
Model Based Synthesis of Embedded Software
Samar Abdi, Daniel D. Gajski, Ines Viskic

Center for Embedded Computer Systems
University of California, Irvine, CA 92617

{gajski, sabdi, iviskic}@uci.edu

Abstract— This paper presents software (SW) synthesis using
Embedded System Environment (ESE), a tool set for design
of multicore embedded systems. We propose a classification
of multicore embedded systems based on their platform
architecture. We identify key design decisions and models
that are required for embedded system synthesis. We present
a a model based design methodology that starts with an
application model consisting of C processes communicating
via abstract message passing channels. The application
model is mapped to a platform net-list of SW and hardware
(HW) cores, buses and buffers. A high speed Transaction
Level Model (TLM) is generated to validate abstract com-
munication between processes mapped to different cores.
The TLM is further refined into a Pin-Cycle Accurate Model
(PCAM) for board implementation. The PCAM includes C
code for all the communication layers including routing,
packeting, synchronization and bus transfer. The generated
embedded SW provides a library of application level services
to the C processes on individual SW cores. Therefore,
the application developer does not need to write low level
SW for board implementation. Synthesis results for multi-
core MP3 decoder and JPEG encoder designs, using ESE,
show that the embedded SW is generated in order of
seconds, compared to hours of manual coding. The quality of
synthesized code is comparable to manually written code in
terms of performance and code size. Over 3X productivity
gain in overall multicore design is shown to result from
automatic SW synthesis.
Index Terms— system modeling, communication SW synthe-
sis, MPSoC, model based design, transaction level modeling,
pin and cycle accurate implementation

I. INTRODUCTION

Multi-core embedded systems are being increasingly
used to meet the complexity and performance re-
quirements of modern applications. The hardware plat-
form configurations for these systems include tradi-
tions processor-centric asymmetric multi-core, symmetric
multi-core with identical processors, and networks of het-
erogeneous processors. Embedded application developers
need a library of communication services, for different
types of multi-core platforms, to develop and validate
their multi-threaded code. On the other hand, platform
designers need to provide board prototypes and system
SW for application development. Model based design is
widely seen as an enabler for early application develop-
ment before the prototype is ready.

Models for multi-core embedded systems, at various
levels of abstraction, are developed during system design.
A well defined synthesis methodology is used to derive
lower-level models from high-level models based on
system design decisions. Models at different abstraction

levels serve different purposes. Models at higher abstrac-
tion levels, such as TLM, execute faster and are therefore
better for application development. However, with higher
abstraction, there are fewer design details to allow realistic
estimation of design metrics. PCAMs provide accurate
performance estimates and are required for prototyping.
However, they are too slow to use for application devel-
opment. Furthermore, PCAMs require an implementation
of core-, platform-, and application-specific system SW
services on top of the SW core’s instruction set. Some
of these services are available directly in an Real Time
Operating System (RTOS) for the SW core. Others, such
as external communication methods, must be manually
written or may require RTOS configuration.

Integrated design environments, such as ESE [1], are
needed to transform application level models into plat-
form specific TLMs for exploration and PCAMs for
implementation. In this paper we will discuss the model
based design methodology of ESE, with focus on embed-
ded SW synthesis. Our methodology and synthesis tech-
nique allows automatic transformation of application level
models with abstract message passing communication into
PCAMs with an embedded SW stack of communication
services. The automation not only cuts design time, but
results in modular embedded SW that is consistent with
the application level model.

The rest of the paper is organized as follows. We
present an overview of current state of the art in SW
synthesis in Section II. In Section III, we propose a clas-
sification of multicore embedded platforms. The design
decisions and models needed to implement applications
on such platforms are discussed in Section IV. We then
delve into model semantics for SW synthesis in Section
V. Automatic SW generation procedures, based on the
semantics, are presented in Section VI. Experimental
results on synthesis quality and design productivity are
presented in Section VII, followed by conclusions and a
future outlook for model based SW synthesis.

II. RELATED WORK

There has been significant research in model based
design for embedded systems in the recent years. Stan-
dardization approaches such as AUTOSAR [2] and OSEK
[3] provide common API and middleware for automo-
tive SW development. On the other hand, system level
design languages such as SystemC [4] and SpecC [5]
allow multi-core system modeling with simulation speeds

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 717

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.717-727

suitable for SW development. Such efforts have provided
the groundwork for developing and deploying model
automation tools such as the one presented in this paper.

There has also been much work in embedded system
modeling frameworks and SW code generation from
specific input languages. POLIS [6] (Co-Design Finite
State Machine), DESCARTES [7] (ADF and an extended
SDF), Cortadella [8] (petri nets) and SCE [9] (SpecC) pro-
vide limited automation for SW generation from certain
models of computation. In contrast, our approach provides
a C based input with multi-core support and has been
demonstrated with actual board implementation.

Modular communication modeling has been proposed
for application domains such as real-time systems and
platforms such as heterogeneous multi-core systems.
Kopetz [10] proposes component model for dependable
automotive systems. Sangiovanni-vincentelli [11] has pro-
posed a three phase simulation model for platform based
design. These approaches tackle security, dependability
and heterogeneity at the system level, but require un-
derlying SW services and tools to implement the mod-
els. Communication optimization techniques [12]–[14] on
the other hand have dealt primarily with platform and
application transformations using simulation models. In
contrast, our communication SW synthesis focuses on
code generation for accurate optimization feedback and
is fast and flexible enough to incorporate application and
platform modifications on the fly.

