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Abstract— Direct analysis of failures from the field of ap-
plication is an effective practice to understand the actual
dependability behavior of an operational system. However,
despite its wide use over the last four decades on a large vari
ety of systems, field data analysis has rarely been applied to
wireless networks. Users accessing the Internet ubiquitaly
through these networks are increasing, and they expect the
same dependability level they already experience on wired
networks. But how can we analyze the dependability level
of a wireless network? The article defines a novel combined
approach to model and analyze the dependability of short
range wireless technologies exploiting field data. Through
the experience gained from extensive failure analysis of
Bluetooth networks, the paper shows how field failure data
can play a key role to fill the gap on understanding the
dependability behavior of wireless networks.

Index Terms— Dependability Modeling, Bluetooth, Wireless
Networks

I. INTRODUCTION

dominate both in quantity and in quality. Small embedded
devices have become a daily portable necessity, which is
always no more than one meter away from users. PDAS,
laptops, cellphones, MP3 players, webcams, and even
fridges and microwave ovens, have embedded Internet
connectivity, and allow to access the global network from
everywhere.

Short Range Wireless (SRW) technologies are at the
core of this revolution, as well as the key to ubiquitous
networking. They are primarily meant for indoor use and
over short ranges, in which they are able to connect
portable devices with high connection speed and low
power consumption. They are often used at the edges of
the wired network, e.g., as wire replacement, to provide
mobile users with the last hop to the Internet, from
anywhere and at anytime.

Nevertheless, higher mobility means lower speed, as well
as worst connection quality in terms of transmission

Long time has passed since Meyer proposed of the idegapacity and reliability. Hence, many technical challenge

of “Ubiquitous Computing”, the paradigm which aims have to be faced in order to serve today customers’
at enhancing computer use by making many computergemand, who expect the same level of quality they
available throughout the physical environmerind at  already experience on wired networks. In addition, the
making computerseffectively invisible to the usel].  wide range of business critical applications in which
Since then, embedded systems engineering and wireleSRW technologies are protagonists (e.g., mobile banking,
communications have progressed fast, thus making thgobile commerce, etc), along with their usage in mission
visionary idea ofUbiquitous Computinga reality. The critical scenarios (e.g., remote control of robots, rescue
intense device miniaturization and the increasing powepf catastrophe survivors, etc.) make it crucial to answer a
of microprocessors, along with the availability of cheapsimple questioncan we rely on these technologres
wireless networks and connectivity, allows computers torhis simple question has not a simple answer. Research
increasingly pervade everyday human life and activities.efforts in the field of dependability, wireless networks
Longer time has even passed since the Internet wagnd ubiquitous systems, have to be merged to give a
anchored to telephone wires and coaxial cables. Sincgatisfactory response. Indeed, a non-negligible knoveedg
2005, cell phones have outnumbered PCs and, in the lagt the dependability behavior of SRW technologies is
few years, people access the Internet more from a wirelesgquired in terms of what are the failure modes, how
device than from a wired one, thus enabling mobilecan we describe/model them, what are the dependability

Internet access. According to ITU reports mobiles

This work has been partially supported by the Regione Carmpan
the context of the projects L.R n. 5/2002, “Reti di sensonizsefilo per
I'identificazione ed il tracciamento di target mobili” andidvra 3.17
POR 200/2006, “REMOAM - Reti di sensori per il monitoraggiei d
rischi ambientali”.

international Telecommunication
www.itu.int/osg/spu/presentations

Union,
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pitfalls and consequences to applications, and how can
we face them.

Field Failure Data Analysis (FFDA) is an effective mean
to gain the required knowledge. It consists in observing
spontaneous occurrences of failures of an operational
system, without forcing or inducing artificial failures in
the system. The collected failure data provide accurate
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information which can characterize the dependability offailures and packet losses, may manifest to applications
the system under study. every eight minutes, on average. This is partially due
FFDA has been successfully applied in the last fourto the bursty nature of observed channel failures, which
decades to assess the dependability of operating systenase more likely to elude integrity checks performed by
networked systems, and Internet protocols, as better d&luetooth, hence propagating to the operating system and
tailed in section 1I-C. However, despite the large use inapplications. Second, failures revealed in the absence of
both the academy and the industry, FFDA has rarely beeWiFi interferences are rarer, but more severe and harder
used to characterize the dependability of SRW technoloto recover than when WiFi is present. Third, Bluetooth
gies. In this article we aim to show how field failure datatransport layers assume underlying data-link layers to be
can play a key role to gain the needed knowledge to modelompletely reliable, hence they do not perform error and
the failure behavior and to uncover dependability pitfallsintegrity checks. However, presented results show that
of wireless access networks. The resulting understandinthese layers are not able to tolerate low level failures.

