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Abstract— Direct analysis of failures from the field of ap-
plication is an effective practice to understand the actual
dependability behavior of an operational system. However,
despite its wide use over the last four decades on a large vari-
ety of systems, field data analysis has rarely been applied to
wireless networks. Users accessing the Internet ubiquitously
through these networks are increasing, and they expect the
same dependability level they already experience on wired
networks. But how can we analyze the dependability level
of a wireless network? The article defines a novel combined
approach to model and analyze the dependability of short
range wireless technologies exploiting field data. Through
the experience gained from extensive failure analysis of
Bluetooth networks, the paper shows how field failure data
can play a key role to fill the gap on understanding the
dependability behavior of wireless networks.

Index Terms— Dependability Modeling, Bluetooth, Wireless
Networks

I. I NTRODUCTION

Long time has passed since Meyer proposed of the idea
of “Ubiquitous Computing”, the paradigm which aims
at enhancing computer use by making many computers
available throughout the physical environment, and at
making computerseffectively invisible to the user[1].
Since then, embedded systems engineering and wireless
communications have progressed fast, thus making the
visionary idea ofUbiquitous Computinga reality. The
intense device miniaturization and the increasing power
of microprocessors, along with the availability of cheap
wireless networks and connectivity, allows computers to
increasingly pervade everyday human life and activities.
Longer time has even passed since the Internet was
anchored to telephone wires and coaxial cables. Since
2005, cell phones have outnumbered PCs and, in the last
few years, people access the Internet more from a wireless
device than from a wired one, thus enabling mobile
Internet access. According to ITU reports1, mobiles
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l’identificazione ed il tracciamento di target mobili” and Misura 3.17
POR 200/2006, “REMOAM - Reti di sensori per il monitoraggio dei
rischi ambientali”.

1International Telecommunication Union,
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dominate both in quantity and in quality. Small embedded
devices have become a daily portable necessity, which is
always no more than one meter away from users. PDAs,
laptops, cellphones, MP3 players, webcams, and even
fridges and microwave ovens, have embedded Internet
connectivity, and allow to access the global network from
everywhere.
Short Range Wireless (SRW) technologies are at the
core of this revolution, as well as the key to ubiquitous
networking. They are primarily meant for indoor use and
over short ranges, in which they are able to connect
portable devices with high connection speed and low
power consumption. They are often used at the edges of
the wired network, e.g., as wire replacement, to provide
mobile users with the last hop to the Internet, from
anywhere and at anytime.
Nevertheless, higher mobility means lower speed, as well
as worst connection quality in terms of transmission
capacity and reliability. Hence, many technical challenges
have to be faced in order to serve today customers’
demand, who expect the same level of quality they
already experience on wired networks. In addition, the
wide range of business critical applications in which
SRW technologies are protagonists (e.g., mobile banking,
mobile commerce, etc), along with their usage in mission
critical scenarios (e.g., remote control of robots, rescue
of catastrophe survivors, etc.) make it crucial to answer a
simple question:can we rely on these technologies?
This simple question has not a simple answer. Research
efforts in the field of dependability, wireless networks
and ubiquitous systems, have to be merged to give a
satisfactory response. Indeed, a non-negligible knowledge
of the dependability behavior of SRW technologies is
required in terms of what are the failure modes, how
can we describe/model them, what are the dependability
pitfalls and consequences to applications, and how can
we face them.
Field Failure Data Analysis (FFDA) is an effective mean
to gain the required knowledge. It consists in observing
spontaneous occurrences of failures of an operational
system, without forcing or inducing artificial failures in
the system. The collected failure data provide accurate
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information which can characterize the dependability of
the system under study.
FFDA has been successfully applied in the last four
decades to assess the dependability of operating systems,
networked systems, and Internet protocols, as better de-
tailed in section II-C. However, despite the large use in
both the academy and the industry, FFDA has rarely been
used to characterize the dependability of SRW technolo-
gies. In this article we aim to show how field failure data
can play a key role to gain the needed knowledge to model
the failure behavior and to uncover dependability pitfalls
of wireless access networks. The resulting understanding
is essential for the effective design of any new solution
for dependable wireless networking.
We focus on the Bluetooth technology, which has lots
of potential applicability in the “last meter” for personal
area networks (PANs) [2]. It has been estimated that
in 2005 Bluetooth was a built-in feature for more than
600 million products, manufactured by several companies.
CSR (Cambridge Silicon Radio), in its 2007 financial
report, said it expects the proportion of new cars that
include Bluetooth to increase from 5 up to 30 percent
in the medium term. Car-kits use GPS high performance
solutions embedded into a Bluetooth chip, thus bringing
GPS into a wide range of new low-cost devices.
This article provides an answer to the fundamental ques-
tion posed above in the context of Bluetooth networks, by
exploiting over four years authors’ research experience on
FFDA of mobile/wireless environments [3], [4], [5]. As
explained in Section III, failure data are collected and
classified according to the layer they occur, i.e., appli-
cation, system (Bluetooth stack and operating system),
and wireless channel layer, by following both auser-
centricand achannel-centricapproach. While the former
approach is a well-known practice in FFDA, the latter
is based on the novel idea of tracing failure propagation
traces from the channel to upper layers, starting from low
level causes. To this aim, a novel ”merge and coalescence”
scheme has been defined. Also, the use of automated
recovery actions has been explored to better indicate
possible underlying causes of failures.
Conducted experiments allowed to define and to statis-
tically model the failure modes of Bluetooth, classified
according to the layer of occurrence, and to characterize
failure propagation traces from the channel layer up to
the operating system and application layers (see Section
IV). In particular, the analysis conducted at the wireless
channel layer permitted to define a detailed model of
the failing behavior, as described in Section V. It also
allowed to study the behavior of Bluetooth channels in
the presence and absence of WiFi networks in the area
(Section VII). Finally, possible causes of failures are
studied (Section VIII), by investigating how failures are
typically recovered in our settings.
The results of the experimentation helped to uncover
several dependability pitfalls of Bluetooth networks (see
Section VI). Some of the key findings are summarized in
the following. First, severe failures, such as connection

