Document∗, queryId)

repository, network adapter

Download (‘Retrieve’, peerId,
communityId, documentId)

user interface, network adapter

Download
Response

(‘RetrieveResponse’,
communityId, documentId,
Document)

repository, network adapter

TABLE I.
FUNDAMENTAL FILE-SHARING OPERATIONS IN A TUPLE SPACE ARCHITECTURE.

Tuple / Agents User Interface Repository Network Adapter
Publish N/A Document stored in the local repos-

itory of the community identified
by communityId

N/A

Remove N/A document identified by documentId
removed from local repository of
community identified by communi-
tyId. If the document is not present,
nothing happens.

N/A

Search Request N/A The query expr is evaluated against
local repository of community
communityId; for each matching
document d, a SearchResponse tu-
ple is output.

If the agent is currently listening
for Responses to the same Request
(identified by queryId), then the
Request is ignored. If not, the Re-
quest is sent to other peers through
the network, according to the net-
work protocol of the community
communityId.

SearchResponse If the agent is currently listening
for Responses with this queryId,
then the temporary collection of
Search Responses identified by the
queryId is updated with the new
Response

N/A If the agent is currently listening
for Responses with this queryId,
then the Response is extracted and
sent to the peer that originated the
Request queryId.

Download
Request

N/A If the peerId is that of the lo-
cal peer, then the Agent creates
a Download Response tuple with
the document identified by docu-
mentId from the local repository
of community communityId. The
DownloadResponse tuple is output
to the tuple-space.

If the peerId is not that of the
local peer, then the network adapter
connects to the peer identified by
this peerId, and retrieves the docu-
ment. It then places the document
in a Download Response tuple and
outputs the tuple to the tuple-space.

Download
Response

If the Agent is listening for this
Download Response, then the Doc-
ument is extracted from the tuple
and rendered to the user in the User
interface.

If the Download Response was not
output by the Repository Agent
itself, then the Document is ex-
tracted from the Response and
stored in the local repository of the
community communityId.

If the Download Response was not
output by the Network Adapter
Agent itself, then the Document is
extracted from the Response and
sent to the peer that originated the
query.

TABLE II.
PROCESSING TRIGGERED BY THE DIFFERENT TUPLES IN THE DIFFERENT PROXY AGENTS

tuple-instruction is a verb (the Linda primitives in / out /
read) followed by a tuple definition, which may include
variables.

A Tuple is formed of any number of fields, which
may be formal or literal. A formal field is a typed field
which has no value but which matches any field of that
type, and a literal field is a typed field with a precise
value. “Template” tuples are used as parameters for “read”
operations, in the sense that the read operation will return
tuples matching the template field-by-field. Formal fields

are mostly used as templates, as literal fields only match
if their values are identical (a property which can be used
as a filter).

In order to limit the complexity of our language we
limit ourselves to String fields, which avoids the need to
specify the type of fields. Our variable binding process
is based on the concept of formal fields, to which we
add a variable name instead of a value. This allows us to
read values from matched tuples, and store these values
in a named variable. In order to reuse a variable, we

794 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER



use what we call “variable” fields, which will appear at
runtime to be litteral fields, but whose values are filled in
dynamically from stored variables. For example, a formal
field bound to variable x will allow us to read a value
and store it in the variable x, whereas a field declared as
a variable field will be filled at runtime with the current
value for x.

A single agent may have multiple rules sharing the
same set of variables, and this avoids the need of loop
constructs or condition statements, since the former can
be replaced by a short rule which can be triggered
repeatedly, and a conditional fork can usually be replaced
by two rules triggered by the two alternative inputs of the
condition.

The instructions should be based on the existing
UP2P functions, i.e. at least one rule should
be triggered by the Navigation Request query
(“Navigate′′, URI, label, queryId), and the tuples
that the agent will output to the tuple-space should be
requests for the basic operations of U-P2P, i.e. search,
download, dereference URI, etc.

In order to make the language expressive enough, we
have enriched the basic U-P2P processing capabilities
with the following additional tuple requests (and appro-
priate processing in the existing agents):
• some very simple data processing functions (string

concatenation),
• an additional operation to query temporary collec-

tions of Search Responses,
• a Lookup Request to retrieve individual attribute

values from documents.
The schema, which we will call Agent Definition

Language, is illustrated in Figure 5.
Users (albeit fairly advanced users) can thus create and

install new “canned queries” to support Navigation of
particular Relations.

a) Example: We give in table III the script of an
Agent implementing the Navigation query based on the
“RDF Links” representation described in section IV-B.3.
Notations10 :
• the verb of each instruction is listed before each

tuple, and the tuple is limited by the brackets, the
fields separated by semi-colons.

• [formal: <name>] denotes a formal field where
the value in the read tuple is stored in variable
<name>.

• [var: <name>] denotes a variable field, i.e. a
litteral field where the value is populated at runtime
from the variable

• fields with simply a value are litteral fields containing
the value.