is essential for the effective design of any new solutionThese findings provide valuable insights that have to
for dependable wireless networking. be considered when designing Bluetooth-based access
We focus on the Bluetooth technology, which has lotsnetworks with demanding dependability and ubiquity re-
of potential applicability in the “last meter” for personal quirements.

area networks (PANs) [2]. It has been estimated that

in 2005 Bluetooth was a built-in feature for more than 1. BACKGROUND AND RELATED RESEARCH

600 million products, manufactured by several companies,

CSR (Cambridge Silicon Radio), in its 2007 financial~ Blu€tooth

report, said it expects the proportion of new cars that Bluetooth (BT) is a short-range wireless technology
include Bluetooth to increase from 5 up to 30 percenoperating in the 2.4 GHz ISM (Industrial, Scientifical,
in the medium term. Car-kits use GPS high performancéedical) band. Two or more (up to eight) Bluetooth
solutions embedded into a Bluetooth chip, thus bringingenabled devices sharing the same channel fopicanet
GPS into a wide range of new low-cost devices. One of the units acts as the master (the coordinator) of
This article provides an answer to the fundamental queghe piconet, the others act as salves. The protocol stack
tion posed above in the context of Bluetooth networks, bys shown in Figure 1.

exploiting over four years authors’ research experience onThe lowest layer is the Bluetooth Radio. It defines
FFDA of mobile/wireless environments [3], [4], [5]. As

explained in Section lll, failure data are collected and | Applications & BT Profiles |
classified according to the layer they occur, i.e., appli- recowm| [ S9P [ osex
cation, system (Bluetooth stack and operating system), st || B || Im"sp""'aym

and wireless channel layer, by following bothuser-

centricand achannel-centri@approach. While the former

approach is a well-known practice in FFDA, the latter He
is based on the novel idea of tracing failure propagation

traces from the channel to upper layers, starting from low

level causes. To this aim, a novel "'merge and coalescence”
scheme has been defined. Also, the use of automated
recovery actions has been explored to better indicate
possible underlying causes of failures.

Conducted experiments allowed to define and to statisr—ad.0 front end. frequency bands. channel arrangements
tically model the failure modes of Bluetooth, classified : , Irequency ' 9 '

according to the layer of occurrence, and to characteriz nd receiver sensitivity level. The Basebaqd layer carries
out connections and power control, and it enables two

failure propagation traces from the channel layer up to,. : . :
the operating system and application layers (see Sectig |fferent kinds of physical link, Synchronous Connection-

IV). In particular, the analysis conducted at the wireless riented (SCO), for audio traffic, and Asynchronous

channel layer permitted to define a detailed model 0gonnectionless (ACL), to transport information data. At
the failing behavior, as described in Section V. It also aseband layer the channel is divided into time slots (each

allowed to study the behavior of Bluetooth channels in®"€ ©f 625us.), and different packet types are defined

the presence and absence of WiFi networks in the are%ccordmg to the number of slots they occupy (i, 1, 3,

. : . . or 5 slots).
(Section VII). Finally, possible causes of failures are .
studied (Section VIII), by investigating how failures are Baseband includes seveeator detectorsthat add redun-

typically recovered in our settings. dant information to the packets. The packets are provided

The results of the experimentation helped to uncovewith different levels of Forward Error Correction (FEC),

several dependability pitfalls of Bluetooth networks (seeCyCIIC Redundant Code (CRC), and Header Error Check

Section VI). Some of the key findings are summarized in(HEC)' In particular DM (Data Medium Ratex = 1, 3,

the following. First, severe failures, such as connectiorﬂz? tgagt\itj dgoir;ﬁ%l:]mZti%)i-bt;;tgsahceorggsagdﬂ)l;stz 213

L2CAP

Bluetooth Baseband

Bluetooth Radio

Figure 1. Bluetooth Stack
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High Rate) packet payload is not FEC encoded. AL. Related work

polynomial g(z) = 2'® + 2! + 2° + 1, which is able  tems has been recognized since many years. The first
to catch all single and double errors, all errors with ancontributions date back to the late 70s, with studies on
odd number of bits, and all burst errors of length 16 ofmainframe systems. In the 90s the research moved its
less. It however may fail to detect burst errors which areyyention to end-user, interactive operating systems and
longer than 16 bits in length, such as 17 bits bursts (withne |nternet. As for the former, hangs and the well known
99.997% coverage) and 18 bits or longer bursts (withy),e screens”, found on Windows NT 4 to be mostly
99.998% coverage). due to application failures, were significantly reduced
Upon the error detection, Baseband performsetiier re- i the successive generation of the OS, Windows 2000,
coveryvia an ARQ (Automatic Repeat Request) schemepoviding the kernel with greater isolation from errant
invalid packets are retransmitted until an acknowledgmenéqopncaﬁonS [7] [8]. As for the latter, [9] analyzes the
is received or a certain timeout expires. By default, the:ayses of failures and the potential effectiveness of var-

timeout is set to infinite. _ ious techniques for preventing and mitigating failures in
Baseband functions are firmware-implemented and accegyge-scale Internet services.
sible via the Host Controller Interface (HCI). Currently, we are witnessing an even broader spectrum