failures and packet losses, may manifest to applications
every eight minutes, on average. This is partially due
to the bursty nature of observed channel failures, which
are more likely to elude integrity checks performed by
Bluetooth, hence propagating to the operating system and
applications. Second, failures revealed in the absence of
WiFi interferences are rarer, but more severe and harder
to recover than when WiFi is present. Third, Bluetooth
transport layers assume underlying data-link layers to be
completely reliable, hence they do not perform error and
integrity checks. However, presented results show that
these layers are not able to tolerate low level failures.
These findings provide valuable insights that have to
be considered when designing Bluetooth-based access
networks with demanding dependability and ubiquity re-
quirements.

II. BACKGROUND AND RELATED RESEARCH

A. Bluetooth

Bluetooth (BT) is a short-range wireless technology
operating in the 2.4 GHz ISM (Industrial, Scientifical,
Medical) band. Two or more (up to eight) Bluetooth
enabled devices sharing the same channel form apiconet.
One of the units acts as the master (the coordinator) of
the piconet, the others act as salves. The protocol stack
is shown in Figure 1.

The lowest layer is the Bluetooth Radio. It defines
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Figure 1. Bluetooth Stack

radio front end, frequency bands, channel arrangements,
and receiver sensitivity level. The Baseband layer carries
out connections and power control, and it enables two
different kinds of physical link, Synchronous Connection-
Oriented (SCO), for audio traffic, and Asynchronous
Connectionless (ACL), to transport information data. At
Baseband layer the channel is divided into time slots (each
one of 625µs.), and different packet types are defined
according to the number of slots they occupy (i.e, 1, 3,
or 5 slots).
Baseband includes severalerror detectors, that add redun-
dant information to the packets. The packets are provided
with different levels of Forward Error Correction (FEC),
Cyclic Redundant Code (CRC), and Header Error Check
(HEC). In particular DMx (Data Medium Rate,x = 1, 3,
or 5) packets contain a 16-bit CRC code and use 2/3
FEC to encode information bytes whereas DHx (Data
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High Rate) packet payload is not FEC encoded. As
for the CRC, Baseband adopts the 16 bit CRC-CCITT
polynomial g(x) = x16 + x12 + x5 + 1, which is able
to catch all single and double errors, all errors with an
odd number of bits, and all burst errors of length 16 or
less. It however may fail to detect burst errors which are
longer than 16 bits in length, such as 17 bits bursts (with
99.997% coverage) and 18 bits or longer bursts (with
99.998% coverage).
Upon the error detection, Baseband performs theerror re-
coveryvia an ARQ (Automatic Repeat Request) scheme:
invalid packets are retransmitted until an acknowledgment
is received or a certain timeout expires. By default, the
timeout is set to infinite.
Baseband functions are firmware-implemented and acces-
sible via the Host Controller Interface (HCI).
The Logical Link Control and Adaptation Layer Protocol
(L2CAP) layer provides connection-oriented and connec-
tionless data services to upper layer protocols with proto-
col multiplexing capability, segmentation and reassembly
operation, and group abstractions. Error correction and
flow control are not performed at this layer since the
Baseband channel is assumed, by Bluetooth designers, to
be reliable.
Several different transport protocols lie over the L2CAP
layer, such as RFCOMM, enabling data transfer over
virtual serial channels, and SDP (Service Discovery Pro-
tocol) providing a mean for applications to discover
available services in the piconet.