D. Towards semantic reasoning agents
Our current design, described up to this point, supports

navigation of Relations described in documents by end-
point attributes. The openness of our model makes the

10these notations are used instead of the exact XML for a better
readability

support extensible to variations around the basic principle
of endpoint attribute links, such as the RDF Links example
presented in section IV-B.3.

Navigating such links requires only data lookups, even
though our distributed model makes these lookups a little
bit tricky to handle and define.

The next developments envisioned in this project are
to support a broader definition of a Relation, i.e. one
that may be inferred or computed from other Relations
or Documents.

We propose to define the following categories of Rela-
tions.

Suppose two documents A and B are related in a
relation R (i.e. (A, B) is in R). R may be:

• a data-defined relation, i.e. there exists a data rep-
resentation of all the couples in R; the examples of
our previous sections are all data-defined relations;

• inferrable, i.e. we can determine if (A, B) are in R
from other couples in R or in another relation R′. For
example instances of the relation “sequel” between
movies can be inferred from other instances, or from
the opposite Relation “prequel”, as these relations are
partial order relations;

• computable, i.e. given A and R a new document B
can be computed (created) such that (A, B) is in R.
The typical example of computable Relations is a
mapping Relation defined between the schemas of
two communities: in some cases, given a mapping
definition between two community schemas, and a
document from one community, a mapping agent
could generate the corresponding document in the
second community;

• co-computable11, i.e. given A, B and an intensional
definition of R we can determine whether (A, B) is
in R. For example, documents with a date attribute
could be compared in an older / newer Relation based
on the value of the date attribute;

• a combination of the above, e.g. a relation may be
data-defined but also partially co-computable.

Supporting such relations, which are more about rea-
soning then about graph queries, would be an important
step towards a real knowledge sharing system, where users
could not only input base facts but incrementally build
on facts to infer new facts and answer more expressive
queries.

An example scenario would be the addition of a
versioning relation, which we could base on the OWL
property priorVersion. Suppose a user finds an error in a
document downloaded from U-P2P and wishes to correct
that error for the benefit of the other users. Making
changes to that particular document and publishing it
won’t have much of an effect: one would need to make
changes to all copies of the document.

A more efficient alternative would be to create a
priorVersion link between the new document and the old

11The term “co-computable” was coined by analogy with the NP /
CO-NP complexity classes.

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 795

© 2009 ACADEMY PUBLISHER



Figure 5. Schema structure of a valid Agent Definition.

Rule 1 :
Head : read (Navigate; [formal: uri]; [formal: label]; [formal:queryId])
Tail: out (Concatenate; label=; [var: label])
in (Concatenate; label=; [var: label], [formal:labelcondition])
out (Concatenate; AND endpoint1=; [var: uri])
in (Concatenate; AND endpoint1=; [var: uri]; [formal:uricondition])
out (Concatenate; AND endpoint1=; [var: uri])
in (Concatenate; [var:labelcondition]; [var: uricondition]; [formal:searchexpr])
out (Search; RDFLinks; [var:searchexpr]; [var:queryId])

Rule 2 :
Head : in (SearchResponse; RDFLinks; [formal : documentId]; [formal: peerid] ;
[formal: ]; [formal:queryId])
Tail: out (Lookup; TemporarySearchResponses; [var: documentId]; endpoint2)

in (Lookup; TemporarySearchResponses; [var: documentId]; endpoint2; [formal:uri2])
out (DereferenceURI; [var:uri2]; [formal :queryId])

TABLE III.
DEFINITION OF AGENT “NAVIGATE RDFLINKS”

one, in a community of triples implementing a data rep-
resentation of priorVersion. The simple agent described
in our “RDFLinks” example (table III) would provide the
basic navigation function necessary to follow a path of
versioned documents, step by step. But a real semantic
enhancement to this agent would be to add a rule in
this agent to implement the transitivity of the relation.
This rule would basically involve listening for responses
to the navigate query, and recursively outputting new
navigate queries, thus extending the search to generate
the transitive closure of the priorVersion relation.

From this broader picture it appears clearly that our
elementary query based on relations, the navigation query,
could in some cases easily be implemented by an agent
using our Agent Definition Language, whereas in some
cases our language expressiveness is clearly insufficient.

An important challenge for us is to incrementally enrich
the Agent Definition Language and / or the basic data

processing support of the native U-P2P agents, and for
each step to establish for which class of Relations we
can support the Navigate query.

At this point, we consider that our partial support for
navigation is consistent with the “best-effort” approach
to searches characteristic of P2P file-sharing. One experi-
mental goal of this work is also to allow users to generate
and share new content (including query processing agents)
which may improve the completeness of navigation query
answering.

VI. CONCLUSION

We have presented a framework to share structured data
in a P2P file-sharing infrastructure. Our system extends
the traditional model of P2P file-sharing, by supporting
arbitrary schemas, and the navigation of relations between
documents, while only sharing structured documents us-

796 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER



ing the basic functions of a P2P file-sharing community,
i.e. publish, remove, search, and download.

Our approach relies first on the “active XML” approach
to “reify” the concept of a community or of a navigation
query, by associating an application-specific semantics to
the documents where these concepts are defined.

