
A comparison of GIS architectures for
implementing indoor location-based services

Valerio Vianello*, Cristiano di Flora, Christian Prehofer
Nokia Corporation, Finland

Email: valerio.vianello@uniparthenope.it ,{cristiano.di-flora, christian.prehofer}@nokia.com

Abstract— This paper describes our experiences and lessons
learnt in building a Geographic Information System (GIS)
specifically designed for indoor location-based services. The
proposed system was built by mashing-up commodity Open
Source software and novel research prototypes realized
within our labs. The overall approach relies on intense
usage of standard web technologies and REpresentational
State Transfer (REST) APIs as a way of enabling easy
mashup of off-the-shelf and proprietary components. The
key design and implementation aspects of our solution
are described in detail, including a discussion on how we
represented and augmented the concept of indoor location
within our services, as well as on how we integrated
them with commodity GIS services originally designed for
outdoor scenarios. Further, we show different approaches
for implementing client-side applications capable to interact
with our indoor location-based services, and we report
experimental results of test campaigns for evaluating the
impact of those approaches on resource constrained devices.

Index Terms— Indoor, GIS, Smart Spaces

I. I NTRODUCTION

This paper describes our experiences and lessons learnt
in building a Geographic Information System (GIS)
specifically designed for indoor location-based services
within our GIS smart places infrastructure. While there
has been considerable research and commercial suc-
cess on outdoor (GPS-enabled) Location Based Services
(LBSs), we focus here on indoor LBSs. Our focus here
is to understand how commodity GIS technologies can
be used for our mobile indoor solution. In this way, we
aim both to extend the scope of GIS systems and to use
them as standards for indoor applications. The proposed
system was built by mashing-up commodity Open Source
software and novel research prototypes realized within
our labs. The overall approach relies on intense usage
of standard web technologies and REpresentational State
Transfer (REST) APIs as a way of enabling easy mashup
of off-the-shelf and proprietary components. Consumers’
satisfaction has an important role in our system design
and we focus on evaluation of GIS services for mobile
devices in this paper.

This paper is based on “Leveraging GIS technologies for the creation
and provisioning of web-based smart places services” by C. diFlora,
and C. Prehofer, which appeared in the Proceedings of 6th IFIP WG
10.2 International Workshop on Software Technologies for Embedded
and Ubiquitous Systems (SEUS 2008), Capri Island, Italy, October 1-3,
2008, Lecture Notes in Computer Science 5287 Springer 2008

* Was a Visiting Research Scholar at Nokia Research Center, on leave
from Dipartimento per le Tecnologie, University of Naples Parthenope,
Italy

As far as system architecture is concerned, the paper
describes two alternative solutions for map rendering. A
first one renders the map on the client-side using com-
modity JavaScript libraries, and the other one renders the
map completely on the server-side. Both server and client-
side approaches have their known advantages, especially
when users perform repeated operations on maps like
displaying points of interest or panning. For the server-
side rendering, no computation on the mobile device
is needed, but maps are transferred as they are, which
may result in repeated transfer of complex map material.
Furthermore, one may expect that client-side rendering is
more responsive and does not need to re-download map
material. The paper gives detailed insights for mobile GIS
systems on existing mobile devices and shows in which
cases these general expectations hold or not.

The paper is organized as follows. Section II discusses
the rationale behind our work and related research. The
key design and implementation aspects of our solution
are described in detail in Sections III and IV, respec-
tively, including a discussion on how we represented and
augmented the concept of indoor location within our
services, as well as on how we integrated them with
commodity GIS services originally designed for outdoor
scenarios. Section V outlines an evaluation strategy for
indoor GIS, and reports the results of our experiments
executed according to the outlined strategy. Section VI
concludes the paper by outlining the main lessons learnt
and future research directions.

II. M OTIVATION AND BACKGROUND

Outdoor location based services have been widely
successful and have created an enormous ecosystem of ap-
plications around them. Such applications have fueled the
integration of applications by using the mashup approach.
For instance, it is now very common for web-based
services to show geo-tagged items on a map application.
Our focus on indoor and mobile location-based services
is motivated by research on pervasive and ubiquitous
computing, which often build also on indoor position-
ing and services on indoor maps. In this context, we
developed services for indoors based on our system and
called these ”smart space” (application) platform. There
is extensive literature on middleware for such ubiquitous
applications, for instance [1] surveys 29 approaches up
to 2004. This survey covers many systems for distributed

664 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.664-674

mobile computing and most of them consider location
information, even though positioning technology was not
widely spread at that time.

We think that there are a number of essential research
issues towards a wide spread ecosystem of indoor po-
sitioning services. In our view, the key issues for the
widespread usage of indoor positioning services are as
follows:

• Establishing common standards and practices for
indoor positioning and map services which are in-
teroperable and easily available

• Integrating indoor positioning services into existing
web-based services

• Enabling mobile, context aware applications which
are easy to deploy and use

• Making the services usable by resource constrained
devices

• Ensure privacy and security regarding personal in-
formation such as location information

Regarding the first item, we see several missing pieces.
First, while GPS is nowadays widely available outdoors,
there is no such established and deployed indoor posi-
tioning technology. Moreover, most of them need dedi-
cated device-side or infrastructure-side hardware. Indoor
positioning has been using very different technologies
such as bluetooth, RFID or WLAN based. Even further,
there are no established standards for handling maps and
geo-spatial data, whereas such standards are available for
outdoor LBS [2]. Our approach here is to build on WLAN
based positioning, which we see as a widely available
technology, and to use such open standards for geospatial
information systems for indoor settings.