B. Field Failure Data Analysis

Field Failure Data Analysis (FFDA) of computer
systems embraces all fault forecasting techniques which
are performed in the operational phase of the life
time of a system [6]. This analysis aims at measuring
dependability attributes of the actual and deployed
system, under real workload conditions.
FFDA studies usually account three consecutive steps: i)
data logging and collection, where data are gathered from
the operational system ii) data filtering and manipulation,
concerning the extraction of the information which is
useful for the analysis, and iii) data analysis, i.e., the
derivation of the intended results from the manipulated
data.
Data logging and collection requires a preliminary study
of the system, and its environment, in order to identify
the data sources. Typical sources are event logs, i.e.,
machine-generated log files produced by user applications
and system modules. Logs contain information about the
regular execution as well as erroneous behavior.
Data filtering and manipulation algorithms are needed
to remove invalid data and to coalesce redundant or
equivalent data. This is especially true when event logs
are used, since they may contain either events not related
to failures or multiple events (close in time) which
refer to a single failure event; these events need to be
coalesced into one failure event.

C. Related work

The importance of FFDA studies of computer sys-
tems has been recognized since many years. The first
contributions date back to the late 70s, with studies on
mainframe systems. In the 90s the research moved its
attention to end-user, interactive operating systems and
the Internet. As for the former, hangs and the well known
“blue screens”, found on Windows NT 4 to be mostly
due to application failures, were significantly reduced
in the successive generation of the OS, Windows 2000,
providing the kernel with greater isolation from errant
applications [7] [8]. As for the latter, [9] analyzes the
causes of failures and the potential effectiveness of var-
ious techniques for preventing and mitigating failures in
large-scale Internet services.
Currently, we are witnessing an even broader spectrum
of research, adding contributions ranging from embedded
systems [10] to large-scale and parallel systems [11].
From a detailed study of over than fifty high level techni-
cal papers on FFDA, either published by IEEE or ACM
journals and conference proceedings, we observed that
the most adopted field data sources are event logs (52%),
followed by human-generated failure reports (33%), and
network monitoring (10%), i.e., the sniffing of the net-
work traffic. Only a small fraction of the related work
(5%) uses data coming from more than one source, hence
the common practice is to use a single data source.
Despite the mentioned efforts, there is still little experi-
ence on the application of FFDA to SRW technologies.
The work in [12], proposes a FFDA for a wireless
telecommunication system, along with the analysis of
failure and recovery rates. However, failure data is relative
to the fixed core entities (base stations) of a cellular
telephone system. At the same time, we are witnessing an
increasing interest of researchers on Bluetooth, especially
to its evaluation and modeling. In [13] a collection of user-
perceived failure data has been performed. Nevertheless,
as also authors stated, the results are not purely scientific
in that they have no statistic significance. The work in [14]
is concerned with the derivation of an analytical model
for the Bluetooth throughput as a function of packet
rate. Finally, in [15] a discrete channel simulation of
Bluetooth piconets is presented. However, none of these
two last works are concerned with dependability issues.
In our previous work [3], we proposed the results from
a distributed collection infrastructure which enabled a
field failure data analysis of Bluetooth systems from the
application perspective, whereas in [4] we presented a
deeper falure analysis on the Baseband layer. This paper
combines the results of previous studies and enrich them
with further analysis and insights.

III. A FFDA COMBINED APPROACH

The FFDA of an operational system can be con-
ducted by observing the system according to both atop-
down and abottom-upapproach. The former is a well
known practice in the field of dependability evaluation
and measurement [9], [6], [3] that allows to infer the

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 709

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.707-716 



usercentricperspective(effect2causes)

Bluetooth Channel

Bluetooth transport layers
(libraries and drivers)

Application layer

ch
an

ne
lc

en
tri

cp
er

sp
ec

tiv
e(

ca
us

es
2e

ffe
cts

)

error

failure

fault

error

failure

fault

fault

detected

not

detected
?

Manifested ?

?

OS Exception
handling

detected

User

usercentricperspective(effect2causes)

Bluetooth Channel

Bluetooth transport layers
(libraries and drivers)

Application layer

ch
an

ne
lc

en
tri

cp
er

sp
ec

tiv
e(

ca
us

es
2e

ffe
cts

)

error

failure

fault

error

failure

fault

fault

detected

not

detected
?

Manifested ?

?

OS Exception
handling

detected

User

Figure 2. User- and Channel-centric perspectives

failure causes starting from the effects on application and
Operating System (OS) layers, according to users’ point
of view (user-centricperspective). The latter, instead, is
based on the novel idea of tracing how faults propagate
to upper layers by directly observing low level causes
[4]. With respect to wireless systems, this is achannel-
centric perspective, in that data communication channel
is the starting point for system observation.
Figure 2 emphasizes the differences between the two

approaches, with reference to the Bluetooth stack. It is
important to precise that, according to the terminology
introduced in [16], channel failures can be seen as errors
for system failures and as faults for application failures,
as well as system failures can be seen as errors for
application failures. The user-centric approach allows to
analyze failure propagation traces only down to the OS
level (Bluetooth drivers failures are logged on system
log files). Conversely, by adopting a channel-centric ap-
proach, it is possible to monitor failures occurring at
the Bluetooth data-link layer, namely Baseband, and to
evaluate itscoverage (i.e., Baseband’s ability of self
repairing corrupted frames).
In this paper we show how to combine both the perspec-
tives is useful to provide a detailed characterization of
SRW technologies dependability. In particular, by follow-
ing this approach we are able to classify Bluetooth failure
modes according to the layer they manifest, and to gain
insights into failure propagation traces.

