
CARISMA – A Service-Oriented, Real-Time
Organic Middleware Architecture

Manuel Nickschas and Uwe Brinkschulte
Institute for Computer Science

University of Frankfurt/Main, Germany
{nickschas, brinks}@es.cs.uni-frankfurt.de

Abstract—To cope with the ever increasing complexity
of today’s computing systems, the concepts of autonomic
and organic computing (AC/OC) have been devised. Organic
or autonomic systems are characterized by so-called self-X
properties such as self-configuration and self-optimization.
This approach is particularly interesting in the domain of
distributed, embedded, real-time systems. The CAR-SoC
project aims to realize such a system, employing AC/OC
properties throughout the whole hardware and software
stack. In this paper, we describe the architecture of our
middleware CARISMA, which interconnects the individual
CAR-SoC nodes. We show how middleware services can
be treated as intelligent agents, and how we can use a
multi-agent coordination mechanism for implementing the
organic management, in particular self-configuration and
self-optimization, in a decentralized and efficient way. We
also elaborate on how to provide some guidance in order to
take dependencies between services into account as well as
the current hardware configuration and other application-
specific knowledge. Integrating global organic management
with the per-node local organic management is another
issue that is presented in this paper. Last but not least, we
provide some details regarding our ongoing implementation
of CARISMA.

I. INTRODUCTION

Distributed, embedded systems are rapidly advancing
in all areas of our lives, forming increasingly complex
networks that are increasingly hard to handle for both
system developers and maintainers. In order to cope with
this explosion of complexity, also commonly referred to as
the Software Crisis [1], the concepts of Autonomic [2], [3]
and Organic [4]–[6] Computing have been devised. While
Autonomic Computing is inspired by the autonomic
nervous system (which controls key functions without
conscious awareness), Organic Computing is inspired by
information processing in biological systems. However,
both notions boil down to the same idea of having
systems with self-X properties, most importantly self-
configuration, self-optimization and self-healing. More
specifically,

• self-configuration means the system’s ability to de-
tect and adapt to its environment. An example for
this property would be the plug-and-play found in
modern computers, which is used to automatically
detect and configure certain attached devices;

• self-optimization allows the system to autonomously
make best use of the available resources, and deliver

an optimal performance, even in a changing environ-
ment, which requires continuous adaption;

• self-healing describes the detection of and automatic
recovery from run-time failures, for example by
using heartbeat signals and restarting services that
are not responding in time.

To present to the applications a homogeneous view on
a distributed system of heterogeneous components, there
usually is a layer called middleware on top of the
components’ individual operating systems, making the
distributed nature of the system mostly transparent to
the application developer. Within an organic computing
system, we expect the middleware layer to autonomously
achieve a high degree of transparency. This includes self-
configuration even within a dynamic environment (such
as found in ad-hoc networks), self-optimization at run-
time, and self-healing in case of failures, thus providing a
robust, efficient and uniform platform for the applications
without human maintenance or intervention.

Another increasingly important requirement for today’s
distributed embedded systems is real-time capability. A
real-time system must produce results and react to events
in a timely, predictable manner, guaranteeing temporal
restraints that are imposed by the applications.

In [7], we have proposed a service-oriented organic
real-time middleware architecture that achieves self-X
properties through a multi-agent-based approach; in [8],
we have described a method to guide this mechanism
in order to describe and define dependencies between
services, resources and tasks. We are now implementing
the suggested mechanisms within the CAR-SoC project
[9], and explore the interactions between global (inter-
node) and local (per-node) organic management. In this
article, we present our approaches as applied to the con-
crete middleware CARISMA1 we are developing within
the CAR-SoC project [9]. We show how the various
mechanisms for global (inter-node) and local (per-node)
organic management interact, and we give some details
about our ongoing implementation.

In Section II we mention related work. Section III
gives a short overview of the CAR-SoC architecture.
In Section IV we analyze the requirements for our
system and draw conclusions for CARISMA’s design

1Connective Autonomic Real-time Intelligent Service-oriented Mid-
dleware Architecture

654 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.654-663

and architecture. Sections V and VI describe our multi-
agent-based concept for realizing task allocation. In Sec-
tions VII and VIII we present our mechanism for guiding
organic management by specifying dependencies between
services and resources, and analyze its properties. Sec-
tion IX talks more about how to integrate CARISMA
with the rest of the CAR-SoC stack, and Section X
gives some details about specific issues in our current
implementation.