Regarding the second issue above, integration with
existing services is needed because such services not
only provide considerable technology but also toolkits
and substantial amount of already available geospatial
data as, for example, in outdoor maps applications. This
may also include personal data, such as private contacts
or pictures. We also observe here that most of these
application mashups use technologies which are simple
and integrate easily into web applications, such as REST
style APIs and RSS feeds.

Another problem is that deploying mobile services is
difficult, as there is a large variety of devices and different
operating systems (in different version) on the market.
Furthermore, these devices can be quite different in terms
of resources like memory and connectivity. This problem
has hampered the deployment of mobile services in gen-
eral, and is more severe in our case as we also want to
integrate positioning information as well as other context
data. We are focusing on web based applications as they
are easy to access, to deploy, and to manage. However,
they do not have access to local context data of the user.
Different options can be chosen in this context, based
on downloadable client software for context collection
as well also using upcoming standards for browser-based
access to context data such as the W3C Delivery Context
Client Interface (DCCI) initiative [3].

With regard to services usability, it is clear that users
using devices with different resource constrains could
get different experience from the same service. For this
reason, our aim is to provide services where the quality is
assured even though the device used to access the service
has low capabilities.

Another challenge, which is closely tied with the above
is to connect with (other) applications and enable ap-
plication mashup, while preserving privacy. The issue is
that ubiquitous context information is typically privacy
sensitive and existing application mashup techniques do
not support this sufficiently.

In this paper we discuss how we tackled the described
issues, and we show how to use GIS solutions for indoor
settings and show how the web can be used as a platform
for these services. This covers connecting to services
in other web based applications. We also discuss how
to integrate context information into our service. We do
not cover in full detail more secure ways for application
mashup. Here, we see a few key ingredients emerging,
such as OpenID and OpenAuth [4], which rely on novel
and more flexible decentralized approaches to authenti-
cation and authorization and thus can provide a mashup-
friendly security infrastructure. A similar architecturefor
mobile devices is presented in [5], where the location
context data is sent separately to a server, while the
service is hosted from a web server which obtains the
context data from this server. This paper focuses on
visibility models and does not cover indoor positioning
aspects as done here. Other works on applying mobile
GIS solutions are for instance [6], which focuses on tour
guide applications. [7] focuses on indoor GIS for mobile
devices, but does not address application mashup and
platform aspects nor interactive JavaScript front-ends as
we do here.

III. W EB-BASED INDOOR GIS SOLUTIONS

A. The web as a platform for indoor, mobile location-
based services

Before discussing how we designed and implemented
our indoor location sensing API, it is worth shedding
some light on the architecture of the overall web based
service platform that the API is part of. A detailed
discussion of this architecture goes beyond the scope of
this article. The interested reader may refer to [8] for
further details about it. In this sub-section we will focus
on the key design decisions underlying this architecture,
and on their effects and implications on the proposed
GIS solution. Compared to related work in this area, the
decisions that characterize our approach are as follows:

• HTTP-based communication: HTTP and web ser-
vices are used as the primary means for integrating
and mashing-up software across devices.

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 665

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.664-674

LegendBase Platform & Communication Base Platform & Communication

Platform ServicesPlatform Services

Smart Space ApplicationsSmart Space Applications

Database
Engine HTTP Server

Maps
Manager

Maps
Manager

Web App
Framework

Topology
Server

Topology
Server

Smart Place
Directory

Smart Place
Directory

Blog
Engine

Search
Engine

Platform ServicesPlatform Services

Indoor
Location Sensor

Location sharing
Engine

Smart Space
Applications
Smart Space
Applications

Map Browser

Commodity
Component

Smart Place
Platform Component

Indoor GIS
Component
Indoor GIS

Component

SERVER-SIDE CLIENT-SIDE

Authentication
/ Authorization

Friend
Finder
Friend
Finder

Location-tagged
Contents

Location-tagged
Contents

Indoor Map
Viewer

Indoor Map
Viewer

Smart Place BrowserSmart Place Browser

Figure 1. High level architecture of our Smart Places platform, including server-side (left side) and client-side (rightside) components. Grayed
boxes represent Indoor GIS components. White boxes representeither commodity open source components (dashed border boxes)or smart places
platform specific components (solid border boxes).

• Reuse of existing web technology: a key problem
with existing solutions in the ubiquitous and per-
vasive computing research community is that they
are rarely reusable. By relying on existing web
technology, the infrastructure interoperates with a
large number of devices already available in the
current market.

• Multiple runtimes for application execution: High
end mobile devices are now offering a much wider
range of runtimes for implementing and running
applications and services, including traditional Java
and C++ runtimes as well as support for Python
and other scripting languages. In this way, platform
developers can use several runtimes. This means that
many existing components used on the web can be
used in our infrastructure as well. Moreover, having
the basic location enablers available through HTTP
based communication, makes it possible and easy
to mashup local (both situated and on device) and
remote location-based web services all together.

The system is organized in multiple layers, which are de-
picted in Figure 1 and briefly described in the following.
Please refer to Section IV for further details about how
we designed the GIS components and what commodity
components we included in them.

The Base Platform & Communication layer con-
tains several commodity commercial and/or open source
components that we see as necessary to realize a full
web platform in the smart space. Using commodity web
components allows us to bring many features to the smart
space such as, for example, easy creation and deployment
of services using well known authoring/distribution tools
and framework for web applications, user management
and security solutions, database and content management
systems. As far as location-awareness support is con-
cerned, the platform currently includes aMaps Manager
component, which is in charge of providing Create Read
Update Delete (CRUD) primitives for indoor maps data,

i.e., raster layers representing building and floor plans,
as well as several features (vector) layers representing
floor topology elements (rooms, corridors, halls) and
static Points-of-Interests (e.g., in an airport smart place,
they could include restaurants, shops, check-in desks,
terminals, gates, and other categories of interest to people
visiting that space).