A. Testbed and workload

Field data have been collected by running experiments
on a real-world Bluetooth piconet (i.e. a network made up
of 1 to 8 Bluetooth nodes, only one of them acting as the
masteror coordinator). Bluetooth piconets can be easily
exploited to access the Internet, by means of the Bluetooth
Personal Area Network (PAN) profile. A user willing to
surf the web with his Bluetooth-enabled mobile phone,
starts an inquiry/scan operation to discover other devices
in the neighborhood, then - through a SDP operation -
he looks for the Network Access Point (NAP). Once the
NAP has been found, the user connects to it (note that
the connection operation usually takes care of switching

the role of the mobile device to slave, letting the NAP be
the master of the piconet). Finally, the user can happily
navigate to his web-mail inbox.
An application workload (WL) has been designed to emu-
late the behavior of a typical PAN user. The WL performs
all the steps needed to setup the PAN, as mentioned
above. The WL then stimulates the wireless channel by
transferring data on it. To add uncertainty to piconet
evolution, each WL cycle is characterized by several
random variables modeling both connection establishment
(e.g. whether the inquiry/scan and SDP procedures are
performed or not) and channel usage (e.g. according to
the random variables which are used to model actual
Internet traffic, such as Web surfing, file transfer, e-mail,
etc.). Running the WL, and collecting both application
and system failures registered on OS log files is useful
to achieve the user-centric perspective. During packets
transmission, channel level data have been captured by
using a Bluetooth air sniffer, in order to achieve the
channel-centricperspective. The sniffer provided us with
all the needed information, from failure reports at the
Baseband layer to frame status as they are delivered up
to L2CAP and BNEP.
Several experiments have been conducted on the piconet,
during a time span of almost two years, collecting more
than 140 millions failure data items. In order to investigate
the impact of Wi-Fi on Bluetooth failure modes, they have
been performed both in presence and in absence of Wi-Fi
disturbances.

B. Inferring failure propagation traces

The produced failure data come from multiple sources
(WL log files, system log files, and sniffer traces). Data
have been properly filtered to discard useless information.
In addition, data have to be combined, with temporal
coalescence algorithms, to infer failure propagation traces
from channel up to system and application layers. To
this aim, we propose a manipulation scheme, which we
call merge and coalescescheme. The novel aspect of
the scheme is to apply the tupling coalescence algorithm,
defined in [17], on a merged log file.
The main steps of the scheme are summarized in Figure
3. In the first step, a log file is produced for each node
by merging its WL log, system Log, and sniffer traces on
a time-based criteria (entries are ordered according to the
timestamps written in the logs).
The second step concerns the manipulation of the merged
log file by means of the tupling coalescence scheme:
if two or more events in the log are clustered in time,
i.e, their timestamps are within the same time window,
they are grouped into a tuple. The coalescence window
size is a crucial parameter that has to be carefully tuned
in order to minimize collapses (events related to two
different faults are grouped into the same tuple) and
truncations (events related to the same fault are grouped
into more than one tuple). To this aim, sensitivity analysis
can be conducted. The plot in Figure 3, step 2a, shows
the typical relationship between the coalescence window
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Figure 3. Data coalescence and filtering strategy

size and the tuples fraction. A pronounced knee can be
noted on these plots. The knee indicates the sensitivity of
the tupling scheme. Choosing a window size before the
knee causes truncations: the number of tuples increases,
thus events related to the same underlying causes are
grouped into different tuples. On the other hand, choosing
a value under the knee generates collapses: the number
of tuples decreases, thus events related to different causes
are grouped into the same tuple.
Failure propagations can then be found by analyzing
resulting tuples (step 3 in the Figure). For instance, in the
example shown in Figure 3, step 3, the tuple indicates a
connection failure due to a bad command issued to the
protocol stack, which in turn is caused by the timeout
of the protocol due to a packet corruption at the channel
level.