The Logical Link Control and Adaptation Layer Protocol of research, adding contributions ranging from embedded
(L2CAP) layer provides connection-oriented and connecCsystems [10] to large-scale and parallel systems [11].
tionless data services to upper layer protocols with protogrom 3 detailed study of over than fifty high level techni-
col multiplexing capability, segmentation and reassembly.; papers on FFDA, either published by IEEE or ACM
operation, and group abstractions. Error correction anghyrals and conference proceedings, we observed that
flow control are not performed at this layer since theihe most adopted field data sources are event logs (52%),
Baseband channel is assumed, by Bluetooth designers, {9|owed by human-generated failure reports (33%), and
be reliable. network monitoring (10%), i.e., the sniffing of the net-
Several different transport protocols lie over the L2CAP ok traffic. Only a small fraction of the related work
layer, such as RFCOMM, enabling data transfer oveyso) yses data coming from more than one source, hence
virtual serial channels, and SDP (Service Discovery Prothe common practice is to use a single data source.

tocol) providing a mean for applications to discover pegpite the mentioned efforts, there is still litle experi

available services in the piconet. ence on the application of FFDA to SRW technologies.
The work in [12], proposes a FFDA for a wireless
B. Field Failure Data Analysis telecommunication system, along with the analysis of

Field Failure Data Analysis (FFDA) of computer failure and recovery rates. However, failure data is redati

systems embraces all fault forecasting techniques whiclf the fixed core entities (base stations) of a cellular
are performed in the operational phase of the lifetelephone system. At the same time, we are witnessing an

time of a system [6]. This analysis aims at measurin '

ncreasing interest of researchers on Bluetooth, esgecial
dependability attributes of the actual and deployego its evaluation and modeling. In [13] a collection of user-
system, under real workload conditions.

perceived failure data has been performed. Nevertheless,

FFDA studies usually account three consecutive steps: fS also authors stated, the results are not purely scientific
data logging and collection, where data are gathered froff? that they have no statistic significance. The work in [14]
the operational system ii) data filtering and manipulation!S concermned with the derivation of an analytical model
concerning the extraction of the information which is o the Bluetooth throughput as a function of packet
useful for the analysis, and iii) data analysis, i.e., thd@te. Finally, in [15] a discrete channel simulation of
derivation of the intended results from the manipulatedBluetooth piconets is presented. However, none of these
data. two last works are concerned with dependability issues.

Data logging and collection requires a preliminary study!n OUr previous work [3], we proposed the results from
of the system, and its environment, in order to identifya distributed collection infrastructure which enabled a

the data sources. Typical sources are event logs i dield failure data analysis of Bluetooth systems from the

machine-generated log files produced by user applicatior@Pplication perspective, whereas in [4] we presented a

and system modules. Logs contain information about thd€eper falure analysis on the Baseband layer. This paper

regular execution as well as erroneous behavior. C(_)mbmes the resu_lts of previous studies and enrich them

Data filtering and manipulation algorithms are neededVith further analysis and insights.

to remove invalid data and to coalesce redundant or

equivalent data. This is especially true when event logs lIl. A FFDA COMBINED APPROACH

are used, since they may contain either events not related The FFDA of an operational system can be con-

to failures or multiple events (close in time) which ducted by observing the system according to botbhpa

refer to a single failure event; these events need to bdown and abottom-upapproach. The former is a well

coalesced into one failure event. known practice in the field of dependability evaluation
and measurement [9], [6], [3] that allows to infer the
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i”“’ the role of the mobile device to slave, letting the NAP be
@ @ the master of the piconet). Finally, the user can happily
—\_ A navigate to his web-mail inbox.

Application layer An application workload (WL) has been designed to emu-
late the behavior of a typical PAN user. The WL performs

all the steps needed to setup the PAN, as mentioned
above. The WL then stimulates the wireless channel by
transferring data on it. To add uncertainty to piconet

evolution, each WL cycle is characterized by several

random variables modeling both connection establishment

10O

Bluetooth transport layers
(libraries and drivers)

etected

fault

(sasneazaye) aanpadsiad JLjuad 1asn

channel centric perspective (causes2effects)

Bluetooth Channel L — (e.g. whether the inquiry/scan and SDP procedures are

V = o performed or not) and channel usage (e.g. according to
the random variables which are used to model actual

