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Abstract— The composition of large embedded computer
systems out of heterogenous clusters requires gateways
that resolve property mismatches between networks with
different communication protocols and diverse computa-
tional models. At the same time, fault and error contain-
ment mechanisms are needed in order to prevent common
mode failures that could be induced by the propagation
of faults between clusters. This paper presents gateways
to systematically tackle these challenges. The introduced
gateways contain structured collections of time-sensitive
variables associated with timing information (called a real-
time database). The real-time database facilitates fault and
error containment by temporally decoupling clusters. For
accessing the real-time database from attached networks,
we introduce network adaptors that ensure compliance with
temporal specifications expressed using state machines with
timing constraints. The containment of faults within clusters
is of particular importance for mixed-criticality systems and
increases the robustness of the overall systems. The proposed
solution is experimentally evaluated in an example system
with a time-triggered Ethernet network and a Controller
Area Network (CAN).

Index Terms— gateways, fault containment, error contain-
ment

I. INTRODUCTION

In several application domains, such as the automotive
or aerospace industry, complex embedded systems have
emerged that comprise multiple application subsystems
realized by multi-cluster electronics systems with gate-
ways between the individual networks. For example, in-
vehicle electronic systems can comprise clusters for body,
passive safety, vehicle dynamics, powertrain, infotain-
ment, and driver assistance [1]. Each of these clusters is
implemented with a set of node computers interconnected
by networks such as CAN [2], MOST [3], LIN [4], and
FlexRay [5].

In general, the decomposition of the overall electronic
system does not lead to completely independent clusters.
Many application services inherently involve an interplay
of clusters. An example of such an application service
is the precrash system [6] of a car, which requires the
interplay of the the vehicle dynamics subsystem and the
comfort subsystem.

In addition to these dependencies that are inherent
in the application services, dependencies can also arise
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through implementation choices driven by economic con-
siderations. In order to reduce the hardware cost, re-
sources can be shared across clusters. For example, auto-
motive temperature sensors are used in the body system
for heating, ventilation and air conditioning. Furthermore,
many of the components in other automotive clusters use
temperature compensation for improving the accuracy of
sensors [7].

Typically multi-cluster electronics systems are mixed-
criticality systems. For example, clusters in the aerospace
domain range from non safety-critical passenger entertain-
ment systems to safety-critical flight related subsystems,
such as engine management and flight control [8]. In order
to accommodate the differences w.r.t. criticality, avionic
application subsystems are assigned risk classes [9]. Like-
wise, automotive application subsystems are associated
with Safety Integrity Levels (SILs) [10] in order to express
the impact on safety w.r.t. malfunction and function
availability.

The tremendous differences in the development and
certification costs between different criticality levels are
also a major reason for modular system architectures
with multi-cluster electronics systems. Using modular
certification [11], each cluster can be individually certified
to the appropriate level of criticality. Modular certification
allows to reduce cost and to focus assurance effort on the
most critical parts of a system.

However, in multi-cluster electronics systems with
gateways, a prerequisite for modular certification are fault
and error containment mechanisms that prevent failures
in a non safety-critical cluster from affecting the correct
operation of safety-critical ones. The challenge is to con-
struct gateways with the ability to prevent faulty messages
from propagating between clusters.

In previous work, we have proposed a generic frame-
work for gateways based on a real-time database [12]. We
introduced gateways that contain structured collections
of time-sensitive variables associated with timing infor-
mation (called real-time databases) in order to separate
clusters. The real-time databases are accessed via network
adaptors that establish the interface to the interconnected
networks. The proposed framework includes a code gener-
ation tool that produces a middleware layer for forwarding
data from a real-time database to the different networked
components, as well as for collecting data from networked
components in order to update time-sensitive variables in
the real-time database.

686 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.685-695 



Gateway B

FCR

Gateway A

Cluster 1

FCR

FCR

Cluster 2

FCR

Cluster 3

FCR

Cluster 4

FCR

ECR 1-A

ECR 1-B

Figure 1. Fault Containment Regions (FCRs) and Error Containment
Regions (ECRs)

This paper extends the gateway framework in order
to establish fault and error containment for timing and
value message failures. Thereby, we establish an effective
basis for the construction of multi-cluster mixed-criticality
systems. The proposed fault and error containment mech-
anisms build upon the real-time database and the network
adaptors. They have been implemented in a prototype
setup with a Time-Triggered Ethernet cluster and a Con-
troller Area Network (CAN) cluster. Using this prototype
setup, experiments have investigated the effectiveness and
overhead (e.g., additional latencies) of the fault and error
containment in the gateways.