Platform Services can be created by using the tech-
nologies in theBase Platform & Communication layer.
A few typical platform services are shown in Figure
1. They include two actual indoor GIS components,
namely Topology Server and Smart Place Directory.
The Topology Server is in charge of providing low-
level information about the physical structure of the
available smart places, such as for example details about
how a given building is structured in floors, wings, and
rooms. Places are modeled by using an hybrid hierarchical
location model [9], and each physical location is assigned
a URI that other services and applications can use as
tags to associate items (e.g. media contents, blog posts,
user location) to a certain physical location (further details
about the model are reported in [10]). TheSmart Place
Directory acts as a mediator betweenSmart Space
Applications and the other indoor GIS components of
the platform (i.e., components belonging to either the
Platform Servicesor Base Platform & Communication
layers). It provides a set of REST APIs that allowSmart
Space Applications to access otherPlatform Services
and Base Platform & Communication functionality
through a consistent and common API. The API allows
CRUD access to most of the location-dependent data
available in the smart place, such as people location,
location-specific contents, and POIs, in a web-application
friendly way. In fact, it supports several widely adopted
data-interchange formats, including XML-based formats
like ATOM and RSS feeds, as well as more lightweight
formats such as the JavaScript Object Notation (JSON).
All the mentioned components so far are intended to be

666 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.664-674

deployed on the server-side.
Smart Space Applications re-use and combine the

Platform Servicesfunctionality with other on-device fea-
tures in order to provide meaningful and helpful function-
ality to end-users. These may be web applications, which
can be accessed using a browser and which can be hosted
on the mobile web application server. Alternatively they
can be implemented as stand alone applications written
using any of the existing device specific development kits
and that access the deployedPlatform Services through
http-based communication. In Figure 1 we show a few key
examples of such applications, which are described in the
following. The Smart Place Browser represents a very
generic entry point to available applications, providing an
AJAX API for Smart Space Applicationsdevelopers to
create new end-user applications. The API exposes and
leverages the key abstractions implemented byPlatform
Services to a developer-friendly interface. Some of the
services made available by the API are: search and
indexing of places in a smart space, indoor positioning
that allows user devices to determine where they are in the
smart space, functions to retrieve geographic information
about maps and POIs. New applications, such as the
Indoor Map Viewer , Location-tagged Contents, or
Friend Finder , have been implemented on top of this
API, as we will show in Section V.

It is worth noting that, as Figure 1 clearly shows,
our approach is based on a very thin-client model, in
which no particularBase Platform & Communication
or Smart Space Applicationscomponents are assumed
to be deployed and pre-installed on the client-side. In
fact, in order to use the services, the client-side just needs
to have the Map Browser component, which, as we will
describe in Section IV-A, could be simply implemented as
a web browser capable of rendering rich web applications.
Additional components, such as for example theIndoor
Location Sensorin Figure 1, might be required in order
to enable usage of some applications (like the Friend
Finder) or to improve user experience with other applica-
tions (e.g., to automatically adapt or initialize the UI of
the Indoor Map Viewer andLocation-tagged Contents
applications based on the actual indoor location of the
end-user).

B. The adopted indoor-positioning technique

The proposed solution relies on an experimental
WLAN indoor positioning technique under research and
development at Nokia Research Center. The technique
is based on WLAN scanning and on further processing
of the scanning results, including measurement of the
Received Signal Strength from all reachable access points,
from which the current location of the mobile device is
calculated. All steps are performed on the terminal side,
e.g. on end-users smart phone or PDA. In the rest of this
sub-section we will just shed some light on the key aspects
of this technique that are required in order to understand
the herewith described indoor GIS solution. The interested

reader can refer to [10] for further details on its design
and implementation.

One interesting aspect of the adopted indoor positioning
technique lies in its quick and easy deployment in out-
of-the-lab real-world settings. In fact, the technique only
requires a-priori knowledge of a list of known WLAN
APs along with information about their physical location
in the target building (which is typically a well-known
piece of information). In this way, it does not require
any off-line measurements of the received signal strength
nevertheless. In other words, no radio maps of the target
environment and related calibration of the algorithm are
required, which in turn makes the proposed smart places
infrastructure more easy to set-up than other state-of-the-
art solutions [11].

The outcome of the proposed algorithm is a symbolic
location information structured according to the location
model mentioned in Section III-A. It is worth noting
that the concepts of building, floor, and section could
be eventually replaced by other concepts and semantics
if needed. In other words, different symbolic location
models with different granularities could be adopted as
far as the technique is accurate enough to support the
required granularity. For example, in an environment with
very large sections and rooms, such as a shopping mall
or an airport, the model could also take into account the
concept of rooms within a single section.

IV. I MPLEMENTATION AND PROTOTYPING

A. Implementing the indoor GIS prototype

In Section III-A we introduced the main indoor GIS
components at a very high-level of detail. Since we
wanted to create a practical GIS solution for indoor smart
spaces that could work also from mobile devices, we
needed to combine the web-based smart space platform
and the indoor positioning technique, described in Section
III-A and III-B, respectively, with additional components
providing traditional GIS functionality, such as maps,
navigation, and geo-spatial queries support to commercial
mobile devices.