Figure 2. User- and Channel-centric perspectives Internet traffic, such as Web surfing, file transfer, e-mail,

etc.). Running the WL, and collecting both application
and system failures registered on OS log files is useful
failure causes starting from the effects on application antb achieve the user-centric perspective. During packets
Operating System (OS) layers, according to users’ poinfransmission, channel level data have been captured by
of view (user-centricperspective). The latter, instead, is using a Bluetooth air sniffer, in order to achieve the
based on the novel idea of tracing how faults propagatehannel-centrigerspective. The sniffer provided us with
to upper layers by directly observing low level causesall the needed information, from failure reports at the
[4]. With respect to wireless systems, this islaannel- Baseband layer to frame status as they are delivered up
centric perspective, in that data communication channeto L2CAP and BNEP.
is the starting point for system observation. Several experiments have been conducted on the piconet,
Figure 2 emphasizes the differences between the twduring a time span of almost two years, collecting more
approaches, with reference to the Bluetooth stack. It ishan 140 millions failure data items. In order to investigat
important to precise that, according to the terminologythe impact of Wi-Fi on Bluetooth failure modes, they have
introduced in [16], channel failures can be seen as erroiiseen performed both in presence and in absence of Wi-Fi
for system failures and as faults for application failures disturbances.
as well as system failures can be seen as errors for
application failures. The user-centric approach allows tgy

analyze failure propagation traces only down to the OS ) )
level (Bluetooth drivers failures are logged on system The produced failure data come from multiple sources

log files). Conversely, by adopting a channel-centric ap{WL 109 files, system log files, and sniffer traces). Data
proach, it is possible to monitor failures occurring athave bgfan properly filtered to dlscard. uselesg information.
the Bluetooth data-link layer, namely Baseband, and td" addition, data have to be combined, with temporal
evaluate itscoverage (i.e., Baseband's ability of self coalescence algorithms, to infer failure propagationetsac
repairing corrupted frames). from channel up to system and application layers. To
In this paper we show how to combine both the perspectiS @m, we propose a manipulation scheme, which we
tives is useful to provide a detailed characterization of@!l Mmerge and coalescecheme. The novel aspect of
SRW technologies dependability. In particular, by follow- the_scheme is to apply the tupllng.coalescence algorithm,
ing this approach we are able to classify Bluetooth failuréi€fined in [17], on a merged log file.

modes according to the layer they manifest, and to gairl '€ Main steps of the scheme are summarized in Figure
insights into failure propagation traces. 3. In the first step, a log file is produced for each node

by merging its WL log, system Log, and sniffer traces on
a time-based criteria (entries are ordered according to the
A. Testbed and workload timestamps written in the logs).

Field data have been collected by running experiment$he second step concerns the manipulation of the merged
on a real-world Bluetooth piconet (i.e. a network made udog file by means of the tupling coalescence scheme:
of 1 to 8 Bluetooth nodes, only one of them acting as théf two or more events in the log are clustered in time,
masteror coordinator). Bluetooth piconets can be easilyi.e, their timestamps are within the same time window,
exploited to access the Internet, by means of the Bluetootthey are grouped into a tuple. The coalescence window
Personal Area Network (PAN) profile. A user willing to size is a crucial parameter that has to be carefully tuned
surf the web with his Bluetooth-enabled mobile phonejn order to minimize collapses (events related to two
starts an inquiry/scan operation to discover other devicegifferent faults are grouped into the same tuple) and
in the neighborhood, then - through a SDP operation truncations (events related to the same fault are grouped
he looks for the Network Access Point (NAP). Once theinto more than one tuple). To this aim, sensitivity analysis
NAP has been found, the user connects to it (note thatan be conducted. The plot in Figure 3, step 2a, shows
the connection operation usually takes care of switchinghe typical relationship between the coalescence window

Inferring failure propagation traces
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1. Time-based 2. Tupling 2a. Sensitivity Analysis 3. Evidence
App merging finding

ﬁ@

System

Log I P
- —\-‘ knee =~ \
Merged Coalesced - Coalescence window size

Channel file file
Log

(N

Tuple from the
coalesced file

/ Connect failed

protocol timeout

uples fraction

T

protocol bad command

payload corruption

Figure 3. Data coalescence and filtering strategy

size and the tuples fraction. A pronounced knee can b T T o procedhre terminates abnormally
noted on these plots. The knee indicates the sensitivity of P e cedure terminates abnormally
the tupling scheme. Choosing a window size before th — | Comettaiure )
. . t e device Is unable to establish a connection

knee causes truncations: the number of tuples increases,  Fiwres | swonroetawe
thus events related to the same underlying causes are :;‘Zk‘zf:;'s““a"'e‘“w'”“‘“e’°'e
grouped into different tuples. On the other hand, choosin [ Expected packets are not received
a value under the knee generates collapses: the number L Packets are delvered with erors in the payload
of tuples decreases, thus events related to different sause BT stack faiure

. luetooth PAN System A BT module (e.g., L2CAP, BNEP, ...) fails
are grouped into the same tuple. BFa“ure Modes T Falres {o . .

i i ) perating System failure .
Failure propagations can then be found by analyzin An 0S module (9., USB, holplug, ) fais
resulting tuples (_step_ 3 in the Figure). For msta_ncg, in th Header comuption
example shown in Figure 3, step 3, the tuple indicates | Channel Header ength mismatch _