Hardware-dependent SW [15] has been a topic of
active research lately and our work contributes to it.
Commercial vendors provide a board support package
(BSP) [16], [17] with their board IDEs, but such SW is
customized for the limited set of IP cores available or
synthesizable on the board. Most academic approaches
so far have dealt with porting of simulation models on
RTOS, discounting external communication. Herrara [18]
proposes overloading SystemC library elements to reuse
the same model for specification and target execution,
but partly replicates the simulation engine on the host
and thereby imposes strict input requirements. Krause
[19] proposes generation of source code from SystemC
mapped onto an RTOS, while Gauthier’s method [20]
provides generation of application-specific RTOS and the
corresponding application SW. Both techniques cannot be
extended to muti-core platforms with inter-core communi-
cation synthesis. Yu [21] shows generation of application
C code from concurrent SpecC, which requires the initial
system modeling to be done in SpecC. The Phantom
Serializing Compiler [22] translates multi-tasking POSIX
C code input into sequential C code by custom scheduling,
but is a purely SW core-specific optimization. Schirner
[23] also proposes Hardware-dependent synthesis from
SpecC models but only considers platforms with single
core connected to several peripherals. In contrast to all
the above techniques, ESE provides generation of core,
platform and application-specific embedded SW for multi-
core systems, starting from a C/graphical specification.

III. MULTICORE PLATFORM CLASSIFICATION

Multicore platforms may be classified broadly based
on the type of cores used and their connectivity. Typical
multicore architectures are asymmetric , symmetric and
heterogeneous networks. The type of platform chosen to
implement a design depends on the application character-
istics. In this section, we will look at the properties of each
type of platform and the rationale behind selecting the
platform architecture. Finally, we will present a generic
platform template that covers all types of platforms and
simplifies automatic SW synthesis.

SW Drivers

p

1

p

3

p

2

SW1

Processor Bus

Bus Interface1

HW1
 HW2

Memory

Bus Interface2

HW3
 HW4

Peripheral

Bus 1

Peripheral

Bus 2

Figure 1. An asymmetric multicore platform.

A. Asymmetric Multicore Platform
Asymmetric multicore platforms are typically charac-

terized by a single embedded processor with several HW
peripherals, as shown in Figure 1. The HW peripherals are
optimized for a given function that is executed frequently
in the application. Alternately, a compute intensive func-
tion may be mapped to HW, it the SW core data path is
inefficient for the function. The communication topology
of the asymmetric platform depends on the interface of
the HW peripherals. Often, the HW IP has a standard
I/O interface that may not be compatible with the given
processor bus protocol. In such cases, a bus interface com-
ponent must be implemented to bridge the SW processor
bus with the HW bus. This interface is responsible for
protocol conversion and buffering of I/O data for the HW
components.

Ideal application candidates are sequential applications
that do not exhibit any parallelism or cannot be easily
pipelined. Typically, such applications have a few fre-
quently executed functions with low I/O. The discrete co-
sine transform DCT function used in various multimedia
applications is one such example. It must be noted that
the I/O to the peripheral must be minimal, so that the
communication delays do not offset the performance gain
from the HW acceleration.

B. Symmetric Multicore Platform
Symmetric multicore platforms are characterized by

several SW processor cores connected to a shared bus,
as shown in Figure 2. Each core is of the same type.
The processors communicate via the shared bus and a
common shared memory. Typically, such cores connect to
the bus as masters, which restricts direct communication.

718 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.717-727

SW Drivers

p

1

p

3

p

2

SW1

Processor Bus

Shared

Memory

Memory1

SW Drivers

p

1

p

3

p

2

SW2

Memory2

SW Drivers

p

1

p

3

p

2

SW N

MemoryN

Figure 2. A symmetric multicore platform.

Therefore the shared memory acts as a slave that buffers
the inter-core transactions. Additional control must added
either in SW or in HW (in the shared memory) to
implement synchronization between the cores.

Ideal applications for symmetric platforms have a high
degree of concurrency, so that the concurrent functions
may be implemented as processes on different cores.
The concurrency may be either in control flow or data
flow. Pipelined applications with evenly balanced stages
are also ideal for symmetric multicore implementation.
However, it must be noted that the shared bus may be
a bottleneck if more than two cores are used. This is
particularly relevant for pipelined applications. Different
stages of the pipeline on different cores may attempt to
access the shared bus at the same time. This may overload
the bus and the time lost in arbitration may offset the
performance gains from concurrency.

SW Drivers

p

1

p

3

p

2

SW1

Processor

Bus1

Bus Interface1

HW1

Memory1

Peripheral

Bus 1

HW2

Router

S

W

D

r
i

v
e

r
s

p
 1

p
 3

p
 2

S
W

2

S
W

D
r
i
v
e
r
s

p
1

p
3

p
2

S
W

3

M

e
m

o
r

y
2

 M

e
m

o
r
y
3

P
r

o
c

e
s

s
o

r

B
u

s
2

P
r
o
c
e
s
s
o
r

B
u
s
3

Figure 3. A heterogeneous multicore network.

C. Heterogeneous Multicore Network
The shared bus architecture of symmetric multicore

platforms inhibits concurrent communication between dif-
ferent pairs of cores. Heterogeneous networks combine
the benefits of symmetric and asymmetric platforms with
the added benefit of efficient communication architecture.
The platforms are characterized by several SW and HW
cores, connected with independent compatible buses, as
shown in Figure 3. The buses in turn are connected to
routers or bus interfaces to provide protocol conversion
and transaction routing, as applicable.

The typical applications suitable for such platforms are
ones that have large amount of available parallelism as

well as frequently executed functions. However, if the
communication between the concurrent processes is low,
a heterogeneous network may be an overkill due to the
large area associated with an on-chip router.

D. Multicore Platform Template
It can be seen that different platform configurations

require different types of services to satisfy the abstract
communication requirements of the application. Symmet-
ric platforms require basic synchronization and memory
access. Asymmetric platforms may require protocol con-
version, which heterogeneous networks may require pack-
etization and routing. In order to automate the synthesis of
embedded SW on individual cores, we first need to define
templates and semantics of the platform components.