II. RELATED WORK

There is a plethora of different middleware systems
today, such as CORBA [10], DCOM [11], .NET [12] or
Java RMI [13]. While there are real-time extensions for
some of them, none of them features organic aspects. On
the other hand, in recent years much research has been
done in the area of organic [6] and autonomic [2], [3], [14]
computing; see [15] for an overview. The DoDOrg project
[16] develops a digital organism consisting of a large
number of rather simple, reconfigurable processor cells,
which coordinate through an artificial hormone system.
AMUN [17], subsequently enhanced as the OCµ mid-
dleware [18], is an interesting approach to an ubiquitous
organic middleware, which features the main concepts
of self-organization, self-healing and self-optimization. It
uses an observer-controller architecture with centralized
organic managers. It targets smart office buildings with
powerful, connected networks rather than embedded real-
time systems. However, all of these approaches do not
consider real-time aspects, and their architectures are not
suitable for supporting real-time applications. This is also
true for the agent-based, organic middlewares that are
described in [19]–[21].

The service-oriented real-time middleware OSA+ [22]
has a low footprint and is very scalable, thus it is
particularly suitable for embedded distributed real-time
systems. However, it does not feature self-X properties.
The general architecture for an organic, service-oriented
middleware inspired by the OSA+ approach has been
developed in [23]. For this architecture, we described an
agent-based approach for implementing self-X properties
in [7], which uses concepts from multi-agent systems for
coordination and task allocation. We added a guidance
mechanism for task allocation in [8]. To our knowledge,
such a flexible, generic mechanism for describing service
and resource dependencies in a service-oriented middle-
ware has not yet been developed. Services in OSA+ are
fixed on the resources they manage, and tasks are dis-
patched globally. Other approaches use central planning
or do not consider dependencies at all.

We are currently implementing and evaluating these
mechanisms within the CAR-SoC project [9], [24]. The
CAR-SoC project as a whole is, to our knowledge, the
only project that focuses on providing a complete organic,
real-time stack, including the hardware itself (the CarCore
processor [25]), a real-time organic per-node operating
system (CAROS [26], [27]) and our middleware to manage
a distributed system of such nodes.

III. THE CAR-SOC ARCHITECTURE – AN OVERVIEW

The CAR-SoC2 project pursues the exploration of how
to apply principles of organic and autonomic comput-
ing to a real-time distributed system consisting of a
new generation of high-performance embedded micro-
controllers (Systems on Chip, SoCs). The paradigms of
organic/autonomic computing are essential on all layers
of the architecture. At the lowest level, an SMT mi-
crocontroller (called CarCore) is under development that
allows for the scheduling of a large number of hardware
threads; only the available memory limits the number of
threads [25]. The overhead for thread-switching is rather
small, because the time needed for context switches is
used for processing other thread slots in the meantime.
CarCore supports Guaranteed Percentage (GP) scheduling
[28], which assigns a specific percentage of the available
processor time to each of the hardware threads. This
allows for the strict isolation of real-time threads. CarCore
is binary compatible with Infineon’s TriCore 2 processor,
which means that existing toolchains can be used for
development. CarCore’s multi-threading capabilities in
particular make running a concurrent architecture and the
use of many helper threads feasible on both the operating
system and the middleware layers.

Each SoC node is controlled by an operating sys-
tem called CAROS [27]. It employs organic/autonomic
computing on the node level in order to realize self-X
properties for managing the hardware. It can, for exam-
ple, tweak hardware parameters (such as the processor
clock or scheduling parameters) to optimize the hardware
configuration for the given load and other requirements.
Helper threads perform organic management such as
reconfiguration in the background without disturbing real-
time threads. CAROS offers a POSIX-like interface for
accessing devices and the organic manager in addition to
providing a native interface that we can use for integrating
our middleware. See Section IX) for more details about
how organic management is implemented in CAROS and
how we plan to integrate our middleware with it.

Our middleware CARISMA interconnects the indi-
vidual nodes and presents a homogeneous view to the
applications running on top of it (Fig. 1). CARISMA too
makes extensive use of threading, as we will see in the
following sections.

IV. MIDDLEWARE DESIGN AND ARCHITECTURE

In this section, we give an overview about the require-
ments for our middleware as well as describe some of the
design decisions we made following from those.