. . . Failures header length deviates from the specified one
connection failure due to a bad command issued to th Payload corruption
payload delivered with errors

protocol stack, which in turn is caused by the timeout
of the protocol due to a packet corruption at the channelngure 4. Bluetooth Failure Modes as they are observed
level. on the field

C. On the use of recovery mechanisms
The on-field investigation of detection & recovery IV. BLUETOOTH FAILURE MODES
mechanisms has been extensively used in FFDA to gain Field failure data demonstrate to be an effective mean
insight on the failure causes; examples are [12] ando identify the failure modes of SRW technologies.
[11]. Recovery mechanisms can indeed reveal if a failuren our case, we were able to observe several failure
disappears after a partial/total restoration of the state anodes and to classify them according to the level in
the system. Hence, they help to pinpoint the corruptegvhich their occurrence is registered. Observed Failure
portion of state which potentially led to failure. modes are summarized in Figure 4. Applications exhibit
The novel aspect introduced in this paper is to explica variety of failures according to the utilization phase
itly exploit the application workload to embed domain- where they occur, i.e., inquiry/scan and discovery phases,
specific recovery actions. In our case, the followingPAN connection, and data transferring. Failures during the
domain-specific recovery actions are triggered subseconnection can occur either while the connection is set up
quently upon failure detection (ordered in terms of re-or while the role of the device is switched from master
covery cost): to slave. Unexpectedly, failures during data transferhsuc
1) IP socket resetthe socket is destroyed and rebuilt; as packet loss and mismatches in the received data, are
2) BT connection resethe L2CAP and PAN connec- experienced, despite error control mechanisms performed

tions are closed and established again; by Baseband (see section II-A). As discussed in [18], the
3) BT stack resetthe BT stack variables and data are weakness of integrity checks is the assumption of having
cleaned up; memoryless channels with uncorrelated errors from bit to
4) Application restart the workload is automatically bit. In the case of Bluetooth, correlated errors (e.g. lshirst
closed and restarted; can occur due to the nature of the wireless media, affected
5) Multiple application restart up to 3 application by multi-path fading and electromagnetic interferences.
restarts are attempted, consecutively; The failure of the integrity checks is further investigated
6) System reboothe entire system is rebooted,; in the next section.
7) Multiple system rebostare attempted. System level failures are grouped with respect to their

For instance, BT stack reset and application restarfocation, i.e., Bluetooth software stack and Operating
recoveries indicate failures that are due to corrupted®ystem. Failure types could be further refined according
values of the state of the Bluetooth stack or to theto the component which signals the failure, e.g., L2CAP
corrupted execution state of the workload, respectively. and BNEP.

Finally, three channel level failures classes have been
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TABLE I.

TTF STATISTICAL DISTRIBUTION PARAMETERS . .
tion of BT connections before they are unexpectedly lost

due to failure (and not due to normal connection closing
TTF lognormal parameters operation). We observed that the connection duration with
sf%%e 54‘32'26 'Ogaég’” respect to failures is statisticalelf-similar, i.e., it shows
: : : the same statistical properties at many different scales.
On a side, this implies that connection duration times
identified: (i) Header Corruption (HC) at the Baseband®a" be modgleq W'.th heavy tailored d|s_tr|but|o_ns eg.
level, (i) Length Mismatch (LM), i.e., a mismatch in thg Pareto d|str|but|on). On the_ other S|'d(.e, this shows
the packet length reported into the Baseband header ar idence that co_nnecuon duratlons exhlhnt?g range
the actual one, and (iii) Payload Corruption (PC) at the ependence:he fallurg of a conn(.actlon.at a given time is
Baseband level. Channel failures have been also modelé\éo'ca”y correlated with connection failures at all fusur
by means of the Markov’s chain formalism, as it js Instants.
detailed in the next section. The model is, in fact, an
error-recovery model of the Baseband layer. Actually, it V. MODELING CHANNEL LEVEL FAILURES
is able to detect and masking HC and LM failures whereas When dealing with SRW, most of the failure causes lie
PC failures elude built-in control strategies, and they mayat the channel layer due to interferences and multipath
propagate to system and application layers. fading phenomena which are very likely to occur at
Failure data also allow to model failure dynamics asthis level. We tried to model the error-recovery strategy
stochastic processes. The statistical distribution theat adopted by the Bluetooth tecnology, and in particular by
permits to better understand the failure phenomenologyhe Baseband level, in order to have a picture of its low-
In our case, we attempted to fit the time to failure (TTF)level behavior and to provide useful hints for its reliatyili
for application failures with three different statistical improvement. The model is described according to the
distributions: the Exponential, the Lognormal, and theMarkov's chain formalism, and it is shown in Figure 5.
Weibull distributions. The fitting has been conducted bySix are the proposed states:
means of a statistical software suite, using maximum e Transmission state (7'x): identifies the proper work-
likelihood estimators and goodness of fit tests. It results  ing mode. When the channel is in Tx state, frames
that almost all application level failures are distributed are being delived correctly;
as Lognormal. Distribution parameters are summarized « Length mismatch (L): the receiver endpoint received

in Table I. The Lognormal distribution is used exten- a packet whose length differs from the one reported
sively in reliability applications to model failure times. in the header. The corruption is properly detected,;