In compliance with our overall smart spaces approach
described in Section III, we decided to rely on open APIs
and protocols suitable for integration with web-based
applications and services. In the following we discuss
a few key implementation decisions that we needed to
take when prototyping the indoor GIS part of our smart
places platform. In addition, we also provide further
details about how indoor GIS components interact one
with each other in order to fulfill their responsibilities.
More specifically, we describe how we implemented and
prototyped our first example of an indoor GIS system
based on the design guidelines and concepts described in
Section III. The overall architecture of the implemented
prototype is depicted in Figure 2. When implementing
the first prototype we had to satisfy the key requirement
of providing simple REST APIs for other services to
create composite functionality (mashups) out of the basic
building boxes provided by our platform. To this aim, we

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 667

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.664-674

!"#"$%&

!"#$%!"&"'()%

'()(*(#+&

,"-."-&

//012$#(33&

,"2-45&

6$#7$"&

!"#$%&'()*&+,-*.(

8$%((-&!(429($&,"$:(-&

!(429($&:52-7$#&

6$#7$"&

//012$#(33&

)'#&/()0#-*(

100",-#2%3.(

!"#%*)+,$()%

-+..+/012%

-+.#+&(&1%

,;2-<&=*24"&=*2>(-;&

?(;)($"$<&

8$%((-&@8,&

?(;)($"$<&

,6AB6AC,806& ?!86D'C,806&

E-7"$%&

E7$%"-&

!(429($C<2##"%&

?($<"$<:&

8$%((-&F2)&&

B7"G"-&

,;2-<&=*24"&H-(G:"-&

//012$#(33&

,;2-<&=*24"&07-"4<(-+&

//012$#(33&

345(&(%6"7"%

8!,&?(-"&

//I)"$&?33&

J!KD&,42$$"-&&

//,+;L72$&?MM33&

Figure 2. Implementation of our indoor GIS prototype. Grayed boxes represent Indoor GIS components. White boxes represent either commodity
open source components (dashed border boxes) or smart places platform specific components (solid border boxes). Lines represent interaction related
to Indoor Map Viewer, Location-tagged Contents, and FriendFinder case study applications.

implemented theSmart Place Directory in the Python
programming language by using the Django web appli-
cation framework. Using the Django framework enabled
us to quickly implement different facades for the same
back-end data, in order to support CRUD interfaces to
manage location-dependent smart place resources based
on all the data interchange formats (JSON, ATOM, RSS)
mentioned in Section III-A. Similarly, most of the realized
web services were implemented as Django applications.
This gave us a lot of flexibility in designing the actual
web service interfaces we wanted to use to expose the
indoor location-dependent data stored in our back-end.

As far as theMaps Manager component is concerned,
we wanted to rely as much as possible on established
standards for representing indoor GIS data, such as maps,
points-of-interests, and related meta-data: to this aim, we
decided to adopt the Open Geospatial Consortium (OGC)
Web Map Service (WMS) and Web Feature Service
(WFS) [2] to represent maps and POIs in theMaps
Manager component. This decision was motivated not
only by technical requirements, but also by our higher
level goal of evaluating how easy and feasible was the
idea of using commodity GIS solutions to support indoor
LBS. Several commodity implementations of WMS/WFS
servers were available in both the commercial and open
source community. After evaluating the different available
options, we decided to adopt two different open source
products, namely Geoserver [12] and Mapserver [13],
which provided quite a complete implementation of WMS
and WFS specifications.

The search functionality was implemented in the Java
programming language as a Java servlet component rely-
ing on the Java Lucene indexing engine. The on-device
Indoor Location Sensor needed deeper integration with
the native OS services in order to access the wireless lan
management APIs and retrieve data from them. Hence,
it was implemented in the C++ programming language
on top of Nokia S60 C++ SDK. In this phase, we tried
to enhance code-portability as much as possible. For this

reason, we wrote most of the code in standard POSIX C
language by using the Open C libraries for Symbian OS.
This code, including the algorithm to calculate location
from wireless LAN scanning results, was encapsulated in
the so-calledIndoor Location Sensor (ILS)Core. The
only non-portable part of theIndoor Location Sensor
implementation was theWLAN Scanner component,
which required low-level access to the wireless LAN
management API of Symbian OS and thus needed to
be coded by using Symbian C++ specific classes and
programming idioms.

When designing our solution, we wanted to provide
very open APIs for accessing the available Indoor GIS
data from both mobile devices and fixed/desktop devices.
To this aim we had decided to create all the data related
to the map in a vector format. Since the screen size of a
mobile device, like a mobile phone, and the screen size of
a computer desktop are quite different, using, for example,
a raster layer for an indoor map is not the best solution.
The image quality will be very different according with
how much the image is scaled, furthermore is not reason-
able create different images for all possible screen size.
Instead, using data in vector format, the Maps Manager
can produce images scalable to any size and the quality
of the image is only determined by the resolution of the
display.