C. On the use of recovery mechanisms

The on-field investigation of detection & recovery
mechanisms has been extensively used in FFDA to gain
insight on the failure causes; examples are [12] and
[11]. Recovery mechanisms can indeed reveal if a failure
disappears after a partial/total restoration of the state of
the system. Hence, they help to pinpoint the corrupted
portion of state which potentially led to failure.
The novel aspect introduced in this paper is to explic-
itly exploit the application workload to embed domain-
specific recovery actions. In our case, the following
domain-specific recovery actions are triggered subse-
quently upon failure detection (ordered in terms of re-
covery cost):

1) IP socket reset: the socket is destroyed and rebuilt;
2) BT connection reset: the L2CAP and PAN connec-

tions are closed and established again;
3) BT stack reset: the BT stack variables and data are

cleaned up;
4) Application restart: the workload is automatically

closed and restarted;
5) Multiple application restart: up to 3 application

restarts are attempted, consecutively;
6) System reboot: the entire system is rebooted;
7) Multiple system reboots are attempted.

For instance, BT stack reset and application restart
recoveries indicate failures that are due to corrupted
values of the state of the Bluetooth stack or to the
corrupted execution state of the workload, respectively.

Bluetooth PAN
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System
Failures

Channel
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Application
Failures

Inquiry/Scan failure
The scan procedure terminates abnormally

Discovery failure
The discover procedure terminates abnormally

Connect failure
The device is unable to establish a connection
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The device is unable to switch the role

Packet loss
Expected packets are not received

Data mismatch
Packets are delivered with errors in the payload

Header corruption
header delivered with errors

Header length mismatch
header length deviates from the specified one

Payload corruption
payload delivered with errors

BT stack failure
A BT module (e.g., L2CAP, BNEP, …) fails
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Figure 4. Bluetooth Failure Modes as they are observed
on the field

IV. B LUETOOTH FAILURE MODES

Field failure data demonstrate to be an effective mean
to identify the failure modes of SRW technologies.
In our case, we were able to observe several failure
modes and to classify them according to the level in
which their occurrence is registered. Observed Failure
modes are summarized in Figure 4. Applications exhibit
a variety of failures according to the utilization phase
where they occur, i.e., inquiry/scan and discovery phases,
PAN connection, and data transferring. Failures during the
connection can occur either while the connection is set up
or while the role of the device is switched from master
to slave. Unexpectedly, failures during data transfer, such
as packet loss and mismatches in the received data, are
experienced, despite error control mechanisms performed
by Baseband (see section II-A). As discussed in [18], the
weakness of integrity checks is the assumption of having
memoryless channels with uncorrelated errors from bit to
bit. In the case of Bluetooth, correlated errors (e.g. bursts)
can occur due to the nature of the wireless media, affected
by multi-path fading and electromagnetic interferences.
The failure of the integrity checks is further investigated
in the next section.
System level failures are grouped with respect to their
location, i.e., Bluetooth software stack and Operating
System. Failure types could be further refined according
to the component which signals the failure, e.g., L2CAP
and BNEP.
Finally, three channel level failures classes have been
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TABLE I.
TTF STATISTICAL DISTRIBUTION PARAMETERS

TTF lognormal parameters
shape scale location
1.09 4.42 0.65

identified: (i) Header Corruption (HC) at the Baseband
level, (ii) Length Mismatch (LM), i.e., a mismatch in
the packet length reported into the Baseband header and
the actual one, and (iii) Payload Corruption (PC) at the
Baseband level. Channel failures have been also modeled
by means of the Markov’s chain formalism, as it is
detailed in the next section. The model is, in fact, an
error-recovery model of the Baseband layer. Actually, it
is able to detect and masking HC and LM failures whereas
PC failures elude built-in control strategies, and they may
propagate to system and application layers.
Failure data also allow to model failure dynamics as
stochastic processes. The statistical distribution type then
permits to better understand the failure phenomenology.
In our case, we attempted to fit the time to failure (TTF)
for application failures with three different statistical
distributions: the Exponential, the Lognormal, and the
Weibull distributions. The fitting has been conducted by
means of a statistical software suite, using maximum
likelihood estimators and goodness of fit tests. It results
that almost all application level failures are distributed
as Lognormal. Distribution parameters are summarized
in Table I. The Lognormal distribution is used exten-
sively in reliability applications to model failure times.
A random variable can be modeled as Lognormal if
it can be thought of as the multiplicative product of
many small independent factors. In our case, this means
that application level failures are the product of many
small faults at a lower level. These faults can be both
software faults, e.g., heisenbugs (i.e., faults which are
activated rarely due to triggers which are not easy to
reproduce [19]) at the various level of the Bluetooth
stack, and channel faults, as the payload corruption case.
Interestingly, only data mismatch failures are distributed
as Exponential. This is coherent with the fact that, as
will be observed in next section, direct cause for data
mismatches are payload corruptions, which also resulted
to be exponentially distributed.