Secondly, our model uses a URI scheme specific to
U-P2P communities, as the basis to annotate existing
documents, or to relate documents to one another. Anno-
tations or relations can be described in documents using
endpoint attributes as links to the annotated documents,
and we associate a search-based dereferencing mechanism
to navigate such links.

Finally, through this semantic extension we have laid
the foundations to manage relations with intrinsic seman-
tic properties, such as being transitive, sub-properties of
others, or computable from values of document attributes.

Our extensible architecture can accomodate new query
processing agents that will be able to navigate such
semantic relations, perform simple reasoning, and infer
new implicit relations from those described in the data.

REFERENCES

[1] A. Davoust and B. Esfandiari, “Towards semantically
enhanced p2p file-sharing,” in SEMELS conference, 2008.

[2] A. Mukherjee, B. Esfandiari, and N. Arthorne, “U-p2p:
A peer-to-peer system for description and discovery of
resource-sharing communities,” in ICDCSW ’02: Proceed-
ings of the 22nd International Conference on Distributed
Computing Systems. Washington, DC, USA: IEEE Com-
puter Society, 2002, pp. 701–705.

[3] P. A. Boncz and C. Treijtel, “Ambientdb: Relational query
processing in a p2p network,” in DBISP2P, ser. Lecture
Notes in Computer Science, K. Aberer, V. Kalogeraki, and
M. Koubarakis, Eds., vol. 2944. Springer, 2003, pp. 153–
168.

[4] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan, “Chord:
a scalable peer-to-peer lookup protocol for internet
applications,” Networking, IEEE/ACM Transactions on,
vol. 11, no. 1, pp. 17–32, 2003. [Online]. Available:
http://dx.doi.org/10.1109/TNET.2002.808407

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker, “A scalable content-addressable network,” in
SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols
for computer communications, vol. 31, no. 4. ACM
Press, October 2001, pp. 161–172. [Online]. Available:
http://dx.doi.org/10.1145/383059.383072

[6] “The piazza peer data management system,” IEEE Trans.
on Knowl. and Data Eng., vol. 16, no. 7, pp. 787–798,
2004.

[7] N. Arthorne and B. Esfandiari, “Peer-to-peer data integra-
tion with distributed bridges,” in CASCON ’06: Proceed-
ings of the 2006 conference of the Center for Advanced
Studies on Collaborative research. New York, NY, USA:
ACM, 2006, p. 14.

[8] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve,
M. Nilsson, M. Palmr, and T. Risch, “Edutella: A p2p
networking infrastructure based on rdf,” 2002, pp. 604–
615.

[9] P. Haase, B. Schnizler, J. Broekstra, M. Ehrig, F. van
Harmelen, M. Menken, P. Mika, M. Plechawski,
P. Pyszlak, R. Siebes, S. Staab, and C. Tempich, “Bibster–
a semantics-based bibliographic peer-to-peer system,” Web

Semantics: Science, Services and Agents on the World Wide
Web, vol. 2, no. 1, pp. 99 – 103, 2004. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B758F-
4DS962C-2/2/f3e50ac7d66b0f157852a6639b14ed82

[10] M. Buffa, F. Gandon, G. Ereteo, P. Sander, and C. Faron,
“Sweetwiki: A semantic wiki,” Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 6, no. 1,
pp. 84–97, 2008.

[11] T. Berners-Lee, “Linked data,” World Wide Web
design issues, July 2006. [Online]. Available:
http://www.w3.org/DesignIssues/LinkedData.html

[12] A. Davoust and B. Esfandiari, “Peer-to-peer sharing and
linking of social media based on a formal model of file-
sharing,” Department of Systems and Computer Engineer-
ing, Carleton University, Tech. Rep. SCE-09-04, 2009.

[13] R. Rivest, “The MD5 Message-Digest algorithm,” Internet
Engineering Task Force, RFC 1321, apr 1992. [Online].
Available: http://www.rfc-editor.org/rfc/rfc1321.txt

[14] P. Ciancarini, R. Tolksdorf, and F. Zambonelli, “Coordi-
nation middleware for xml-centric applications,” in SAC
’02: Proceedings of the 2002 ACM symposium on Applied
computing. New York, NY, USA: ACM, 2002, pp. 336–
343.

[15] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform
resource identifier (URI): generic syntax,” Internet
Engineering Task Force, RFC 3986, jan 2005. [Online].
Available: http://www.rfc-editor.org/rfc/rfc3986.txt

[16] “The rdf suite of specifications,” 2004. [Online]. Available:
http://www.w3.org/RDF/

[17] E. Prud’hommeaux and A. Seaborne, “SPARQL Query
Language for RDF,” W3C, Tech. Rep., 2006. [Online].
Available: http://www.w3.org/TR/rdf-sparql-query/

[18] D. Gelernter and N. Carriero, “Coordination languages and
their significance,” Commun. ACM, vol. 35, no. 2, pp. 97–
107, 1992.

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 797

© 2009 ACADEMY PUBLISHER