The coupling of networks based on database has also
been addressed in several existing solutions. For example,
the proxy architecture described in [13] supports the inter-
connection of two heterogeneous networks with a reliable
multicast proxy containing a database called the data
store. Another example of a solution using a database for
the interconnection of networks is the distributed object-
oriented real-time database system called BeeHive [14].
A third example is an architecture for avionic systems-of-
systems based on real-time publish/subscribe and High-
Level Architecture (HLA) [15]. In contrast to the pre-
sented work, existing solutions do not address mixed
criticality systems by introducing mechanisms for fault
and error containment w.r.t. timing and value message
failures.

The paper is structured as follows. Section II gives
an overview of a distributed embedded real-time systems
containing multiple clusters that are interconnected by
gateways. In particular, the requirements concerning fault
and error containment are given. The description of the
proposed gateways with a real-time database and network
adaptors is the focus of Section III. Section IV introduces
fault and error containment mechanisms based on these
gateways. The mechanisms were evaluated using the ex-
periment setup described in Section V. The results of the
experiments are presented in Section VI. The discussion
and interpretation of the results follows in Section VII.
The paper finishes with a conclusion and information
about future work in Section VIII.

II. FAULT AND ERROR CONTAINMENT IN

MULTI-CLUSTER REAL-TIME SYSTEMS

This section discusses the requirements regarding fault
and error containment in a distributed real-time system
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Figure 2. Gateway based on Real-Time Database

encompassing multiple clusters.

A. Fault Containment

A Fault Containment Region (FCR) is defined as a
subsystem that operates correctly regardless of any ar-
bitrary logical or electrical fault outside the region [16].
The notion of FCRs is a key concept for reasoning about
the behavior of a system in the presence of faults. The
knowledge about the immediate impact of a fault can
serve as the starting point for the reliability analysis of a
system. In addition, fault-tolerance mechanisms such as
triple modular redundancy require replicas to be assigned
to independent FCRs.

When reasoning about the composition of clusters using
gateways, we can regard each cluster and each gateway
as a FCR as depicted in Figure 1. Of course, a finer
granularity concerning FCRs (i.e., regarding individual
nodes within a cluster as FCRs) is useful when im-
plementing fault-tolerant clusters, e.g., using redundant
nodes. However, from the point of view of the gateways
we are only interested in the composition of complete
clusters. Thus, we can abstract from the inner structure
of the clusters.

B. Error Containment

Although an FCR can restrict the immediate impact
of a fault, fault effects manifested as message failures
can propagate across FCR boundaries. Possible failure
modes [17] of an FCR are timing message failures and
value message failures. In case of a timing message
failure the message send instants are in violation of the
temporal specification of the cluster. A value message
failure occurs, if the contents of a message do not comply
with the specification. These incorrect message contents
can encompass the message name and/or the message
data.

For this reason the system must also provide error con-
tainment [16] to avoid error propagation by the flow of er-
roneous messages. The error detection mechanisms must
be part of different FCRs than the message sender [18].
Otherwise, the error detection mechanisms may be im-
pacted by the same fault that caused the message failure.

For erroneous messages emitted by a cluster, the
gateway constitutes the second FCR. We use the term
Error Containment Region (ECR) in order to refer to
this connection of a cluster producing messages with a
gateway that performs error detection and error contain-
ment. Figure 1 shows an example depicting the FCRs in
a system with four clusters and two gateways. Two ECRs
are concerned with the containment of message failures
produced by the first cluster.
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Figure 3. Real-Time Database

III. GATEWAYS BASED ON A REAL-TIME DATABASE

A real-time system can be modeled using a set of real-
time entities [19], which are significant state variables
located in the environment or the computer system. The
current value of a real-time entity is called a real-time
image and can be sent within a message on a network.
Redirection of information through a gateway occurs
when a real-time image contained in a message is required
by another cluster connected to the gateway.

The mechanisms described in this paper build upon a
gateway model as introduced in [12]. A gateway accord-
ing to this model maintains a real-time database with real-
time images associated with timing information. Gate-
ways recombine real-time images acquired from one net-
work into messages for another network, while converting
between different temporal and syntactic specifications
and resolving naming incoherences.

The gateway contains for each accessed cluster a so-
called network-adapter, which implements the communi-
cation protocol of the network of the cluster and performs
information exchanges between the network and the real-
time database (see Figure 2). Since the validity of the real-
time images is time-dependent, the network adaptors are
responsible for repeatedly updating the real-time images
in the real-time database.

In the following, we will summarize the operation
and specification of the gateways based on a real-time
database. More detailed information can be found in [12],
[20].