We define a generic platform as a composition of
processing elements (PEs), memories, buses and trans-
ducers. PEs are our generic term for HW and SW cores
on which application processes are mapped. Memories
are storage cores that do not have any active thread
of computation. Shared variables in the application are
mapped to memories. Buses are generic communication
units that can act as point-to-point links or shared buses
with arbitration. Buses have well defined protocols and
may connect to compatible ports on a given core.

Transducers are generic interface cores that provide
functionality of (1) buffering, (2)protocol conversion and
(3) static routing. Transducers consist of internal buffers
and may connect to incompatible buses via different ports.
For each bus connection, they have an IO interface and a
Request Buffer. This request buffer stores all send/receive
requests made to the transducer for storing and forwarding
data on a channel. Thus, they allow sending data from one
PE to another if the two PEs are not connected to a com-
mon bus. A route in the platform is a sequence of buses
and transducers with the following regular expression:

PEsender → Bus0 → [Transduceri → Busi →
] ∗ PEreceiver

Abstract communication channels, between application
processes, are mapped to routes in the platform. As a
result, each transducer in the platform may have several
channels routed through it. For each such channel, the
transducer defines (1) a unique buffer partition to be used
by data on that channel, (2) a unique bus address for a
send request, and (3) a unique bus address for a receive
request. Since transactions on a channel are sequential,
the partitioning of transducer buffers guarantees safety
and liveness of implementation, provided the application
model is safe and live.

IV. SYSTEM-LEVEL DESIGN DECISIONS

There are several design steps involved in implementing
a given application on a multicore platform. Each of these
steps involves a design decision. These design decisions
are used to configure the SW/HW platform, map the
application to the platform and generate the SW and
HW code needed for implementation. Design decisions

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 719

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.717-727

M3

A1

T1

#transducers=0

T2

#transducers>0

PE2 =
Mem

N5

PE2 !=
Mem

PE1 master
 P1 slave

L1
 L2

Interrupt

L3

Polling

dedicated
 via IC

Variable

packet
-
size

Fixed

packet
-
size

T3
 T4

Variable Route

N3
Route fixed

decided

by
Tx

N4

N7

decided

by PE1

N8

Route in

packet

Route in

Tx
request

N9

MAC+phy

Network

Link

Transport

L4
 L5
 L6
 L7

Application + Presentation + Session

N6

Word encoding
 Raw

M1
 M2

N2

No stuffing
Byte

stuffing

N1

Statically partitioned

Tx
FIFO

Dynamically partitioned

Tx
FIFO

M4
M3

A1

T1

#transducers=0

T2

#transducers>0

PE2 =
Mem

N5

PE2 !=
Mem

PE1 master
 P1 slave

L1
 L2

Interrupt

L3

Polling

dedicated
 via IC

Variable

packet
-
size

Fixed

packet
-
size

T3
 T4

Variable Route

N3
Route fixed

decided

by
Tx

N4

N7

decided

by PE1

N8

Route in

packet

Route in

Tx
request

N9

MAC+phy

Network

Link

Transport

L4
 L5
 L6
 L7

Application + Presentation + Session

N6

Word encoding
 Raw

M1
 M2

N2

No stuffing
Byte

stuffing

N1

Statically partitioned

Tx
FIFO

Dynamically partitioned

Tx
FIFO

M4

Figure 4. A system-level design decision tree.

must be made at various levels of abstraction, including
physical-level, gate-level, RTL and system-level. In the
context of embedded SW synthesis, we are primarily
concerned with system-level design decisions.

Exploration of system level design choices is usually
constrained by a number of factors, such as design
methodology, legacy code, tool availability and project
deadlines. Similarly, the order of design decisions depends
on the above constraints. However, in any model based
design methodology, each design decision transforms an
intermediate model to reflect the affects of the decision.
Therefore, the set of system-level design decisions refines
the application model into a pin-cycle accurate model
(PCAM). Embedded SW generation is part of this model
refinement process.

The system level design decision tree in Figure 4
illustrates embedded SW synthesis in context of the ESE
system level design methodology. The design decisions
presented here are used to implement an abstract channel
between two processes mapped to cores PE1 and PE2 in
the platform. The decisions are required to generate the
of the embedded SW code on the communicating cores.
The nodes in the tree represent models in the design
methodology. Each edge in the tree is labeled with the
decision, used to transform the source model into the

destination model. The starting point is the application
model A1. These decisions may be grouped into relevant
OSI network layers as shown.

It must be noted that the decisions shown in Figure 4
are only a subset of all decisions in ESE. Furthermore,
not all the models in the tree are generated by ESE, as we
shall see later. Generating and simulating unique models
for every decision is impractical for a large multicore
design. Instead, TLM is the only intermediate model
generated by ESE. The TLM incorporates all the decisions
above and including the network layer.

A. Transport Layer Decisions
The objective of the transport layer is to determine the

packetization of the data being transacted between the
cores. The packet size is dependent on the route that this
transaction may take. If the cores have a direct connection,
and may access each other’s local memory, then no
transducers are needed. Therefore, packet size becomes
irrelevant. The entire transaction is treated as a single
packet in the resulting model T1. If transducers exist in
the route, then the message must be split into packets
of size less than the buffer size of all the transducers in
the route. If the packet size is variable, then the code to
determine it at run time must be generated in model T4.

720 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.717-727

The transport layer decisions result in T1, T3 or T4.