B. Two architecture solutions for map rendering

The described Indoor Map Viewer component is in
charge of drawing the indoor maps on the client device.
For the proposed Web based Indoor GIS, we implemented
two versions of this component, namely Client-side GIS
Rendering (C-Browser) and Server-side GIS Rendering
(S-Browser). These implementations are depicted in Fig-
ure 3. The C-Browser is based on the open source
Open Layers JavaScript API [14]. It relies on a client-
side geospatial-data cache to support off-line viewing
of indoor maps. Open Layers allows dealing with most
common GIS functionality (e.g., dynamic creation of

668 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.664-674

!"#"$%&'()%"

!"#$"#%!&'"()*&"+,%!&'"(

!"#$%&'#()*+), -&./#,

Web Browser

&-.//0(123((

$45650(

0&"),0&$&1#(,

234!5467468,

(a) Client-side GIS rendering (”C-Browser”)

!"#"$%&'()%"

!"#$"#%!&'"()*&"+,%!&'"(

Web Browser

&-.//0(123((

$45650(

!"#$%!"&"'()%

*+,-.,/0,/1%

123(7849.50(

(b) Server-side GIS rendering (”S-Browser”)

Figure 3. Two versions of Indoor Map Viewer component. (a) shows the ’C-Browser’ version where the final map is rendered at the client-side
and (b) shows the ’S-Browser’ version where all the operation to render the map are done at the server-side

maps by mashing up map data coming from different
sources, DOM interface to several GIS data representation
formats) while solving already a lot of common cross-
browser technical issues (due to presence of different
Javascript rendering engines). The geospatial data cache
can be used to store the data, which Open Layers uses
to draw the maps, on the client device. An indoor map
typically consists of multiple data layers, including at
least one layer for the base map and additional layers
representing different map decorators. A typical map
decoration layer is the Points of Interest (POIs) layer.
Each POI of this layer consists of geospatial coordinates
as well as metadata like POI id, POI name, POI category.
In the so-called C-Browser solution it is possible to store
map decorators and the Open Layers code itself in the
cache, thus minimizing the amount of data to download
in order to render a certain map. In this solution, the client
device must be capable of executing advanced JavaScript
code, and to manage and maintain the geospatial data
cache. Map rendering is fully executed on the client-
side, which in turn requires a not negligible amount of
resources (CPU, RAM, Power) to be consumed.

The second solution, namely S-Browser, has been
implemented in order to overcome the issues related to
client-side rendering on resource-constrained devices. In
fact, it allows any device equipped with a web browser
capable of minimal JavaScript capabilities, to render
our indoor maps. In this implementation, indoor maps
are rendered on the server-side, and presented to the
client-side as dynamically generated raster maps, rather
than vector data. Such a solution requires an additional
component to be deployed on the server-side, namely
Map Builder, which provides a web-based interface to
generate raster maps and present them to the client-side
within an HTML page. It is worth noting that in the S-
Browser solution, the map image created at the server-side
is not a simple static image. In fact, while Openlayers
is capable to add some basic map navigation functions
like map-zoom and map-pan, in the S-Browser solution
these functionalities are added by the Map Builder on
the server-side and presented to the client-side through

dedicated panning/zooming controls within the generated
dynamic HTML page.

V. EVALUATING THE INDOOR GIS PROTOTYPE

The decision about which of the presented architectural
solutions should be adopted to implement a mobile GIS
is not straightforward. Both server and client side ap-
proaches have advantages, especially when users perform
repeated operations on maps like displaying points of
interest or panning. While on the one hand server-side
rendering does not require intensive computation on the
mobile device, on the other hand it requires maps to
be transferred as they are in full size. In this section
we provide several insights for mobile GIS systems on
existing mobile devices.

A. Comparing server- and client-side GIS rendering

For GIS applications, the type of used maps and the
capabilities of the device used for browsing the maps
affect the performance of the map rendering process.
The complexity of the maps to render can vary from
very simple maps (depicting only room borders and
corridors) to more detailed and complex maps. While
client-side rendering of maps can be efficiently executed
on commodity personal computers, this is different on a
resource constrained device, such as a mobile phone or a
PDA. These are the typical cases for the indoor maps,
where the users want to see the maps while they are
looking for the right gate of an airport or for the food
area of a shopping mall. In general, there are two extreme
cases for GIS applications:

• Users with powerful devices and fast network con-
nection requesting detailed complex maps.

• Users with very resource-constrained devices re-
questing very simple maps.

For the first case, client-side rendering is clearly desirable,
while server-side rendering fits in the second case. Mobile
GIS users typically need to render maps and geo-spatial
data on their own personal mobile devices. For current
mobile devices with fast 3G connectivity, it is not obvious

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 669

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.664-674

(a) Load POIs layer (b) Zoom into the map (c) Pan the map

Figure 4. A comparison of C-Browser and S-Browser on map rendering time, in three use cases

which approach to take. It is important to understand
how the map complexity and the device capabilities can
influence the decision of rendering the map at the client-
side or at the server-side.

Our decision strategy is based on the evaluation of the
following key properties of the system to implement:

• Performance of the client and server-side systems.
We focus here on the client-side, where limited
mobile devices are the main issue

• Size and complexity of the map material considering
also display size, which has a direct impact on the
generated data-traffic.

• Operations to modify/navigate through maps (pan-
ning, zooming, decorating)

As regards performance, a meaningful parameter to
compare different solutions is the map rendering time. We
define the map rendering time as the time spent by the
application to satisfy a user request. In fact, it includes
the time to create the map, at the server-side or at the
client-side, and the time to render the map on the client
device display. Furthermore, the analysis should consider
one user operation or a sequence of typical operations
within a given set. The rendering time is influenced by
several aspects of the maps to render, which are shortly
described in the following.

Tiling vs Untiling : Tiling allows to reduce the com-
plexity of large maps by splitting them in smaller and sim-
pler to render blocks. Tile size is an important parameter
that affects the performance of the system. Tiling typically
results in increased overhead on the client-side in terms
of network connections (the web browsers download each
single tile as a separate image) and CPU (due to tile
caching algorithms typically implemented on client-side
to enhance the end-user experience). Setting the optimal
value for tile size is not straightforward since it depends
on screen resolution and size, which are very device-
specific parameters.