A random variable can be modeled as Lognormal if « Header corruption (H): the Baseband packet header
it can be thought of as the multiplicative product of is corrupted. The corruption is properly detected;

many small independent factors. In our case, this means « Payload corruption (PC): the Baseband packet
that application level failures are the product of many payload is corrupted. The corruption is properly
small faults at a lower level. These faults can be both  detected,;
software faults, e.g., heisenbugs (i.e., faults which are « Fail: the Baseband packet payload is corrupted.
activated rarely due to triggers which are not easy to = However, the corruption is not detected and a trans-
reproduce [19]) at the various level of the Bluetooth mission failure occur;
stack, and channel faults, as the payload corruption case.. Retransmission state (R7'z): identifies the recovery
Interestingly, only data mismatch failures are distrilute working mode. Once an error has been detected the
as Exponential. This is coherent with the fact that, as  erroneous frame is retransmitted.
will be observed in next section, direct cause for data The channel remains ifiz state until there is no error
mismatches are payload corruptions, which also resultegh frame transmission Psucc”). When a corruption
to be exponentially distributed. occurs, two transitions are possible: (i) the channel goes
The estimation of temporal parameters also allowsnto H, L, or PC' (with transition probabilities equal to
us to evaluate Bluetooth data communication channeb, P, Ppc) if the corruption is detected, and (i) the
Availability (Av). If we observe Baseband directly from channel goes inta" AIL (with a probability equal to
L2CAP, the Bluetooth data communication channel isp,,;;) if the payload corruption is undetected.
available when it is able to deliver correct frames to |n the first case, Baseband is able to perform a recovery
the L2CAP layer. During retransmission attempts L2CAPaction via ARQ retransmission scheme, hence the channel
perceives the channel ast available We calculated the state moves taR7Tx and then tol'z. Note that theRT x
channel availability as state is formally equivalent t@z. However, it has been
MTTE 139.06 introduced to improve the readability of the model. In the
= MTTE+ MTTR 13906+ 751 0.948762  second case, Baseband does not detect the corruption, thus
(1) no recovery action is performed. The frame is delivered
More detailed analysis allows to derive interesting characwith errors to the upper layer (L2CAP), resulting into
teristics of the failure behavior. For instance, we attesdpt a failure. After the erroneous transmission, the channel
to characterize BT connections survivability, i.e., theadu returns to work properly again, i.e., it comes backte.

Av
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....5 1947856 Baseband 0x07e38c26 75 S
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Figure 6. Example of corrupted payload

Transmission failure

1

Graph in Figure 7 shows how a PC can propagate. On
the leftmost side of the graph, it is shown that 99.59 % of
Figure 5. Markov chain of Bluetooth channel er- PC are detected by Baseband, hence they do not reach up-
ror/recovery model per layers. With respect to the undetected failures, values

on the graph links represent the conditional probability
) ) o ) of failures given that a PC occurred and eluded Baseband
The described model isarametric it can be tailored for - ¢onyro). Several consequences can then occur, according
different working settings by using actual values. Thesgg, the probabilities reported on the graph. In fact, PC
values can be experimentally calculated from the collectedyp, gjther remain latent (i.e. isolated) at the system Jevel
data. BeingS; a generic state of the Markov chain, they 4, propagate to the user level in the formagplication

are the ratio between the number of observed transitiong i res In the former case, they amnfinedat system

from the stateS; to another state; and the number of |oye| even if no further error controls are performed (in
total transitions out td;. _ fact, both L2CAP and BNEP assume underlying levels
T_he defined transition probabilities permit also to for-1y pe completely reliable). The actual induced failure
malize the Baseband coveragépup (see section II-A) - genends on the location of the burst within the transmitted
as in equation 2. packet, as depicted in Figure 8. As for example, if the
P(Failuren fault) corruption affects the L2ZCAP header, the packet can not
P(fault) be properly decoded. As a consequence, it will not be
2 delivered to upper layers, thus causing a packet loss, i.e.

where the fault event occurs when a fault is activated oran omission failure, at the user level. Conversely, if the
the channel, hence it can be thought as the union of LMburst is located in the L2CAP payload, the erroneous
HC, PC, and undetected PC (i.e., Failure) events. Beingontent can be directly delivered to the application, which
the failure event included into the fault event, it resultsmay then exhibit a value failure, i.e., a data mismatch in