1) Real-time Database: The real-time database stores
real-time images for the information exchange between
the network adaptors. The updating and the storage of
real-time images depends on the data semantics [19,
p. 103] (see Figure 3). Real-time images with event
semantics are queued, whereas real-time images with state
semantics are stored in variables that are overwritten
whenever a more recent value becomes available. The
underlying idea behind these two storage modes is that in
case of state semantics old values can be overwritten with
newer values. State information represents an absolute
value (e.g., speed is 30ms−1) and applications are often
only interested in the most recent value of a real-time
image. Event information, on the other hand, relates to
the occurrence of an event and needs to be processed
exactly-once.

In addition to the data of the real-time images, the
real-time database stores meta-information about real-
time images. The point in time of the most recent update
tupdate is a dynamic attribute associated with each real-
time image with state semantics. tupdate is set to the current
time, whenever a network adaptor overwrites the real-time
image in the real-time database.

Due to the dynamics of real-time entities, which change
their state as time progresses, the validity of real-time im-
ages is time-dependent. The temporal accuracy dacc [19,
p. 103] denotes how long a real-time image will still
remain a valid image of the respective real-time entity
in case no update of the real-time image occurs in the
meantime. The age of a real-time image at its time of
use introduces an error in the value domain, which is
determined by the rate of change of the underlying real-
time entity. Depending on the dynamics of a real-time
entity and the maximum acceptable error in a given
application, a gateway is allowed to store a real-time
image only for a limited duration before the real-time
image is invalidated by the progression of time.

The real-time database captures for each real-time
image with state semantics the temporal accuracy offset
doffset. This static attribute determines the temporal accu-
racy immediately after an update of the real-time image.
Using the temporal accuracy offset, the temporal accuracy
can be computed at time tnow as follows:

dacc = max(doffset − ( tnow − tupdate
︸ ︷︷ ︸

age of real−time image

), 0)

Furthermore, the real-time database contains boolean
update request indications in order to support on-demand
communication activities. For a real-time image with state
or event semantics, the respective update request indica-
tion breq denotes whether a new real-time image needs to
be transferred into the real-time database. By setting the
update request indication, a network adaptor can demand
real-time images from other network adaptors. A network
adaptor receiving messages from a network can initiate
receptions conditionally, based on the value of the update
request indication.

For every real-time image with event semantics, the
real-time database contains a dynamic attribute with the
number of queued elements nqueued. This attribute denotes
the number of elements of the real-time image that are
currently queued in the real-time database.

Furthermore, conversion functions can be specified,
which serve for the automatic transformation between
different syntactic representations of real-time images.
Each conversion is associated with a triggering real-
time image and a real-time image that shall store the
result of the transformation. Upon a change of value of
the triggering real-time image, the conversion function
computes a new value for the targeted real-time image.

2) Network Adaptors: The network adaptors are spec-
ified using state machines with timing constraints and
gateway-specific operations [20]. A network adaptor is
a state machine with local variables, clock variables,
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locations, and edges. An edge interconnects two locations
of the network adaptor and can be associated with a guard
and an action:

guard → action

The guard expresses a boolean condition that defines
whether the edge can be taken. Actions are used to
define assignments to variables, as well as interactions
with the real-time database and networks. Variables are
used to capture the internal state of the network adaptor.
In particular, variables can store messages and real-time
images. In an action, variables can serve as the source
for the transfer of a real-time image into the real-time
database or the transmission of a message on a network.
In analogy, variables can serve as the destination when
executing an action to read a real-time image from the
real-time database or to receive a message from a network.

The following grammar describes a guard:

rtimage : [a-z][A-Za-z0-9_]*

message : [a-z][A-Za-z0-9_]*

variable : [a-z][A-Za-z0-9_]* | variable[expression] | variable.variable

expression := (expression expression) | (rtimage)

| variable |

bool : exp

accARITH d

CONST

�

�

�

�

queued

ression expression | (bool bool) | (bool bool)

| bool | n (rtimage) | (rtimage) | avail(message)

guard : bool

req

COMP

b

� �

�

�

A guard is a boolean composition (i.e., disjunction,
conjunction, negation) of constraints on variables and
real-time images. Constraints can be specified using a
binary comparison operator (COMP ∈ {≤, <, =, �=, >
,≥}) on mathematical expressions. An expression de-
fines a function on the values of variables by means
of arithmetic operations (ARITH ∈ {+,−, ∗, /}). Vari-
ables can be arrays and hierarchically structured. Fur-
thermore, constants (i.e., CONST in Z), the temporal
accuracy interval dacc(rtimage), the update request indi-
cation breq(rtimage), and the number of queued elements
nqueued(rtimage) of a real-time image can be used in an
expression. avail(message) denotes whether a message
is available at a port to a network, i.e., whether the
message can be received with a rcv() operation (see
below).