The estimation of temporal parameters also allows
us to evaluate Bluetooth data communication channel
Availability (Av). If we observe Baseband directly from
L2CAP, the Bluetooth data communication channel is
available when it is able to deliver correct frames to
the L2CAP layer. During retransmission attempts L2CAP
perceives the channel asnot available. We calculated the
channel availability as

Av =
MTTE

MTTE + MTTR
=

139.06

139.06 + 7.51
= 0.948762

(1)
More detailed analysis allows to derive interesting charac-
teristics of the failure behavior. For instance, we attempted
to characterize BT connections survivability, i.e., the dura-

tion of BT connections before they are unexpectedly lost
due to failure (and not due to normal connection closing
operation). We observed that the connection duration with
respect to failures is statisticallyself-similar, i.e., it shows
the same statistical properties at many different scales.
On a side, this implies that connection duration times
can be modeled with heavy tailored distributions (e.g.,
the Pareto distribution). On the other side, this shows
evidence that connection durations exhibitlong range
dependence: the failure of a connection at a given time is
typically correlated with connection failures at all future
instants.

V. M ODELING CHANNEL LEVEL FAILURES

When dealing with SRW, most of the failure causes lie
at the channel layer due to interferences and multipath
fading phenomena which are very likely to occur at
this level. We tried to model the error-recovery strategy
adopted by the Bluetooth tecnology, and in particular by
the Baseband level, in order to have a picture of its low-
level behavior and to provide useful hints for its reliability
improvement. The model is described according to the
Markov’s chain formalism, and it is shown in Figure 5.
Six are the proposed states:

• Transmission state (Tx): identifies the proper work-
ing mode. When the channel is in Tx state, frames
are being delived correctly;

• Length mismatch (L): the receiver endpoint received
a packet whose length differs from the one reported
in the header. The corruption is properly detected;

• Header corruption (H): the Baseband packet header
is corrupted. The corruption is properly detected;

• Payload corruption (PC): the Baseband packet
payload is corrupted. The corruption is properly
detected;

• Fail: the Baseband packet payload is corrupted.
However, the corruption is not detected and a trans-
mission failure occur;

• Retransmission state (RTx): identifies the recovery
working mode. Once an error has been detected the
erroneous frame is retransmitted.

The channel remains inTx state until there is no error
in frame transmission (“PSUCC”). When a corruption
occurs, two transitions are possible: (i) the channel goes
into H , L, or PC (with transition probabilities equal to
PL, PH , PPC ) if the corruption is detected, and (ii) the
channel goes intoFAIL (with a probability equal to
PFAIL) if the payload corruption is undetected.

In the first case, Baseband is able to perform a recovery
action via ARQ retransmission scheme, hence the channel
state moves toRTx and then toTx. Note that theRTx
state is formally equivalent toTx. However, it has been
introduced to improve the readability of the model. In the
second case, Baseband does not detect the corruption, thus
no recovery action is performed. The frame is delivered
with errors to the upper layer (L2CAP), resulting into
a failure. After the erroneous transmission, the channel
returns to work properly again, i.e., it comes back toTx.
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Figure 5. Markov chain of Bluetooth channel er-
ror/recovery model

The described model isparametric: it can be tailored for
different working settings by using actual values. These
values can be experimentally calculated from the collected
data. BeingSi a generic state of the Markov chain, they
are the ratio between the number of observed transitions
from the stateSi to another stateSj and the number of
total transitions out toSi.

The defined transition probabilities permit also to for-
malize the Baseband coverage,CovB (see section II-A)
as in equation 2.

CovB = 1−P (Failure|fault) = 1−
P (Failure∩ fault)

P (fault)
(2)

where the fault event occurs when a fault is activated on
the channel, hence it can be thought as the union of LM,
HC, PC, and undetected PC (i.e., Failure) events. Being
the failure event included into the fault event, it results
P (Failure ∩ fault) = P (Failure), thus it results:

CovB = 1 −
P (Failure)

P (fault)
= 1 −

PFAIL

1 − PSUCC

(3)

VI. FAILURE PROPAGATION ANALYSIS

As stated in section IV, there exists a class of channel
level failures, namely PC, that is able to elude Baseband
error control mechanisms, and to propagate to upper
layers with a non zero probability. Thanks to field exper-
iments, and to a thorough inspection of packets content,
we were able both to observe the occurrence of PC on
monitored Bluetooth channel, and even to pinpoint the
flipped bits.

A snapshot of a corrupted payload is shown in Figure 6.
Note that we were able to uncover this corruption since
we forced the WL to transfer a known character sequence
with a fixed length, e.g. “CCCC”. The highlighted burst
is 136 bits long. This is the reason why it is able to
elude Baseband error control mechanisms (see Section
II-A). We experienced that the burst length is a random
variable,L, with an expected value equals to 512 bits
and a standard deviation equals to 646 bits, hence they
are longer on average than 18 bits.