Covp = 1—P(Failure|fault) = 1—

P(Failuren fault) = P(Failure), thus it results: the Figure.
P(Failure) Prarr
Covp =1— P(fault) 1-1= Psvoc (3) VII. W1-FI IMPACT ON BT DEPENDABILITY

Many efforts have been devoted to investigate coexis-
tence issues between Wi-Fi and Bluetooth [20]. We tried

As stated in section 1V, there exists a class of channeio estimate how the presence of a Wi-Fi network in the
level failures, namely PC, that is able to elude Basebandeighborhood can impact Buetooth failure modes. To this
error control mechanisms, and to propagate to uppeaim we let WL run both in the presence and in absence
layers with a non zero probability. Thanks to field exper-of Wi-Fi interferences.
iments, and to a thorough inspection of packets content, We compared the conducted experiments in terms of
we were able both to observe the occurrence of PC oBaseband failure rate and failure distribution over chan-
monitored Bluetooth channel, and even to pinpoint thenels.
flipped bits. In the presence of Wi-Fi interferences, the Baseband

A snapshot of a corrupted payload is shown in Figure 6failure rate has been measured as 6.822 faults per second.
Note that we were able to uncover this corruption sinceSince the average number of transmitted frames per
we forced the WL to transfer a known character sequenceecond is 596, this results into a frame error rate of
with a fixed length, e.g. “CCCC". The highlighted burst about 0.012 (i.e., about 1 frame out of 100). However, the
is 136 bits long. This is the reason why it is able tomost of these errors are promptly detected and masked by
elude Baseband error control mechanisms (see Sectid@aseband’s correction mechanisms, in that its coverage,
[I-A). We experienced that the burst length is a randomwith respect to all channel failures, has been measured
variable, L, with an expected value equals to 512 bitsas 0.9996. Undetected failures can be modeled as an
and a standard deviation equals to 646 bits, hence thesxponential random variable with #8716 ms mean.
are longer on average than 18 bits. This means that about every eight minutes a Baseband

VI. FAILURE PROPAGATION ANALYSIS
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Figure 7. Propagation phenomenology
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Figure 8. Experienced failures according to the burst lonavithin the packet

Payload

TABLE II.
TTF DISTRIBUTION PARAMETERS WRT TO WIFI

error is not detected, and a wrong frame propagates to PRESENCE IN THE NEIGHBORHOOD

upper layers. As one could expect, a lower failure rate
(equals to 0.516 faults per second) has been experienced

when Wi-Fi Access Points (APs) in the neighborhood are TTF Lognormal Distribution Parameters
turned off. Exp. shape | scale | location
. L . . WiFiPresent 1.09 4.42 0.65
As for failure distribution across wireless channels, WiFiAbsent | 205 5049 | 0037

results are shown in Figure 9. In particular, Figure 9(a)
shows failure probability for all failures (even detected
ones) over channels when WiFi is present whereas results = .

in Figure 9(b) refer to the experiment conducted Withoutds's‘t”bu"Ion parameters (see Table I).

WiFi disturbances. In the first case, error probability !N the presence of Wi-Fi, faults are mainly due to
is highly concentrated over the channels evidenced bipterferences which tend to be polarized on the overlapped
dotted lines corresponding to the actual channel Ove”aﬁhannels. After the occurrence of a failure due to collision
between the three Wi-Fi APs deployed in our Iaborator)lhe frame is retransmitted over a different channel. How-
and the Bluetooth channels (Bluetooth uses 79 wire€Ver, the channel might either be free or still occupied
less channels, each 1-MHz-wide, in the unlicensed 2.8Y the Wi-Fi interference. This variability causes both
GHz band: Wi-Fi uses eleven 22-MHz-wide sub-channel$hort- and medium-length inter-failure times. When Wi-
across the same band of Bluetooth; when a Bluetooth iS not present, there are no polarized interferences, or,
and a WiFi radio are in the same area, a single Wi-Fin other terms, the fault phenomena is spread (e.g., lost of
channel overlaps with 22 of the 79 Bluetooth channels.)Synchronization among nodes or wide-band disturbances).
Fault probabilities strongly depend on APs usage. FoHence, it is more likely that a retransmission will fail.
instance, the AP working on channels from 1 to 23 is This leads us to observe that in absence of Wi-Fi
rarely used, thus justifying the low fault probability over short inter-arrival times of failures are more probable.
these channels. Figure 9(b) shows that the probab”ityl other terms, the absence of disturbances causes the
over interfering channels drastically decreases when WipgUlts to be more clustered in time. The reason for this is
is absent. This is a further confirmation of the lowerto be found into the frequency hopping scheme adopted
fault rate we measured in the absence of interferenceBY Bluetooth.In order to corroborate this intuition, we
Interestingly, we found that faults that occurred in abgsenc@lso investigate Mean Time To Recover (MTTR) in both
of Wi-Fi interferences were more “severe” than those tha€ircumstances. Consistently with above results, MTTR
occurred when Wi-Fi is present. This conclusion can bdncreases when Wi-Fi is not present (froftb1ms to
drawn by investigating time to failure statistics for all 9-52ms), i.e. more retransmissions are needed when the
failures (detected and undetected). In both cases, thdgult phenomenon is not polarized. Finally, the Baseband

fit a Lognormal distribution, but with different values of level exhibited a lower capability of detecting failuresedu
to spread phenomena in that its coverage decreases by one
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TABLE III.
RESULTS WITH RESPECT TO THE NUMBER OF BT SOURCES