The action attribute of a transition adheres to the
following grammar:

action : action;action|variable=expression|communication|

communication : req(rtimage) | push(rtimage)|pull(rtimage)|

rcv(message) | snd(message)

��

�

Besides the assignment of an expression to a vari-
able, communication operations support interactions with
networks and the real-time database. The operation
req(name) causes the setting of the update request
indication of the real-time image rtimage in the real-
time database. The operation push(rtimage) causes the
transfer of the real-time image rtimage from a variable
of the automaton into the real-time database. Inversely,
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Figure 4. Temporal partitioning in feeder network adaptor using
minimum interarrival time with bursts

pull(rtimage) fetches a real-time image from the real-
time database and writes it into a variable.

rcv(message) performs the reception of message when
the transition is taken. The reception means that the
message is read from a network and written to automaton
variables of the same name. The operation snd(message)
performs the transmission of a message. Prior to passing
the message to the network, the current values of a
corresponding set of the automaton variables are used to
set the contents of the message.

IV. FAULT AND ERROR CONTAINMENT THROUGH THE

GATEWAY

In the following, we will explain the achieving of fault
and error containment by mechanisms for temporal and
spatial partitioning [21] using gateways with a real-time
database and network adaptors. For the description of the
error containment mechanisms, we distinguish two types
of network adaptors based on the interaction with the real-
time database:

• Feeder network adaptor. These network adaptors
receive messages from a network and write real-time
images contained in these messages into the real-
time database.

• Retrieval network adaptor. These network adaptors
read from the real-time database in order to construct
messages and transmit them on a network.

A. Temporal Partitioning

Temporal partitioning is concerned with the contain-
ment of the effects of timing message failures (cf. fault
assumptions in Section II). Through temporal partition-
ing, the gateways ensure predefined temporal properties
(e.g., bounded latencies) of the networks of the inter-
connected clusters despite the redirection of messages.
In particular, temporal partitioning limits the effects that
can be induced by a node of one cluster on the temporal
properties of the messages transmitted by nodes on the
network of another cluster.

We can distinguish three layers of defense for timing
message failures:

a) Feeder Network Adapter: The feeder network
adaptor uses temporal a priori knowledge to discard mes-
sages that represent message timing failures. The types
of detectable timing failures depend on the corresponding
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communication protocol. For time-triggered communica-
tion protocols (e.g., FlexRay [5], TTP [22]), the network
adaptor can detect deviations of the actual message trans-
mission instants compared to the preplanend instants in
the time-triggered communication schedule. For event-
triggered communication protocols (e.g., CAN [2]), the
amount of a priori knowledge on the message timing de-
termines the achievable error containment. For example,
message interarrival times and message service times can
be monitored and enforced. Figure 4 depicts an example
for temporal partitioning in the feeder network adaptor
for an event-triggered protocol. The state machine in the
network adaptor permits bursts with 10 message recep-
tions in immediate succession and enforces an inactivity
interval of 20ms between any two such bursts.

b) Retrieval Network Adapter: To realize temporal
partitioning, the retrieval network adaptor can use tempo-
ral a priori knowledge for controlling the relaying of real-
time images from the real-time database to the destination
network. For example, a retrieval network adapter can
relay fewer real-time images than contained in the real-
time database in order to prevent the overloading of the
network (i.e., violation of minimum interarrival times).
Figure 5 depicts an example for temporal partitioning in
the retriever network adaptor. The state machine of the
network adaptor permits a burst of 10 pull operations in
immediate succession and enforces an inactivity interval
of 20ms between any two such bursts.

c) Real-Time Database: The real-time database sup-
ports separate message buffers for different real-time
images [19]. Hence, a timing message failure resulting in
an overload of a particular real-time image at the real-time
database does not affect the other real-time images. This
is particulary important for buffers of real-time images
with event information, which are realized as queues in
the real-time database. Although the queue dedicated to
the real-time image with the message overload will be
subject to an overflow and message omissions, all other
buffers will continue to provide exactly-once semantics.

B. Spatial Partitioning

As introduced in the fault model, a value message
failure occurs in case the contents of a message do not
comply with the specification. Two important classes of

0

avail(m) rcv(m)

r.SourceMAC�IDS1
x�STARTPHASE

x<ENDPHASE

3
x>PERIOD x=0

rcv(m)

2

x>ENDPHASE

r.SourceMAC=IDS push(r)

Figure 6. Spatial Partitioning in Feeder Network Adaptor (m is
a time-triggered Ethernet message containing a real-time image r =
〈Preamble, Startdelimiter, DestinationMAC, SourceMAC, ...〉

message failures are the loss of temporal accuracy and
faulty message names.