A. Requirements

CARISMA is intended to run in a potentially large
network of SoC nodes, interconnected by potentially
unreliable means. Robustness even under these circum-
stances is a must. To help achieving that, the system
as a whole and CARISMA in particular shall implement

2Connective Autonomic Real-time System-on-Chip

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 655

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.654-663

Figure 1. The CAR-SoC Architecture. On each node, an SMT
microcontroller called CarCore is controlled by the system software
CAROS. The nodes are interconnected by the middleware CARISMA,
which provides a heterogeneous view to the applications running on top
of the stack.

paradigms of organic/autonomic computing. Most promi-
nent among the different self-X properties we want to
support are self-configuration, self-optimization and self-
healing. Furthermore, we require real-time capabilities.
This means that the system needs to exhibit a predictable
run-time behavior under normal conditions, including
dynamic reconfiguration of components; but even facing
partial breakdown of nodes, connections or other parts
of the system, CARISMA needs to provide a best effort
approach to maintain both functionality and real-time
requirements as long as possible.

From these preconditions, we can already draw some
basic conclusions for the basic middleware design, which
we would like to summarize here:
• CARISMA must operate in a decentralized manner.

We cannot allow for a centrally controlled coordi-
nation mechanism, nor for a master node or similar,
because this would not scale for larger networks. It
also would introduce a single point of failure, hence
a much higher probability for suffering from a fatal
breakdown even though only a small part of the
system might be defective.

• We require a modular design, rather than a mono-
lithic one. Components must be loosely coupled,
in order for them to be easily restarted, replaced,
migrated or upgraded without affecting the rest of the
system. This is also crucial for robustness, since in a
monolithic system, a failing module could take down
the whole node. Additionally, modularity allows for
flexible and scalable configuration.

• CARISMA does not live in a static environment.
Nodes may come and go, new components may
be added to the system, others might be removed
or break down. Following the paradigms of self-
optimization and self-configuration, partially also
self-healing, we expect the middleware to adapt to
such changes, striving to optimize its performance
in any given situation, without human intervention.
Again, we cannot rely on a central controller or
monitor for this task; CARISMA needs to make

decisions based on local information only.
• Communication (and thus, task processing) must

happen asynchronously. Synchronous operation is
only viable if communication lines have a very low
latency, and it does not scale for larger networks
and/or slower connections. In addition, a failing
connection or recipient could cause the sender to
block for a long time, which is not desirable.

• As mentioned in Section III, the hardware
CARISMA is intended to run on supports a
large number of real-time threads each with a
guaranteed share of the available processing power.
This allows for a modular design with concurrent
processing of tasks and jobs, and it is a feature that
should and will be reflected in the middleware’s
design.

B. Basic Middleware Design

For reasons that will become clear in the following sec-
tions, we have opted for a service-oriented architecture.
One example for a service-oriented real-time middleware
CARISMA shall be inspired by is OSA+ [22]. While not
featuring organic computing principles, this middleware
has proven to be efficient, scalable and real-time capable,
and its architecture is suited for a setting which we also
target CARISMA to. Some work towards implementing
organic management in OSA+ has been done [29], but
the framework turned out to be not flexible enough for
our needs. One of the major design flaws in the earlier
approach is the need for a global organic manager with a
global world view, which clearly violates the requirements
for CARISMA. Extending the OSA+ framework with
the approach we envision for CARISMA would not
be practical. In addition, CARISMA needs to function
within the CAR-SoC framework; thus we decided to write
CARISMA from scratch, while keeping an eye on some
of the design principles in OSA+.

In a service-oriented architecture such as OSA+, most
of the middleware’s as well as the applications’ function-
alities are implemented as a number of services running
on a microkernel whose main tasks are basic service
management and communication. The service interface
is accessed, in a generic way, via jobs. A job consists of
an order, together with information about how and when
the order should be executed, and a result. These jobs are
sent between services running on the same or different
nodes. They are assigned a globally unique identifier, so
that longer-running jobs can be located and addressed
(for example for requesting a status update of, or for
providing new information to a job that is currently being
processed).