….S 1947856 Baseband 0x07e38c26 75 S
OK DM1 Continuation Go Go 1

17
S 1947856 L2CAP Slave 1 ......63 63 63 63 63 63 63 63 63 63
63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
63 63 63 63 63 63 63 63 63 63 63 63 01 00 8b 38 01 01 89 c0 a8 01 03 60 05 00 
00 00 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
63 63 63 63 63 63 63……

17 bytes

….S 1947856 Baseband 0x07e38c26 75 S
OK DM1 Continuation Go Go 1

17
S 1947856 L2CAP Slave 1 ......63 63 63 63 63 63 63 63 63 63
63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
63 63 63 63 63 63 63 63 63 63 63 63 01 00 8b 38 01 01 89 c0 a8 01 03 60 05 00 
00 00 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
63 63 63 63 63 63 63……

17 bytes

Figure 6. Example of corrupted payload

Graph in Figure 7 shows how a PC can propagate. On
the leftmost side of the graph, it is shown that 99.59 % of
PC are detected by Baseband, hence they do not reach up-
per layers. With respect to the undetected failures, values
on the graph links represent the conditional probability
of failures given that a PC occurred and eluded Baseband
control. Several consequences can then occur, according
to the probabilities reported on the graph. In fact, PC
can either remain latent (i.e. isolated) at the system level,
or propagate to the user level in the form ofapplication
failures. In the former case, they areconfinedat system
level even if no further error controls are performed (in
fact, both L2CAP and BNEP assume underlying levels
to be completely reliable). The actual induced failure
depends on the location of the burst within the transmitted
packet, as depicted in Figure 8. As for example, if the
corruption affects the L2CAP header, the packet can not
be properly decoded. As a consequence, it will not be
delivered to upper layers, thus causing a packet loss, i.e.
an omission failure, at the user level. Conversely, if the
burst is located in the L2CAP payload, the erroneous
content can be directly delivered to the application, which
may then exhibit a value failure, i.e., a data mismatch in
the Figure.

VII. W I-FI IMPACT ON BT DEPENDABILITY

Many efforts have been devoted to investigate coexis-
tence issues between Wi-Fi and Bluetooth [20]. We tried
to estimate how the presence of a Wi-Fi network in the
neighborhood can impact Buetooth failure modes. To this
aim we let WL run both in the presence and in absence
of Wi-Fi interferences.

We compared the conducted experiments in terms of
Baseband failure rate and failure distribution over chan-
nels.

In the presence of Wi-Fi interferences, the Baseband
failure rate has been measured as 6.822 faults per second.
Since the average number of transmitted frames per
second is 596, this results into a frame error rate of
about 0.012 (i.e., about 1 frame out of 100). However, the
most of these errors are promptly detected and masked by
Baseband’s correction mechanisms, in that its coverage,
with respect to all channel failures, has been measured
as 0.9996. Undetected failures can be modeled as an
exponential random variable with a458716 ms mean.
This means that about every eight minutes a Baseband
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Figure 8. Experienced failures according to the burst location within the packet

error is not detected, and a wrong frame propagates to
upper layers. As one could expect, a lower failure rate
(equals to 0.516 faults per second) has been experienced
when Wi-Fi Access Points (APs) in the neighborhood are
turned off.

As for failure distribution across wireless channels,
results are shown in Figure 9. In particular, Figure 9(a)
shows failure probability for all failures (even detected
ones) over channels when WiFi is present whereas results
in Figure 9(b) refer to the experiment conducted without
WiFi disturbances. In the first case, error probability
is highly concentrated over the channels evidenced by
dotted lines corresponding to the actual channel overlap
between the three Wi-Fi APs deployed in our laboratory
and the Bluetooth channels (Bluetooth uses 79 wire-
less channels, each 1-MHz-wide, in the unlicensed 2.4
GHz band; Wi-Fi uses eleven 22-MHz-wide sub-channels
across the same band of Bluetooth; when a Bluetooth
and a WiFi radio are in the same area, a single Wi-Fi
channel overlaps with 22 of the 79 Bluetooth channels.).
Fault probabilities strongly depend on APs usage. For
instance, the AP working on channels from 1 to 23 is
rarely used, thus justifying the low fault probability over
these channels. Figure 9(b) shows that the probability
over interfering channels drastically decreases when WiFi
is absent. This is a further confirmation of the lower
fault rate we measured in the absence of interferences.
Interestingly, we found that faults that occurred in absence
of Wi-Fi interferences were more “severe” than those that
occurred when Wi-Fi is present. This conclusion can be
drawn by investigating time to failure statistics for all
failures (detected and undetected). In both cases, they
fit a Lognormal distribution, but with different values of

TABLE II.
TTF DISTRIBUTION PARAMETERS WRT TO WIFI

PRESENCE IN THE NEIGHBORHOOD

TTF Lognormal Distribution Parameters
Exp. shape scale location

WiF iPresent 1.09 4.42 0.65
WiF iAbsent 2.05 5.049 0.937

distribution parameters (see Table II).