The loss of temporal accuracy occurs if real-time
images (contained in a message) have been invalidated
by the progression of time. In such a case, receivers can
fail due to operating on outdated inputs.

In case of a faulty message name, the following types
of spatial interference can occur depending on the types
of names contained in a message:

• Invalid source address: Such a behavior is also
called a masquerading failure. Masquerading is de-
fined as the sending or receiving of messages using
the identity of another sender without authority [23].

• Invalid destination address: The anticipated re-
ceiver does not receive a message, whereas the
message can have a harmful effect at unintended re-
ceivers (e.g., overwriting of other messages, creation
of processing load).

• Message identifier: The message can be handled in
an incorrect manner by the receiver (e.g., temperature
value is mistaken for a speed value).

In analogy to temporal partitioning, the spatial parti-
tioning mechanisms for the above failures can occur in
the feeder network adapter, the retrieval network adaptor,
and the real-time database.

a) Feeder Network Adapter: The spatial partitioning
mechanisms of a feeder network adaptor are based on
state machines that encode checks on the contents of
received messages. A feeder network adaptor discards
messages with wrong contents, i.e., the network adaptor
does not insert the real-time images into the real-time
database. Figure 6 is an example of a feeder network
adapter implementing a simple name constraint of a time-
triggered Ethernet network [24].

The state machine waits in the initial state ’0’ until
the start phase of the periodic message has been reached.
Thereafter, the automaton waits for the arrival of a mes-
sage in state ’1’. If the message arrives, a transition to
state ’2’ follows and the source address of the message is
compared to a predefined node address (IDS). In case of
a match the message is placed in the real-time database
(using a push operation). State ’3’ is reached either after
the reception of a correctly named message or in case the
end phase of the enabled time interval has been reached.
After the end of the period, the state machine returns to
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the initial state.
Of course, other protocols can require more complex

state machines, e.g., multiple receive and send operations
as part of a request/reply protocol, before the contents of
a message can be checked and forwarded to the real-time
database.

b) Real-Time Database: The real-time database can
employ a conversion function in order to convert between
different syntactic representations (cf. Section III). In
case a triggering real-time image is modified through
a push operation, a new value for a target real-time
image is computed. For the purpose of spatial partitioning,
conditions on the contents of the triggering real-time
image can be employed for deciding on an update of
the target real-time image. Thus, in case of an incorrect
message name in the triggering real-time image, no update
of the second real-time image is performed.

c) Retrieval Network Adapter: The retrieval network
adapter can perform the detection and containment for
value failures of the real-time images retrieved from the
real-time database. In order to prevent the redirection
of real-time images that have been invalidated by the
progression of time, the retrieval network adapter can use
the temporal accuracy dacc. As discussed in Section III,
the temporal accuracy of a real-time image at a specific
time can be computed from the most recent update instant
in conjunction with the temporal accuracy offset.

V. EXPERIMENTS

This section describes the prototype setup and the
configurations that have been used to evaluate the fault
and error containment of the proposed gateways.

A. Prototype Setup

The evaluation of the fault and error containment of the
presented gateways has been performed with a prototype
setup containing two clusters. As depicted in Figure 7,
a gateway establishes the link between a cluster with a
time-triggered Ethernet network and a cluster with a CAN
network.

1) Time-Triggered Ethernet Cluster: Time-triggered
Ethernet [24], [25] is a protocol that unifies real-time
and non-real-time traffic into a single coherent commu-
nication protocol. This protocol supports two types of
time-triggered messages, namely time-triggered periodic
messages (TTpM) and time-triggered sporadic messages
(TTsM). TTpMs are transmitted periodically from the
sender node to the receiver nodes in a reserved Time

Division Multiple Access (TDMA) slot. Each TTpM has
a constant period and phase in a time-triggered commu-
nication schedule. TTpMs are typically used to transmit
state information and each correctly received message
overwrites the previous instance at each receiver.

TTsMs, on the other hand, are intended to transport
sporadic event information. A TTsM is transmitted only
if the local message has been updated by the sender’s
host application since the last transmission of the mes-
sage. TTsMs have a constant period and phase (like the
TTpM) and can theoretically be transmitted in every such
period (when the message contents change after every
transmission).