B. Network Layer Decisions
The network layer decisions implement all the routing-

specific model transformations on the transport layer
models. If the buffer of the first transducer (Tx) in the
route is dynamically partitioned, then SW code must be
generated in PE1 to allocate the required packet size in
Tx. If the packet route is variable and determined by PE1,
then additional SW must be generated to implement the
routing algorithm in PE1. The route must be encoded
in the packet or the Tx request buffer depending on Tx
configuration. For fixed size packets and a fixed route,
the only code needed is the Tx request. The models at the
end of network layer decisions (N5 through N9) carry the
SW for packetization and routing.

C. Link Layer Decisions
The network layer models are further refined by the link

layer decisions that implement synchronization between
PE1 and Tx/PE2. If PE1 is the master and the synchro-
nization scheme is selected to be Polling, then code must
be generated in PE1 to periodically check and reset the
polling for each packet transfer. If interrupts are used for
synchronization, then the respective handler code must be
generated. If the transaction is a memory access, then no
packet-level synchronization is required (model L4).

D. MAC and Physical Layer Decisions
The media access control (MAC) and physical layers

are responsible for data transfer of packets on the bus.
The packet bits are divided into bus words by the MAC
layer decisions. If bit-stuffing is required to mark the
packets, the code must be generated to add the marker
bits. Any transformations for encoding the bus data, for
example to implement error correction or detection, are
performed based on the physical layer decisions. The final
model at the end of MAC and physical layer decisions
(represented by square nodes) carries all the system level
design decisions for implementing the transaction from
PE1 to PE2. This model is exported for implementation
by traditional compilers and ASIC/FPGA synthesis tools.

V. MODEL BASED DESIGN WITH ESE
The model based design methodology of ESE is shown

in Figure 5. We start with an application model that
consists of C processes communicating via synchronized
point-to-point handshake channels and shared variables.
The platform definition is a graphical net list of processing
elements (PEs), buses and transducers. Processes and
variables in the application model are mapped to the
PEs in the platform. Channels are mapped to routes
in the platform. If the route includes a buffer, then
the communicated data may need to be broken up into
smaller packets according to the buffer size limitations.
The above design decisions and data models of PEs,

ESE

Front-End

Component

 Data Models

TLM

Application
 Platform

ESE

Back-End

Optimization

PCAM
 Board

Implementation

Component

Libraries

System Definition

mapping

SystemC

Simulation

Figure 5. ESE Design Flow.

buses and RTOSes are used by the ESE Front-End to
generate a TLM. The TLM models the PEs as SystemC
modules connected to the communication architecture
model consisting of bus channels and buffer modules.
The original application processes are encapsulated as
SystemC threads instantiated inside the PE modules. The
point-to-point channel accesses of the application model
are mapped into equivalent packet transactions routed
over the communication model.

The step of refining the TLM into a PCAM is per-
formed by the ESE Back-End. The component data mod-
els in TLM are replaced with respective implementation
libraries in the PCAM. Synchronization is modeled in
the TLM via abstract SystemC flags and events. The flag
and event accesses must be transformed into interrupts or
polling in the PCAM. Similarly, the packet transactions
over the bus channels in the TLM must be transformed
into equivalent arbitration and data transfer cycles on the
system buses. The transformations applied to the model
result in various C functions per SW core. These functions
form the embedded SW library for that core. If there are
HW IPs in the platform, they will require RTL interface
blocks for the same functions, with platform specific
timing constraints. In this section, we will discuss the
above models in greater detail to provide an idea of the
input and output of the embedded SW synthesis process.

Figure 6. Application model.

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 721

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.717-727

A. Application Model

Figure 6. shows the application model of an MP3
Decoder. The decoding algorithm is captured with a set
of eight concurrent processes, each executing sequential
C code. Process Huffman Decoder inputs MP3 stream
organized in frames, performs Huffman decoding, re-
quantization and frame reordering. The frames are then
classified into either left or right stereo stream and pro-
cessed separately. Left and Right Alias Reduction pro-
cesses reduce the aliasing effects in frames, while the
Left and Right IMDCTs convert the frequency domain
samples to frequency sub-band samples. The two DCT
processes transform the individual frequency sub-bands
into PCM samples and send them to the PCM process
for correction verification.

Communication in application model is enabled with
calls to (a) send/recv methods for direct process commu-
nication, and (b) read/write methods for accessing vari-
ables shared between processes. The send/recv methods
are encapsulated in process-to-process channels with no
message buffering. Instead, process-to-process channels
follow handshake synchronization semantics, where the
receiver process blocks until the sender has sent the
communicated data. All communication in MP3 Decoder
is modeled using process-to-process channels Ch1 to Ch9.

On the other hand, the communication with
read/write methods is unblocking. The shared
variables are in the global scope and are accessed with
unsynchronized access channels. The two communication
mechanisms are sufficient to model more complex
communication services such as FIFOs, mutexes,
mailboxes or events. Therefore, the synthesis of the basic
communication models of handshake channels and shared
variable access channels is necessary and sufficient for
implementing any inter-process communication service
at this level of abstraction.

The set of processes, variables and channels are built
on top of the SystemC simulation kernel, as shown on
Figure 6. The processes execute as concurrent threads on
the simulation kernel. The process to process channels
use the notify-wait semantics of the kernel events to im-
plement handshake synchronization. The shared variables
are modeled as passive SystemC modules that export read
and write interfaces, which are used to connect them
to the access channels. Interfaces are also defined for
processes to allow connection to channels. A well defined
interface template provides a communication API with the
following functions, where < i > is the interface name:

• < i > Send(void *data, int size) Synchronized send
• < i > Recv(void *data, int size) Synch. receive
• < i > Write(void *data, int size) Non-blocking write
• < i > Read(void *data, int size) Non-blocking read
By separating the communication interface from the

rest of the computation code, we are able to successively
refine only the interface implementation code. The API
provided to the application developer stays the same
throughout SW synthesis.