In the presence of Wi-Fi, faults are mainly due to
interferences which tend to be polarized on the overlapped
channels. After the occurrence of a failure due to collision,
the frame is retransmitted over a different channel. How-
ever, the channel might either be free or still occupied
by the Wi-Fi interference. This variability causes both
short- and medium-length inter-failure times. When Wi-
Fi is not present, there are no polarized interferences, or,
in other terms, the fault phenomena is spread (e.g., lost of
synchronization among nodes or wide-band disturbances).
Hence, it is more likely that a retransmission will fail.

This leads us to observe that in absence of Wi-Fi
short inter-arrival times of failures are more probable.
In other terms, the absence of disturbances causes the
faults to be more clustered in time. The reason for this is
to be found into the frequency hopping scheme adopted
by Bluetooth.In order to corroborate this intuition, we
also investigate Mean Time To Recover (MTTR) in both
circumstances. Consistently with above results, MTTR
increases when Wi-Fi is not present (from7.51ms to
9.52ms), i.e. more retransmissions are needed when the
fault phenomenon is not polarized. Finally, the Baseband
level exhibited a lower capability of detecting failures due
to spread phenomena in that its coverage decreases by one
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TABLE III.
RESULTS WITH RESPECT TO THE NUMBER OF BT SOURCES

Piconets Nodes Error rate MTTF(ms) MTTR(ms) Av % var.
1 4 19.60 (s−1) 51.0 7.84 0.889 -6.20
2 2*2 9.34 (s−1) 107.0 7.93 0.926 -2.40
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Figure 9. Histogram of failure probability across Blue-
tooth channels.

order of magnitude (it passes from 0.9996 to 0.9968). This
means that failures due to spread phenomena are more
prone to elude Baseband’s CRC integrity check.

We also conducted experiments involving more than
one piconet, in order to investigate whether the impact of
WiFi depends on the number of Bluetooth sources in the
neighborhood. In particular,we set up a piconet composed
of four Bluetooth nodes, and two different Bluetooth
piconets, each composed of two nodes. Table III reports
the achieved results. and the percent variation ofAv with
the reference experiment (i.e., the one with only two
nodes in the piconet). As one could expect, the presence
of other Bluetooth nodes causes the fault rate to increase.
In particular, the higher fault rate is due to the fact that
more nodes report the same underlying problem when
four nodes are in the piconet. Conversely, in the case of
two interfering picontes, the fault rate increase is due to
the presence of two master nodes which might choice the
same channel over time, causing interferences.

TABLE IV.
APPLICATION FAILURES AND CORRESPONDING RECOVERY
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VIII. A NALYSIS OF RECOVERY ACTIONS

Table IV reports the relationship between application
level failures and recovery actions. Each number in a cell
represents the percentage of success of the recovery action
(in a column) with respect to a given application level
failure (in a row). The numbers give an indication of the
effectiveness of recovery actions.
Several understandings can be obtained from the results.
As an example, packet losses recovered by an IP socket
reset (5.9% of packet losses) are due to “Hard Payload
Corruptions” detected by the IP CRC. It is indeed not nec-
essary to reestablish the L2CAP and BNEP connections.
The rest of the packet losses are instead likely due to a
broken link, since they at least require the connection to
be reestabilished. These broken link failures can be caused
by “Hard Payload Corruptions” affecting the L2CAP or
BNEP headers, then causing the corruption of the data
structures that maintain the link state. Hence, depending
on the severity of the corruption, several recovery actions
are needed, from the BT Connection reset to the reboot of
the machine. For “Data Mismatch” failures, no recoveries
can be defined, since a real application only relies on
integrity mechanisms furnished by the communication
protocols.

IX. CONCLUSIONS

Short range wireless technologies are the key of ubiq-
uitous networking. They represent the principal medium
to access the Internet from mobile devices. As these tech-
nologies are widely used in business and mission critical
applications, characterizing their dependability represents
a significant issue. Field Failure Data Analysis shows to
be an effective instrument to build the needed knowledge
on the dependability behavior of actual wireless networks.
The case of Bluetooth, analyzed in the article, gives
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evidence of how field data are useful to model the depend-
ability behavior and to uncover possible pitfalls. In the
paper, a novel approach is defined to conduct the FFDA of
wireless technologies, which combines the advantages of
both the top-down and bottom-up perspective to analyze
field data. Exploiting the approach, the dependability of
Bluetooth is characterized in terms of i) its failure modes
and statistical properties, ii) a markov model for channel
level failures, iii) failure propagation traces to system and
application level failures.
Presented results are useful to define mitigation means
to improve the overall dependability level of Bluetooth
networks. The same analysis needs to be conducted on
other wireless networks enabling ubiquity both over long
distances, e.g., WiMAX, (Worldwide Interoperability for
Microwave Access), and within short ranges, e.g., UWB
(Ultra Wide Band), and WUSB (Wireless USB), with the
aim of building large and publicly available field failure
data repositories. These can be exploited by researchers
and practitioners to design dependable wireless solutions.
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