The time-triggered Ethernet cluster consists of a set of
five node computers (Soekris Engineering net48011), each
of which contains the 586 class processor SC1100 clocked
at 266 MHz. The software within a node encompasses
a real-time Linux variant as the operating system and a
software implementation of time-triggered Ethernet with
100 Mbps. The communication schedule uses a period of
approx. 2 ms.

2) CAN Cluster: CAN is an event-triggered communi-
cation protocol, which uses carrier sense, multiple access
with collision avoidance (CSMA/CA) for medium access
control [2]. CAN employs data frames for the transmis-
sion of CAN message objects. A data frame contains
a unique identifier, which identifies the message object
and denotes the message priority. In addition, a node
can transmit a remote frame to request the dissemination
of a data frame with a specific identifier. Collisions on
the CAN bus are resolved by bit wise arbitration of the
message identifiers. The CAN protocol itself does not
enforce temporal constraints on the transmission behavior
of the nodes, although many CAN-based applications use
timing models on top of CAN (e.g., interarrival times or
periodic messages) [26].

The CAN cluster of the prototype setup uses single
board computers (Soekris Engineering net4521) as nodes.
Each node is equipped with a PCMCIA-based CAN in-
terface card [27] containing the CAN controller SJA1000.
The CAN network has been configured for a bandwidth
of 500 kbps, which is commonly used, e.g., in high-speed
automotive CAN networks.

3) Gateway: The gateway is a node that belongs to
both clusters. This node is equipped with a time-triggered
Ethernet interface and a PCMCIA-based CAN interface
card. The node executes code that has been automatically
generated from formal gateway specifications [12], [20].
Section V-B will give an overview of the gateway specifi-
cations used in the prototype setup, focusing on the state
machines of the network adaptors. The full description
of the UML models that were used as input for the code
generation is omitted due to space constraints.

In addition to the automatically generated code, the
node serving as the gateway contains drivers for CAN
and time-triggered Ethernet. These drivers establish the

1www.soekris.com
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Figure 8. Configuration of Network Adaptors (x, y . . . clock variables; n . . . integer variable; n, BD, IBT, PE,PH . . . constants;
m1,m2,mreq,mrep . . . messages; r . . . real-time image contained by m1, m2, mrep)

gateway-specific operations, such as snd, rcv and
avail.

B. Gateway Specification for Three Configurations

In the following, three configurations will be explained
that were used in the experiments: periodic, unidirectional
sporadic and client/server communication. These three
configurations represent three important communication
paradigms and are supported by the CAN and Ethernet
networks in the clusters of the prototype setup. In all three
configurations, the sending node includes in each message
a sequence number and a time stamp of the transmission
instant. The receiving node determines the transmission
latency using the time stamp contained in the message and
the current time. Using the sequence number, the receiver
recognizes lost or duplicate messages.

In all three configurations, the messages are used by the
receivers to update a state variable with time-dependent
validity. We assume an exemplary temporal accuracy
offset of 20 ms in the experiments in order to be able
to describe the temporal accuracy of this variable.

1) Configuration for Periodic Communication: In this
configuration, the gateway redirects a periodic message
from the Ethernet network to the CAN network. The
network adaptors are depicted in the first row in Figure 8.
The feeder network adaptor receives messages with a
predefined period PE and phase PH. Whenever the clock
variable indicates that the phase has been reached, the
transition to state 2 is taken, receiving a message and
pushing the contents into the real-time database. The
real-time database stores a state variable, the contents of
which are periodically overwritten by the feeder network
adaptor. After the period has elapsed (i.e., the clock
variable is equal to the period), the transition back to the
initial state 1 is taken. The state machine of the retrieval
network adaptor has a similar structure. In state 1, the
retrieval network adaptor waits for the clock variable
becoming equal to the phase, before reading the value of
the state variable from the real-time database and sending
a message. Thereafter, the period needs to elapse before
the state machine progresses back to state 2.

2) Configuration for Unidirectional Sporadic Commu-
nication: The gateway redirects sporadic messages with
bursts in this configuration. Figure 9 shows the timing
model of the sporadic messages with bursts. A burst has

t

interburst time y

y�

burst with burst volume n (1 n n )

and burst duration x (x<BD)

msgs msgs

Figure 9. Timing Model

a volume n between 1 and n messages. These n messages
must occur in a time interval x that has a maximum burst
duration of BD. After the burst, a burst interarrival time
has to elapse before any subsequent messages. BIT is a
lower bound for the burst interarrival time y.