Figure 7. TLM resulting from application to platform mapping.

B. Transaction Level Model
The TLM is derived by mapping the application model

in Section V-A to an embedded platform. The platform
components are modeled with a well defined SystemC
code template. PEs are modeled as SystemC modules
that instantiate application processes. The system buses
are modeled with a universal bus channel (UBC), that
provides methods for synchronized send/receive, non-
blocking read/write and memory service. Memories are
modeled as SystemC modules with a local array. Trans-
ducers are modeled as SystemC modules with local buffer
and controller threads for each bus interface.

Figure 7 shows the TLM of the MP3 Decoder. Pro-
cesses Left and Right DCT are mapped to the HW units
(IP1 and IP2), while all other processes reside in a SW
core (CPU) model. The route between the core and the
HW units includes two UBCs and a Transducer. Access
to units from the SW core is modeled with Channel
API that encapsulate routing and packeting methods.
These methods in turn are implemented with the UBC
functions. Routing includes programming the Transducer
with encoded route using UBC write method. Packeting
divides the message into data packets of selected size.
Since multiple processes are mapped to the SW core, a
dynamic scheduler model that exports a threading API
emulates processor multitasking.

Channels between processes in the SW core are im-
plemented with an inter-process communication (IPC)
model. The IPC and scheduler model are only core de-
pendent and can be included into the TLM from a library.
However, the external communication code is application,
platform and core dependent. Therefore, it has to be
generated for every communication design change.

Figure 8. PCAM refined from TLM for board prototyping.

722 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.717-727

C. Pin-Cycle Accurate Model
The TLM is refined into a PCA model that is used for

board implementation. Board design tools such those from
Xilinx and Altera can be used to convert PCAMs into
bitstreams for board implementation. Board development
tools can then be used for real time debug.

Figure 8. shows the PCAM of the MP3 Decoder. The
platform consisting of one SW core and two IP units con-
nected with two buses and a transducer is now modeled
in synthesizable RTL. The six MP3 Decoder processes
mapped to a SW core are compiled with the appropriate
C compiler (e.g. Xilinx compiler for Microblaze core)
and linked with the system SW libraries for download.
The processes mapped to HW can be either synthesized
using C-to-RTL tools or replaced with the respective RTL
IP. The system SW stack includes the threading and IPC
libraries of the RTOS, and the external communication
library generated by our synthesis tool. The RTOS itself
may consist of several other services such as file handling,
memory management, standard C library, and networking.

The communication SW library consists of four layers
as shown in Figure 8. The lowest layer consists of a
set of interrupt handlers (IHs) and memory access func-
tions. Each application level handshake channel requires
synchronization that may be implemented as interrupt
or polling. For interrupt based synchronization an IH is
implemented per handshake channel. For polling imple-
mentation, a memory mapped flag is implemented in the
slave device that is periodically checked by the master SW
core. The memory access functions also provide basic IO
to the peripherals. The synchronization and data transfer
layer consists of C methods that use the IHs and memory
access methods to manage packet level synchronization
and bus word transfers. The higher level layers for routing
and packeting and the channel API are imported directly
from the TLM. In summary, the communication in PCAM
is implemented with core specific C methods as opposed
to SystemC kernel methods in TLM.

VI. EMBEDDED SW GENERATION

In this section we describe the embedded SW synthesis
and code generation from a set of design parameters. The
parameters correspond to the design decision variables al-
ready discussed in Section IV. The design parameters are
determined from the application and platform decisions
as well as core properties and are treated as constants
for SW code generation. Two layers of communication
functions are generated,namely for routing/packeting and
synchronization/transfer. These functions are specific to
the interface of the application process. An example
shows a typical code synthesized for a Send interface.

A. Communication Design Parameters
In order to automate the communication SW code

generation, we define a set of communication specific
system parameters. Based on our platform template,
explained in Section III-D, we define a Global Static

Routing Table (GSRT). The GSRT stores the mapping
of each application level channel to a platform route.
For each channel Ch, routed through a transducer Tx,
we define BufferSize(Tx, Ch) to be the buffer partition
size in bytes for Ch on Tx. We also define the transducer
send and receive request buffer addresses per channel as
SendRB(Tx, Ch) and RecvRB(Tx, Ch), respectively. The
above parameters are required to generate routing and
packeting layers for the SW core.

For each channel Ch, routed over a bus B, we define
SyncType(B, Ch) to be the synchronization method to
be used for ch for the route segment at B. The two pos-
sible synchronization methods are Interrupt and Polling.
For direct memory accesses that do not require routing
through transducer, synchronization is not required. A
synchronization flag table is maintained for each core.
Each channel Ch gets a unique entry SyncFlag Ch in
this table. For interrupt based synchronization, we also
define a binding from the interrupt source to the flag and
the handler instance. For polling, the flag is bound to
an address in the slave PE. Finally, for the data transfer
implementation, we define the bus word size and the low
to high address range for each channel Ch on bus B as
AR(B, Ch). For each SW core we also define WordSize
as the number of bytes per word.

B. Routing and Packeting
The communication functions are synthesized for each

interface i that is bound to a channel Ch. Since we allow
only static routing, a route object Rt is stored in the GSRT
corresponding to each channel. Note that the GSRT does
not need to be part of the communication library, since the
routing per channel is static. The route for Ch determines
the channel packet size as follows:

PktSz = Min (∀Tx ∈ Rt, BufferSize(Tx, Ch))

Hence, packet size is the largest data size that can fit
into any transducer buffer allocation for Ch. Again, note
that PktSz is a constant per channel, due to static routing.

The code generated for the interface communication
method is a do-while loop, with a temporary variable to
keep track of already sent/received data. A lower level
method i SyncTr is called by the routing/packeting layer
to synchronize with the corresponding process and send
or receive each packet.