Piconets | Nodes Error rate MTTF(ms) | MTTR(ms) Av % var.
1 4 19.60 (s 1) 51.0 7.84 0.889 | -6.20
2 2%2 9.34 (s 1) 107.0 7.93 0.926 | -2.40
TABLE IV.
APPLICATION FAILURES AND CORRESPONDING RECOVERY
018 ACTIONS
0,16 1
> 014 o
:_(;% 012 1 I Recovered by
2 01 —lo w > » Z
o ’ =3 ® | - k=] -~ £
T o081 Application Level |3 g_g‘ g 3 z g% g%g § g%
o Failure e2@s|eE@egEusigo
% 0.06 1 | Belkin 54g Slo®| =T 8 geo|te
LL 0,04 Neees ‘CINI-Centr. b ST Inquiry/scan failed 34.5| 30 35.5
002 1" ot ]| e e | SDP search failed 401398] 201
o LS, R —a— R Connect failed 0.5 [14.9[55.8[25.6] 0.1 [ 3.1
1 7 13 19 25 31 37 43 49 55 61 67 78 79 PAN connect failed 46.4|35.7| 5.4 [125
Bluetooth Channel ID Sw role request failed 28.4|48.2] 4.9 (17.3[ 1.2
(a) WiFi present (overlapping zones for each AP are shown) Packet loss 59]7.2|258|33.1|26.7| 02 | 1.1
Data mismatch
0.04
% VIIl. A NALYSIS OF RECOVERY ACTIONS
[ . . . .
8 Table IV reports the relationship between application
& ooz level failures and recovery actions. Each number in a cell
= represents the percentage of success of the recovery action
* (H‘ H'm (in a column) with respect to a given application level
0 ﬂﬂﬂ'ﬂﬂﬂ'l‘hrrmm-ﬂﬂrfmﬂ_ﬂ’_l_nﬂ HWHWH fallure_ (in a row). The numbgrs give an indication of the
7 13 10 25 31 37 43 49 S5 61 67 73 79 effectiveness of recovery actions.
Bluetooth Channel ID Several understandings can be obtained from the results.

As an example, packet losses recovered by an IP socket
reset (5.9% of packet losses) are due to “Hard Payload
Corruptions” detected by the IP CRC. Itis indeed not nec-
Figure 9. Histogram of failure probability across Blue- essary to reestablish the L2CAP and BNEP connections.
tooth channels. The rest of the packet losses are instead likely due to a
broken link, since they at least require the connection to
be reestabilished. These broken link failures can be caused
by “Hard Payload Corruptions” affecting the L2CAP or

BNEP headers, then causing the corruption of the data
order of magnitude (it passes from 0.9996 t0 0.9968). Th'structures that maintain the link state. Hence, depending

means that failures due to spread phenomena are mo(r)% the severity of the corruption, several recovery actions
prone to elude Baseband’'s CRC integrity check. Y ption, y

; ; ) are needed, from the BT Connection reset to the reboot of
We also conducted experiments involving more tha

. ) . . . he machine. For “Data Mismatch” failures, no recoveries

one piconet, in order to investigate whether the impact o

can be defined, since a real application only relies on
WiFi depends on the number of Bluetooth sources in the

ntegnty mechanisms furnished by the communication
neighborhood. In particular,we set up a piconet CompOSEdrotocoIs
of four Bluetooth nodes, and two different Bluetooth P
piconets, each composed of two nodes. Table Il reports
the achieved results. and the percent variatiod ofwith IX. CONCLUSIONS
the reference experiment (i.e., the one with only two Short range wireless technologies are the key of ubig-
nodes in the piconet). As one could expect, the presenagtous networking. They represent the principal medium
of other Bluetooth nodes causes the fault rate to increas® access the Internet from mobile devices. As these tech-
In particular, the higher fault rate is due to the fact thatnologies are widely used in business and mission critical
more nodes report the same underlying problem whenpplications, characterizing their dependability représ
four nodes are in the piconet. Conversely, in the case d significant issue. Field Failure Data Analysis shows to
two interfering picontes, the fault rate increase is due tde an effective instrument to build the needed knowledge
the presence of two master nodes which might choice then the dependability behavior of actual wireless networks.
same channel over time, causing interferences. The case of Bluetooth, analyzed in the article, gives

(b) WiFi not present
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