Number / type of POIs: POIs can be either static
(their location do not change over time) or dynamic
(represent objects or people dynamically moving across
a certain space). Some examples of static points of
interest for indoor maps are toilets, restaurants, elevators
and escalators. Dynamic points of interest in our GIS

prototype could be for example the locations of friends.
In addition, the number of POIs and the amount of
metadata (POI’s attributes) coupled with them is a factor
that affects the map rendering time. Considering dynamic
points for example, it is more advantageous to render the
map at the client-side because the client could keep the
previously map and only update the old point location
with the new one. If the map is rendered at the server-
side however, application needs to request new maps
continuously only to update the location of the dynamic
point of interest. On the other hand, when the number
of POIs available for a map increases, the application at
the client-side has to manage more data for drawing the
points on the map, which in turn can negatively affect map
rendering performance (this is especially true for resource
constrained devices).

Type / size of geospatial data: geospatial data is
delivered as either vector or raster data. Vector data
formats allow enhancing the look-and-feel of delivered
maps and scale it to different types of devices, even
though they are heavier to render on client-side than
raster data. Furthermore, most of GIS-related vector data
format may not match the licensing and data-protection
requirements of map data owners. For example, delivering
vector data through the OGC Web Feature Service implies
this very detailed information about cartography/topology
is delivered as a text document (XML-based) to the client
side via a web interface. Hence many services prefer to
send a raster map built at the server-side using the vector
data. While the former solution his harder to design and
requires specific algorithms for client-side rendering, the
latter is easier and does not require any knowledge for
the map rendering application either when the final map
(base map plus decorations) is built at the server-side or
at the client-side.

B. Evaluation Results

Following the above, we have first evaluated client-
side vs server-side rendering for several parameters in an
isolated setup. In this setup, a simple browser script draws
maps and performance is measured. For a more realistic
setting, we also implemented a realistic application and
evaluated several use cases for these. In this setup, we

670 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.664-674

Indoor map One floor of a shopping mall. The size of this map
was about 20 KB

Number of layers The map was composed by two layers. One layer with
the base map (rooms, corridor) and one layer with
POIs (elevators, escalators, shops, toilets...)

Type of Points of Interest Static. The position of POIs were fixed.
Number of Point of Interest 81 POIs. POI data included geospatial coordinates,

unique id, name, country, city, building, floor, section,
and category

Map operations Load base layer, Load POIs layer, zoom in and zoom
out, pan, and query a POI.

Client Device Nokia N95 with 64 MB of RAM connected with our
Indoor GIS by a wireless LAN.

Sampling interval 250 ms. Each 250 ms we took a sample of memory,
cpu and power status of the client device

TABLE I.
SIMULATION SETUP PARAMETERS

perform a set of operations as bundle and compare the
overall results. While this does not give such detailed
comparisons, it shows a more holistic view of the end
user impact. Due to the different nature of these setups,
we could compare power consumption and memory usage
only for the second evaluation method. We compared
client-side and server-side rendering in three main use
cases:

• Load POIs layer
• Zoom into the map
• Pan the map

The results of this comparison are depicted in Figure 4.
In the first use case, the user starts from a base map
and wants to add a decoration layer with static points of
interest. The chart related to the use case shows how the
map rendering time changes based on the number of static
points of interest used for decorating the map. While the
number of POIs does not affect the S-Browser solution,
it is evident that it affects quite much the C-Browser one.
Since in the C-Browser the map is rendered at the client-
side, more points there are on the map and more time the
application takes to draw them in the right location.

In the other two use cases, we observed the dependence
of the map rendering time from the size of the map. While
in ”zoom into the map” use case the user, starting from a
map with a certain level of zoom, wants to make bigger
one section of that map, in the ”pan the map” use case,
the user, starting form the middle of a map, browses it
to see the most far left place. It is worth noting that we
used the map size to simulate complex and simple maps
because a complex detailed map has a bigger size than a
simple map. In both use cases, the map size affects much
more the performance of the S-Browser solution since it
downloads a new image after any browsing actions. This
is more visible in the ”pan the map” use case because the
application need to download a new map each time the
user moves towards left side of the map.

In order to validate and refine our indoor GIS proto-
type further, we implemented a case study application,
namelyIndoor Map Viewer , which combined our indoor
GIS back-end services and accessed them through C-
Browser and S-Browser. Similarly, in order to test the

indoor location sensing feature, we implemented aFriend
Finder application which allowed end-users to check
their own friends’ location, to see it on a map, and to
evaluate the distance between themselves and their friends
in the smart place. In order to show indoor maps, the
Friend Finder application re-used most of theIndoor
Map Viewer functionality. Similarly, in order to validate
and refine the location-based search functionality, we
implemented aLocation-tagged Contents case study
application, which allowed end-users to generate, search,
and retrieve location-based contents, such as pictures,
videos, text documents, and blog posts and comments.
The implemented applications allowed us to evaluate and
refine the web-based approach to indoor LBS service
provisioning to commercial mobile devices. The imple-
mented applications confirmed the feasibility of using web
technologies for fast and easy deployment of smart places
services. Most of the time was spent to implement and
refine the application logic of our indoor GIS components,
and we were able to easily deploy and run the services
on a heterogeneous device base. As for server-side com-
ponents, we were able to deploy them on Linux, Win-
dows, and Apple Mac Os X devices. The implemented
case study examples, realized as Ajax applications, could
be accessed from mobile devices, including Nokia S60
devices as well as Linux Internet Tablets (Nokia N800
and N810), and in general from any device running a web
browser that included either the Mozilla or Safari web
engines (including desktop / laptop clients). Table I shows
the main parameters of the evaluation setup. The aim of
this case study was to measure the performance of our
client solutions on resource constrained devices. To this
aim, we used commodity Nokia S60 smart-phones. Data
was collected by using the Nokia Carbide Profiler tool,
using a sampling interval of 250 ms. Network traffic was
monitored and analyzed through a TCP/IP network sniffer.
The data collected through the Carbide Profiler included
CPU load, memory usage, and power consumption. Tables
II, III and IV show the results of our experiments with
respect to the C- and S-Browser solutions. In tables II and
III, the CPU time column represents the time frame (in
seconds) during which more than 90% of the CPU was