C. Synchronization and Transfer
The routing of channel Ch determines the synchroniza-

tion code generated inside the i SyncTr method. Given the
route object Rt, as obtained from the GSRT, we determine
the first bus B in Rt. We also determine if Rt contains any
transducers. If so, we assign Tx to be the first transducer
in Rt. The first step of packet synchronization is top make
a transducer request for the transaction. This is done by
generating code to write the packet size (in bytes) into
the request buffer at the address given by the parameter
SendRB(Tx, Ch) or RecvRB(Tx, Ch), depending on

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 723

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.717-727

Figure 9. Embedded SW code example

the transaction type. Once the request is written, the trans-
ducer initiates lower level synchronization via interrupt or
polling, just like any other slave core.

Lower level synchronization is implemented by gen-
erating code for busy waiting over flag SyncFlag Ch
in the i SyncTr method. The flag is either set by the
interrupt handler for Ch or by the corresponding slave
core, in case of polling. The busy-wait code is followed
by resetting the synchronization flag. Finally, data transfer
is performed by generating a call to the core-specific
WrMem or RdMem functions. These functions write or
read data of given bytes using bus transactions of size
WordSize. The starting address of the transfer is obtained
from the range AR(B,Ch).

Figure 9 shows an example for the embedded SW code
generated for send method of interface i. The sender
process is mapped to a SW core, and its interface i is
connected to bus B. Interface i is bound to channel Ch that
is routed over B and transducer Tx and onto the destination
core. Interrupt signal (Interrupt) from the transducer to
the SW core is used for synchronization, and is bound to
handler IH Ch and flag SyncFlag Ch.

VII. EXPERIMENTAL RESULTS

In this section, we will present results on SW synthesis
quality, productivity gain and design space exploration
provided by ESE. We selected two applications; MP3
decoder and JPEG encoder to demonstrate SW synthesis
for asymmetric, symmetric and heterogeneous network
platforms. The PCAMs, carrying the embedded SW code,
were implemented on the FF896 Virtex-II device using
Xilinx EDK [16]. The performance of the synthesized
designs was measured with an OPB timer on the board.

A. Design drivers
Figure 10 shows a multi-core design with an MP3

decoder application mapped to a platform consisting of
one SW core (Microblaze) and four HW cores (Left/Right
DCT and IMDCT) used as accelerators. The HW cores
use a DoubleHandshake (DH) Bus interface, while the
SW core is connected to the Open Peripheral Bus (OPB).
Since the two bus protocols are incompatible, a transducer
is used to interface between the cores. The block diagram
of the stereo MP3 application with left and right channel

OPB Bus

DH Bus

Left

IMDCT

Memory

Right

IMDCT

Left

DCT

Right

DCT

PCM

Left

DCT

Left

IMDCT

Right

DCT

Right

IMDCT

Alias

Red.

Alias

Red.

Huff.

Dec.

Transducer

Microblaze

Figure 10. MP3 Decoder asymmetric platform: SW+2D+2I.

decoding blocks is shown inside Microblaze. We created
four mappings of the application, that we refer to as
SW+1D, SW+2D, SW+2I and SW+2D+2I, with parts
of the application mapped to the HW accelerators, as
indicated by the mapping name. The inter-core bidirec-
tional channels are routed over the OPB, DH buses and
transducer Tx.

OPB Bus

Transducer

Microblaze 1
 Microblaze 2
 Microblaze 3
 Microblaze 4
 Microblaze 5
 Microblaze 6

RdBmp
 DCT1
 DCT2
 Quantize
 Zigzag
 Huffman

180 iterations

Figure 11. JPEG encoder 6-core symmetric platform

In order to demonstrate automatic system SW synthesis
for symmetric multicore platforms, we created several
implementations of the JPEG encoder application. The
application was mapped to a 6-core platform as shown
in Figure 11. The key functions of the JPEG encoder
are (RdBmp, DCT, Quantize, Zigzag and Huffman) are
executed inside a loop. We created a pipelined model that
reads the streaming bitmap image and encodes it frame by
frame. Since DCT is twice as computationally intensive as
the other functions, we split it into two functions, DCT1
and DCT2, in order to balance the pipeline. We created
several multicore JPEG implementations with Microblaze
cores connected to a common OPB bus. The number of
cores range from 2 to 6. The functions mapped to the
same core were serialized into a single process.

OPB Bus1

Transducer1

Microblaze 1
 Microblaze 2
 Microblaze 3
 Microblaze 4
 Microblaze 5
 Microblaze 6

RdBmp
 DCT1
 DCT2
 Quantize
 Zigzag
 Huffman

180 iterations

Transducer2
 Transducer3

OPB Bus2

OPB Bus3

OPB Bus4

Figure 12. JPEG encoder 6-core network

In the pipelined JPEG implementation, majority of

724 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.717-727

Design SW (LOC) Comm. cycles
SW+1D 162 0.96M

Manually SW+2D 192 1.91M
implemented SW+2I 192 1.87M
SW SW+2D+2I 252 3.79M

SW+1D 168 0.95M (-0.74%)
Automatically SW+2D 208 1.89M (-0.74%)
synthesized SW+2I 208 1.86M (-0.62%)
SW SW+2D+2I 288 3.76M (-0.68%)

TABLE I.
COMPARISON OF MANUAL VS. SYNTHESIZED MP3 DECODER SW

communication is attempted concurrently. Thus, the ar-
bitration delay on the shared bus begans to dominate the
overall execution time. To optimize the communication,
we created a multicore network by adding 3 more OPB
buses and 2 more transducers as shown in Figure 12.