The feeder and retrieval network adaptors in the second
row of Figure 8 contain state machines that enforce this
timing model. The feeder network adaptor interacts with
the CAN network. When a message is available at the
port, the clock variable is reset to measure the time
until the end of the maximum burst duration. Within
the burst (in state 2) up to n messages are received
and their contents are pushed into the real-time database.
Since sporadic message are frequently associated with
event information, the real-time database contains a queue
to store real-time images with support for exactly once
processing. After the reception of each message, a clock
variable is reset in order to capture the silence time since
the last message. When the silence time is longer than
the burst interarrival time BIT, the state machine transits
back into state 1 and is ready for a new burst.

Due to the state machine of the network adaptor, the
insertion of information into the queues of the real-time
database occurs as specified in the timing model even in
case the messages arriving from the network violate the
temporal constraints.

The state machine of the retrieval network adaptor
implements the same timing model. However, instead of
receiving messages from the network during a burst, the
retrieval network adaptor dequeues messages from the
real-time database and forwards them to the Ethernet
network. Even if more messages are present in the real-
time database than may be disseminated according to the
timing model, the retrieval network adaptor will enforce
the transmission of messages on the Ethernet network in
compliance with the timing model.
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Cluster�Internal�Communication�of�CAN�Cluster Cluster�External�Communication�

Figure 10. Observed latency and temporal accuracy for each mode (no redirection, redirection of all messages, redirection of timely messages) in the
three configurations (periodic,sporadic, client/server). A minimum temporal accuracy of 0 indicates a loss of temporal accuracy in the experiment.

3) Configuration for Client/Server Communication: In
this configuration the CAN network performs client/server
interactions, while periodic communication takes place on
the Ethernet network. The third row in Figure 8 shows
the respective network adaptors. The retrieval network
adaptor of the gateway receives the request messages from
the CAN network. After the arrival of such a request
message, the retrieval network adaptor sends a reply
message on the CAN network with information pulled out
of the real-time database. For the request messages, we
use the same burst timing model as for the unidirectional
sporadic messages. The feeder network adaptor operates
like in the configuration for periodic communication.
It acquires information from the Ethernet network and
pushes the information into the real-time database.

VI. EXPERIMENTAL RESULTS

This section describes the observed timing for the
three configurations (i.e., periodic, unidirectional spo-
radic, client/server) of the prototype. We observed the
cluster-internal communication, which comprises the
messages exchanged between nodes within a cluster. In
addition, measurements the cluster-external communica-
tion are provided. The cluster-external communication
consists of messages redirected between clusters via the
gateway. For both cluster-internal and cluster-external
communication, the message latencies and the temporal
accuracy of the state variables updated by the messages
have been captured.

For each of the three configurations, we have tested the
gateway in three operational modes. The third mode is
the most interesting one for the experimental evaluation,
while the other two serve as references.

1) No redirection of messages. The gateway blocks all
messages.

2) Redirection of all messages. The gateway redirects
all messages without imposing any temporal spec-
ification. No temporal partitioning is performed.

3) Redirection of timely messages. The gateway redi-
rects only timely messages, which comply with the
temporal specification. Thus the gateway performs
temporal partitioning by enforcing the temporal
specification of the respective network with the
network adaptors of Section V-B.

In conjunction with the three operational modes, the
temporal behavior of the cluster-internal communication
provides evidence regarding the effectiveness of the tem-
poral partitioning. In particular, the timing of the third
mode compared to the timing of the second mode with-
out temporal partitioning shows the benefits of temporal

partitioning. Furthermore, we can perform a comparison
with the timing of the first mode that trivially provides
temporal partitioning by performing no redirection at all.

The timing of the cluster-external communication in
the three operational modes shows the performance of
the gateway and the overhead due to the fault and error
containment mechanisms. By comparing the second and
the third mode, we see the performance penalty due to
blocking untimely messages.

Figure 10 summarizes the experimental results for
each mode of operation and each configuration. For
the periodic and client/sever configurations, the latencies
of the cluster-internal communication are also depicted
graphically in Figures 11 and 12.

A. Configuration for Periodic Communication

Figure 11 graphically depicts the latencies of the
messages on the CAN network excluding the redirected
messages (i.e., only cluster-internal communication). This
diagram gives an impression of the impact induced by
the redirection of messages on the timing of the cluster-
internal communication. When the gateway blocks all
messages, the maximum observed latency of the cluster-
internal communication is 8.8ms. In case the gateway
redirects all messages, the observed latencies increase
significantly. 21% of the messages have a latency above
20ms. 7% of the messages are never delivered and sub-
ject to omission failures. In case the gateway performs
temporal partitioning by enforcing the temporal specifi-
cation using the network adaptors (cf. Section V-B.1),
the maximum observed latency of the cluster-internal
communication is 15.2ms and all messages are delivered.