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 671

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.664-674

load base map layer load POIs layer Zoom in POIs query
RENDERING TIME 11s 13s 11s 1.5s

CPU TIME 8s 11.5s 9s 1s

TABLE II.
C-BROWSER

load base map layer load POIs layer Zoom in POIs query
RENDERING TIME 5s 3.5s 3.5s 2s

CPU TIME 2s 1s 1s <1s

TABLE III.
S-BROWSER

MEMORY USAGE POWER CONSUMPTION NETWORK DATA
C-Browser 12632 KB 1350 mW 409,229 KB
S-Browser 1500 KB 1550 mW 528,883 KB

TABLE IV.
C-BROWSER VSS-BROWSER

allocated to the browser application. Thememory usage
column shows the amount of RAM memory allocated to
the browser application. Finally, the power consumption
column indicates how long the device can keep on with
the current workload based on the average power con-
sumed by the phone during the test case. Furthermore,
we measured the rendering time and the amount of data
exchanged on the network during a single map request
consisting of the following main steps:

• Loading the base map.
• Loading a POI layer.
• Zooming in.
• Querying the map in order to retrieve additional POI

metadata.

We structured the experiments according to those four
operations and for each of them there is a corresponding
value in the table. As far as performance is concerned,
the S-Browser solution is quite better then the C-Browser
solution. In fact, during the first three phases, the C-
Browser rendering time is 2 times higher than that of
the S-Browser. Only in the last phase, where the user
queries the map, the C-Browser is just a bit faster than
the S-Browser, because in the C-Browser the data are kept
in memory since the previous elaboration for drawing
the POIs layer and in S-Browser these data have to be
downloaded from the server. As regards to CPU load
and memory usage (first column table IV), the S-Browser
solution shows a better behaviour than the other one.
In fact, the data collected for the S-Browser are one
magnitude order better then those of the C-Browser. Such
results are justified by the different workload on the client
in the two approaches. When we use OpenLayers, the
map is built at the client side, using the data retrieved
from the GIS server or cached at the client side. This
operation requires both CPU time and RAM memory
space. This is especially true for the POI layer loading
and rendering phase. In fact, drawing the POI layer on
the map requires a lot of RAM memory, because all
the data about the available POIs must be loaded and

stored in RAM memory. When the size of the POI layer
exceeds the maximum amount of RAM available on the
device, the browser application hangs. Our experiments
showed that dynamic memory allocation in OpenLayers
components has not been optimized for memory con-
strained devices. A lot of RAM resources, allocated by
OpenLayers code, were not released, thus leading to
frequent and not negligible memory leaks, which in turn
caused also more recent and powerful devices to return
memory full errors when trying to visualize some of the
implemented applications. While these dynamic memory
issues do not cause any problems in desktop or Internet
Tablet devices, on certain low-end or less recent devices
(e.g. Nokia N80 or E70) it was impossible to run the
implemented applications, due to the limited amount of
RAM memory available on those devices. Instead, using
the S-Browser solution, the overhead on the client side is
very low. The only tasks for the client is to make a request
for the map, specifying all the layers he wants to use, and
to download the raster image dynamically generated by
the Map Builder component. Finally, as regards power
consumption and network data traffic, we emulated a
typical user behaviour with the map viewer prototypes. In
the simulation, the client first sees the whole map, then
zooms into one section of the map and pans among closed
section, then zooms out to see the whole map again and
to query some POIs, and finally he zooms in again in one
section to look again the area in which he is interested in.
Each emulation round lasted for one minute. Second and
third column in table IV show the values of the average
power consumption, in milliWatt, and of the amount
of data, in KiloByte, seen during the simulation. With
regard to Power Consumption, we have about 1550mW
for S-Browser against about 1350mW for C-Browser. The
battery of the used Nokia S60 smartphone has a capacity
of 950mAh with a voltage of 3.7V (about 3515 mW).
Therefore, the user can use the S-Browser application for
about 2 hours and 15 minutes, while C-Browser could
be continuously used for about 2 hours and 40 minutes.

672 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.664-674

Such a result can be related to the different usage of
the network connection in the two different solutions.
In the mobile device, the network service is one of the
services that requires more power, and the solution based
on S-Browser uses the network much more than the other
solution because it gets a new map, from the GIS server,
after each operation. In fact, the network analyzer reported
that with C-Browser, almost 410 KB were exchanged
between the client and the server against almost 530 KB
of the S-Browser solution. It is worth noting that in all
the simulation with C-Browser, we used the cache to
keep the OpenLayers JavaScript code and the data for
building the POIs layer. Otherwise, the C-Browser needs
to download much more data. For the same one minute
long simulation, if for the client side we use C-Browser
without the cache, the client and the server exchange
almost 1500 KB. It is worth noting that the C-Browser
solution presented also a JavaScript/DOM related issues:
OpenLayers is strongly dependent on DOM 2.0 APIs.
OpenLayers assumes a complete DOM 2.0 or 3.0 model
to be supported by the browser engine. Unfortunately,
browser engines even on very recent devices (like the
Nokia N95) do not fully support these specifications.
This created problems when parsing some of the XML
documents returned by our smart places API through
the DOM API. The problem was solved by re-coding
the applications in such a way that they were relying
on JSON-formatted interface rather than on ATOM/RSS
formatted data. In this way we were able to guarantee
that all applications could still work on all the mentioned
types of devices. Such a modification had also the positive
side-effect of improving the performance of the provided
applications due to the more light-weight logic required
for parsing and creating the data.