B. SW Synthesis Quality
Table I shows a comparison between manually im-

plemented and automatically synthesized PCAMs using
quality metrics of SW code size and communication
delay. It can be seen that the synthesized SW code is only
marginally larger than manual implementation (between
6-36 LOC). The code size was different because the man-
ual implementation shared the synchronization function
for different application channels, while the synthesized
code had unique synchronization function for each chan-
nel. However, the performance of the synthesized code,
as measured by the on-chip timer, is marginally better
(< 1%) than manual implementation. The performance
difference is seen because of the difference in synchro-
nization implementation. The manual code had fewer total
instructions, but incurred more instruction fetches for
each communication call at run-time, resulting in slightly
higher communication delay.

C. Productivity Gain
The most significant benefit of automatic SW synthesis

is the huge productivity gain without loss in design
quality. Table II shows the productivity gain metric for
various multicore implementations of the MP3 and JPEG
applications. The Platform development time (P) is the
total time used in defining the multicore platform and
mapping the application in ESE. This time includes
creating the ESE project, partitioning the application and
entering the design decisions. For the MP3 application,
there was not much difference in isolating the DCT and
IMDCT processes and instantiating the HW accelerators.
However, for the JPEG example, it took significant time
in pipelining the application and creating channels for
communication between the pipeline stages. Furthermore,
it took significant time in defining the routing and address-
ing of channels for the heterogeneous network implemen-
tation of JPEG (6-core-net).

The generated SW code size in lines of code (LOC)
are also shown in Table II. The manual implementation
of embedded SW for MP3 was done by a embedded
design expert and took between 2 to 3.5 hours. Manual

Design Slices BRAMs Cycles
2-core 1328 64 9.56M
2-core 4310 72 5.55M
3-core 5211 104 5.53M
4-core 6133 136 4,24M
5-core 7126 148 4.63M
6-core 8079 176 5.50M
6-core-net 13123 188 2.73M

TABLE III.
JPEG ENCODER DESIGN EXPLORATION

implementation of JPEG designs was not done due to
resource constraints. However, based on our experience
with MP3 SW design, we were able to predict that an
expert embedded SW developer could code and validate
approximately 80 LOC/hour. Using this metric, we es-
timated the time it would take a manual developer to
implement the embedded SW for JPEG designs (M). The
automatic SW synthesis in ESE tool less than 1 second
for all the designs,due to the well defined semantics of
our models. Since the code generation time is negligible,
the productivity gain to be (P +M)/P . The results show
that as the platform and mapping become more complex,
the SW development time begins to dominate the platform
design time. As a results we saw productivity gain ranging
from 1.28X for simple asymmetric designs to over 4.7X
for complex heterogeneous networks.

D. JPEG Design Space Exploration
We performed design space exploration to optimally

implement the JPEG encoder application. As presented
earlier, we created various multicore platform configura-
tions. These design projects were developed in ESE and
automatic SW synthesis was used to generate the code.
Table III shows the FPGA area (in terms of slices and
BRAMs) and the encoding time (in millions of cycles)
for the various designs. We were able to conclude two
suitable design choices as highlighted in the table. The 4-
core design was found to be optimal for a symmetric mul-
ticore implementation. The network implementation used
much higher area but provided the benefits of pipelining
and concurrent communication. From Table II, we can see
that the productivity gain for JPEG exploration, from SW
synthesis alone, is 3.4X. The productivity is expected to
be even higher for more complex designs.

VIII. CONCLUSIONS

We presented a model based technique and
methodology for synthesis of embedded SW for
heterogeneous multicore systems. The novelty of our
work lies in defining embedded system models at
different abstraction level with clear synthesis semantics.
Application level models were defined as a set of
processes communicating via message passing channels
and shared variables. A well defined, yet highly flexible,
platform template and associated design parameters
were presented. We also presented a synthesis procedure
to generate core, application and platform specific

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 725

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.717-727

Design SW code size Platform dev. Manual SW dev. Productivity
(LOC) time (hrs.)[P] time (hrs.)[M] [Gain = (P+M)/P]

SW+1D 162 5 2 1.28 X
Asymmetric SW+2D 192 5 2.5 1.33 X
MP3 decoder SW+2I 192 5 2.5 1.33 X

SW+2D+2I 252 5 3.5 1.37 X
2-core 408 3 5 2.67 X

Symmetric 3-core 490 3.5 6 2.71 X
Shared-bus 4-core 772 4 10 3.5 X
JPEG Encoder 5-core 1020 5 12 3.4 X

6-core 1224 6 15 3.5 X
JPEG Network 6-core-net 2093 7 26 4.71 X

TABLE II.
PRODUCTIVITY GAIN FROM AUTOMATIC SW SYNTHESIS

embedded SW for the design. Synthesis results for
an MP3 decoder and JPEG encoder applications
demonstrated the applicability of our technique to large
industrial embedded systems. Our automatic embedded
SW synthesis reduces overall design time, without loss
of design quality compared to manual implementation.
For future work, we are investigating SW synthesis from
dependability and security oriented application models.
We are also working extending our model based design
framework with application and platform templates for
real-time architectures such as time triggered network.

ACKNOWLEDGMENT

We wish to thank Hansu Cho for providing the Verilog
implementation of transducers, Pramod Chandraiah for
the C reference of the MP3 Decoder, and Gunar Schirner
for discussions on Hardware-dependent SW.

REFERENCES

[1] “Embedded System Environment[online]. Available:
http://www.cecs.uci.edu/˜ese/.”

[2] “Automotive Open System Architecture[online]. Available:
http://www.autosar.org/.”

[3] “OSEK[online]. Available: http://www.osek-vdx.org/.”
[4] “SystemC, OSCI[online]. Available:

http://www.systemc.org/.”
[5] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao,

SpecC: Specification Language and Methodology. Kluwer
Academic Publishers, January 2000.