The cluster-external communication (i.e., the messages
redirected between clusters) exhibits maximum latencies
of 11.3ms without temporal partitioning and 12.9ms with
temporal partitioning. The temporal partitioning mecha-
nisms delay and block untimely inter-cluster communi-
cation. Due to not redirecting messages immediately, the
latencies with temporal partitioning are higher.

B. Configuration for Unidirectional Sporadic Communi-
cation

The results for the configuration with unidirectional
sporadic communication are similar to the ones of the
previous configuration (cf. second row in Figure 10).
However, the unpredictability resulting from the ran-
domness of the message interarrival times causes higher
latencies and smaller temporal accuracy. Compared to the
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Figure 11. Latencies in configuration for periodic communication:
vertical axis denotes number of messages (with logarithmic scaling),
message latency is distinguished along the horizontal axis

previous configuration, more nodes try to send messages
at the same time, thereby causing higher delays.

When the gateway blocks all messages, the maximum
observed latency of the cluster-internal communication is
9.3ms. In case the gateway redirects all messages, the
observed latencies increase significantly and 11% of the
messages are never delivered in the observation period.
In case the gateway performs temporal partitioning by
enforcing the temporal specification using the network
adaptors, the maximum observed latency of the cluster-
internal communication is 16ms and all messages are
delivered.

For the cluster-external communication, maximum la-
tencies of 10.6ms were observed without partitioning and
12.1ms with partitioning.

C. Configuration for Client/Server Communication

Figure 12 shows the experimental results for the
client/server configuration. Compared to the periodic and
unidirectional sporadic communication, this configuration
exhibits a higher load on the network since both request
and reply messages are exchanged. Request messages
exhibit random interarrival times. Without redirection,
the maximum latency on the CAN network is 11.8ms.
When redirecting messages with temporal partitioning
the latency increases to 17.2ms in this configuration.
Without temporal partitioning, 29% of the messages are
not delivered within the observation time.

Due to the higher latencies in this configuration, the
latency of the cluster-external communication also reaches
higher values. Without temporal partitioning the maxi-
mum latency is 14.3ms. With temporal partitioning the
maximum latency is 15.8ms.

VII. DISCUSSION OF RESULTS

The experiments have demonstrated the gateway’s abil-
ity to prevent one cluster from causing timing failures
in another cluster. The gateway enforces a temporal
specification that is encoded in the network adaptors using
state machine with timing constraints.
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Figure 12. Latencies in configuration for client/server communication

Since messages are redirected to a CAN network, the
gateway has an effect on the timing of the cluster-internal
communication. The flexibility of CAN, which does not
enforce predefined message transmission instants like a
time-triggered communication protocol (e.g., FlexRay),
limits the capabilities of temporal partitioning. The redi-
rected messages can delay the CAN messages exchanged
internally between the nodes of the CAN cluster. How-
ever, this effect is bounded due to the temporal con-
straints of the gateway. The temporal constraints include
the periods in the periodic scenario and the minimum
interarrival times and burst constraints in the sporadic and
client/server configurations. In the example used for the
experiments, the temporal partitioning performed by the
gateway ensures that the real-time image does not lose its
temporal accuracy.

On the other hand, without partitioning mechanisms,
i.e., when state machines are missing in the network
adaptors that would constrain the redirection of messages,
temporal accuracy is lost. In addition, messages exhibit
higher higher latencies or are not delivered at all.

VIII. CONCLUSIONS AND FUTURE WORK

Fault and error containment play an important role in
mixed criticality systems, where gateways interconnect
non safety-critical and safety-critical clusters. Such mixed
criticality systems are typical in many applications, e.g.,
in the automotive and avionic domains.

The presented gateways based on a real-time database
and network adaptors provide a solution to this chal-
lenge. The real-time database decouples the intercon-
nected clusters and facilitates the containment of timing
and value message failures. The real-time database is
accessed through network adaptors, which incorporate
state machines with timing constraints in order to enforce
temporal specifications (e.g., message interarrival times,
bandwidth constraints). In addition, network adaptors
support the containment of value message failures through
checks on message contents (e.g., message identifier,
address, temporal accuracy). Furthermore, the real-time
database provides information regarding the temporal ac-
curacy of time-sensitive information, thereby enabling the
containment of a specific type of value message failures:
messages containing values that have been invalidated by
the progression of time.
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The prototype implementation and the experiments
have shown the effectiveness of the gateways for the
containment of timing failures in three realistic example
scenarios (i.e., periodic, sporadic and client/server com-
munication). In future work, an experimental evaluation of
further scenarios (e.g., streaming communication) and an
evaluation of the containment of value failures is planned.
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