VI. SUMMARY

This paper discussed our experiences with building an
indoor GIS based on commodity GIS standards and pro-
tocols and Web 2.0 application development principles.
We showed that the combination of scripting languages
with web application frameworks, such as Python and
Django, gave us a lot of flexibility in designing the
actual web service interfaces we wanted to use to expose
indoor GIS data. We implemented a few case study
applications on top of the proposed GIS solution, which
confirmed the feasibility of using web technologies for
fast and easy deployment of smart places services on a
heterogeneous set of commercial off-the-shelf devices. As
far as GIS clients are concerned, we pointed out that using
commodity libraries, such as OpenLayers, can create a
few performance issues for resource constrained devices.
Moreover, commodity libraries might have not been de-
signed by taking into account the limited RAM capacity
of mobile devices. Frequent and not negligible memory
leaks created problems also on more recent and powerful
devices. By adopting a server-side map rendering strategy
we delivered our indoor location-based services to low
end devices. Our experiments point it out that the main

drawback of client-side map rendering approaches is the
amount of information needed to build the map. Similarly,
a critical aspect for server-side map rendering is the
amount of data downloaded from the server. If the internet
connection available for the client device is slow and the
size of the map is big, operation like panning the map
can be very slow and unusable for the client. Overall, we
believe there is a clear need in research and industry to
agree on standards for indoor LBS, with respect to both
geospatial data representations and related APIs to re-use
them in a Web 2.0 environment. Existing outdoor-related
standards might lay the groundwork for such activities,
even though they should be extended in order to support
not only the concept of location as physical position but
also symbolic location concepts.

AcknowledgementsThe authors would like to thank
all their project co-workers, in particular Jilles van Gurp,
Heikki Mattila, Jaakko Kyro, and Pasi Liimatainen.

REFERENCES

[1] C. Endres, A. Butz, and A. MacWilliams, “A survey of
software infrastructures and frameworks for ubiquitous
computing,”Mob. Inf. Syst., vol. 1, no. 1, pp. 41–80, 2005.

[2] “Opengis standards specifications.” [Online]. Available:
http://www.opengeospatial.org/standards

[3] “Delivery context client interfaces (dcci), w3c candidate
recommendation,” Dec. 2007. [Online]. Available:
http://www.w3.org/TR/DPF/

[4] “Oauth core 1.0 protocol,” Dec. 2007. [Online]. Available:
http://oauth.net/core/1.0/

[5] R. Simon and P. Frohlich, “A mobile application frame-
work for the geospatial web,”WWW ’07: Proceedings of
the 16th international conference on World Wide Web, New
York, NY, USA, ACM, pp. 381–390, 2007.

[6] J. W. Kim, C. S. Kim, A. Gautam, and Y. Lee, “Location-
based tour guide system using mobile gis and web crawl-
ing,” in W2GIS, ser. Lecture Notes in Computer Science,
Y. J. Kwon, A. Bouju, and C. Claramunt, Eds., vol. 3428.
Springer, 2004, pp. 51–63.

[7] J. Candy, “A mobile indoor location-based gis application,”
5th International Symposium on Mobile Mapping Tech-
nologies (MMT07), Padua, Italy, 2007.

[8] J. van Gurp, C. Prehofer, and C. di Flora, “Experiences
with realizing smart space web service applications,”Con-
sumer Communications and Networking Conference, 2008.
CCNC 2008. 5th IEEE, pp. 1171–1175, Jan. 2008.

[9] C. Becker and F. Durr, “On location models for ubiquitous
computing,” Personal Ubiquitous Comput., vol. 9, no. 1,
pp. 20–31, 2005.

[10] C. di Flora and M. Hermersdorf, “A practical implemen-
tation of indoor location-based services using simple wifi
positioning,” Journal of Location Based Services, vol. 2,
no. 2, pp. 87–111, June 2008.

[11] A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S.
Wallach, and L. E. Kavraki, “Practical robust localization
over large-scale 802.11 wireless networks,” pp. 70–84,
2004.

[12] “Geoserver web site.” [Online]. Available:
http://geoserver.org

[13] “Mapserver web site.” [Online]. Available:
http://mapserver.gis.umn.edu

[14] “Openlayers web site,” http://www.openlayers.org.

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 673

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.664-674

Valerio Vianello received the degree cum
laude in computer engineering from the Uni-
versity of Naples Federico II, Italy, in 2007. He
is currently working toward the Ph.D. degree
at the University of Naples Parthenope.

Cristiano di Flora is a Software Architect in
Nokia Devices RD, Maemo Software, Tam-
pere (Finland). He holds a Ph.D. Degree in
Computer Engineering from the ”Federico II”
University of Napoli (Italy).

Christian Prehofer is Distinguished Research
Leader in Nokia Research. In the last ten years,
he held different management and research po-
sitions in the mobile communication industry.
He obtained his Ph.D. and his habilitation in
computer science from the TU Munich in 1995
and 2000.

674 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.664-674