[6] F. Balarin and et al., Hardware-Software Co-Design of
Embedded Systems: The POLIS Approach. Kluwer, 1997.

[7] S. Ritz and et al., “High-level software synthesis for
the design of communication systems,” IEEE Journal on
Selected Areas in Communications, April 1993.

[8] J. Cortadella and et al., “Task generation and compile time
scheduling for mixed data-control embedded software,” in
Proceedings of the Design Automation Conference, June
2000.

[9] A. Gerstlauer, D. Shin, J. Peng, R. Domer, and D. D.
Gajski, “Automatic, layer-based generation of system-on-
chip bus communication models,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 26, no. 9, Spetember 2007.

[10] H. Kopetz, R. Obermaisser, C. E. Salloum, and B. Hu-
ber, “Automotive software development for a multi-core
system-on-a-chip,” in SEAS ’07: Proceedings of the 4th
International Workshop on Software Engineering for Auto-
motive Systems. Washington, DC, USA: IEEE Computer
Society, 2007, p. 2.

[11] A. Sangiovanni-Vincentelli and et al., “A next-generation
design framework for platform-based design,” in Confer-
ence on Using Hardware Design and Verification Lan-
guages (DVCon), February 2007.

[12] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli,
“Constraint-driven communication synthesis,” in Proceed-
ings of the Design Automation Conference, 2002, pp. 783–
788.

[13] K. K. Ryu and V. Mooney, “Automated bus generation
for multiprocessor soc design,” in Proceedings of the
Design Automation and Test Conference in Europe, 2003,
p. 10282.

[14] S. Pasricha, Y.-H. Park, F. J. Kurdahi, and N. Dutt,
“System-level power-performance trade-offs in bus matrix
communication architecture synthesis,” in CODES+ISSS
’06: Proceedings of the 4th international conference on
Hardware/software codesign and system synthesis. New
York, NY, USA: ACM, 2006, pp. 300–305.

[15] T. Makkelainen, “Hds from system-house perspective,” in
Hardware dependent Software Workshop at DAC, 2007.

[16] “Xilinx Embedded Development Kit[online]. Available:
http://www.xilinx.com/.”

[17] “Altera SOPC Builder[online]. Available:
http://www.altera.com/.”

[18] F. Herrera, H. Posadas, P. Snchez, and E. Villar, “Sys-
tematic embedded software generation from systemc,” in
Proceedings of the Design Automation and Test Conference
in Europe, 2003.

[19] M. Krause, O. Bringmann, and W. Rosenstiel, “Target
software generation: an approach for automatic mapping of
systemc specifications onto real-time operating systems,”
Design Automation for Embedded Systems, vol. 10, no. 4,
December 2005.

[20] L. Guthier, S. Yoo, and A. Jerraya, “Automatic generation
and targeting of application specific operating systems and
embedded systems software,” in Proceedings of the Design
Automation and Test Conference in Europe, 2001, pp. 679–
685.

[21] H. Yu, R. Dömer, and D. Gajski, “Embedded software gen-
eration from system level design languages,” in Proceed-
ings of the Asia-Pacific Design Automation Conference,
2004, pp. 463–468.

[22] A. C. Nacul and T. Givargis, “Lightweight multitasking
support for embedded systems using the phantom serial-
izing compiler,” in Proceedings of the Design Automation
and Test Conference in Europe, 2005, pp. 742–747.

[23] G. Schirner, A. Gerstlauer, and R. Dömer, “Automatic
generation of hardware dependent software for mpsocs
from abstract system specifications,” in Proceedings of
the Asia-Pacific Design Automation Conference, 2008, pp.
271–276.

726 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.717-727

Samar Abdi is an assistant project scientist at the Center for
Embedded Computer Systems, University of California, Irvine,
where he leads the development of Embedded System Environ-
ment, a toolset for model based design of multicore embedded
systems. He is also part of the Gisgascale Systems Research
Center (GSCR), where he leads a project on verification of
transaction level models.

Samar received his PhD in Information and Computer Science
from UC Irvine in 2005 and his B.Tech. in Computer Sci-
ence and Engineering from the Indian Institute of Technology,
Kharagpur in 1998. He also spent two years as a member of
technical staff at Cadence Design Systems, developing logic
simulation tools. His research interests include embedded system
design and verification.

Daniel D. Gajski is the Henry Samueli (Turing) Chair of
Electrical Engineering and Computer Science at the Univer-
sity of California, Irvine. He was instrumental in developing
formalisms and algorithms for high-level synthesis such as
Control/Data Flow Graph (CDFG) and the Finite-State-Machine
with Data (FSMD), system level languages such as SpecCharts
and SpecC, and design tools such as SpecSyn, System-on-Chip
Environment, and Embedded System Environment.

Gajski directs the UCI Center for Embedded Computer Sys-
tems, with a research mission to incorporate embedded systems
into automotive, communications, and medical applications. He
has authored over 300 papers and numerous textbooks, including
Principles of Digital Design (Englewood Cliffs, NJ: Prentice
Hall, 1997) that has been translated into several languages.

He holds Dipl. Ing. and M.S. degrees in electrical engineering
from the University of Zagreb, Croatia, and a doctoral degree
in computer and information sciences from the University of
Pennsylvania, Philadelphia.

Ines Viskic is a Ph.D Candidate in the department of Electrical
Engineering and Computer Science at the University of Cali-
fornia, Irvine. She has been working in the area of embedded
system design at the Center for Embedded Computer Systems
since 2005. Her research includes modeling and synthesis of
communication of networked, distributed MPSoCs. Ines re-
ceived her undergraduate diploma in computer engineering from
University of Zagreb, Croatia in 2004.

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 727

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.717-727