The interface between an application and the middle-
ware (Application Programming Interface, API) can be
designed in a very simple way. System calls as found in
traditional operating system designs can almost always

656 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.654-663

be mapped to a sequence of jobs3 that is sent to the
middleware core, which internally dispatches the jobs
to appropriate services running on suitable nodes. The
execution results are then sent back to the application.
By making the service interface as universal as possi-
ble, many properties of the underlying hardware can be
abstracted away from the application layer, including the
fact that the application is running on a distributed system.
In particular, all that matters to the application is that
a given job is carried out obeying the given restraints,
but not how or where. These decisions should be made
autonomously by the middleware instead, increasing the
configuration space which the middleware’s organic man-
ager can utilize to optimize the system’s performance.

C. Communication

In a system consisting of loosely coupled compo-
nents distributed over several hardware nodes, such as
CARISMA, communication between the components can-
not generally be implemented using normal method calls
or shared memory. Often, distributed systems use Re-
mote Procedure Calls (RPCs) or Remote Method Invo-
cation (RMI) for communication between remote com-
ponents. However, these mechanisms are synchronous,
which means that the sender blocks until the receiver has
finished processing the request. Consequently, the receiver
must be available and responsive at the time of sending,
and the sender cannot predict the time for the call to be
finished. This is not desirable for CARISMA, where we
have hard real-time conditions, and need to cope with
failing services or nodes.

A more flexible alternative to RPCs/RMIs is message-
oriented communication. Message Passing allows for
supporting both transient and persistent, and both syn-
chronous and asynchronous communication primitives
[30]. In effect, all communication happens via messages,
i.e. data structures following a common format, that are
exchanged between sender and receiver. Such messages
can encapsulate jobs as well as other types of requests. An
expiration time ensures that messages will be discarded
when they are no longer needed; for example, a job can
be safely discarded if its deadline is already past due.

Messages allow for prioritized communication, another
important feature of real-time systems to ensure end-to-
end priorities; for this, they are stored in priority queues
which can be implemented efficiently (see Section X-A
for more details regarding the implementation). Services
can opt for both polling and pushing of messages, depend-
ing on their needs. Queue maintenance, i.e. delivering
new messages and discarding obsolete ones, can be done
asynchronously by helper threads.

3It is also possible to move this mapping partly or completely into the
middleware core, such that the application can access relatively high-
level functions that are then broken down into sequences of primitive
jobs internally. The finer the granularity, the higher the flexibility for
organic management.

V. SERVICE AGENTS

As mentioned previously, we aim at decentralizing
organic management to avoid having a single point of
failure. However, maintaining a consistent global state
on every node is prohibitive. Since the topology of
the distributed system is dynamic – new nodes can be
added and existing ones removed (or go defunct) at any
time – providing a global world view is not realistic.
Transmitting all monitoring data from each node to every
other – and keeping all the nodes in sync – would require
considerable communication resources and management
overhead. We therefore have to find ways to process most,
ideally all monitoring data locally on the node where it
is produced rather than transmitting it all to the node that
decides where to dispatch a job to. Obviously, the services
themselves are well suited to do this preprocessing:
• A service knows best which resources and monitor-

ing data it needs to process a given job
• Services only need to know about locally available

resources in order to assess if and how a job could be
performed, because they cannot make use of remote
resources anyway

• Thus, only using local data, a service can evaluate
for a given job if it can be carried out at all, and if
so, which quality can be achieved and what the costs
are

• The CAR-SoC architecture encourages a concurrent,
multithreaded approach; allowing each service to run
in one or even multiple separate threads does not
cause too much overhead scheduling-wise

In other words, a service can do a cost/benefit calculation
for a given job based exclusively on locally available data.
Only the result of this calculation needs to be compared
to that of other services on other nodes in order to find
out which service is best suited to handle a job. Therefore,
there is no need to make the complete state of the nodes
globally available.

Finding such a cost/benefit function that works for
our scenario is not a trivial problem. It must factor in
required resources, achievable quality and side effects on
the environment, such as an increased energy consump-
tion that the execution of the job might incur. These
factors are also interdependent; for example, achieving
a higher quality of service might cost more resources,
and the system needs to find a good balance between
contradicting factors. Finding a good metric to combine
these different inputs into a comprehensive output is a
major part of our ongoing research on this project, but
out of the scope of this paper. For now, we will assume
that a suitable cost/benefit function exists.

But not only the calculation of a cost/benefit value
can be done within the services. Much of the organic
management can be handled by the services themselves,
rather than by an explicit organic management compo-
nent, leading to the desired decentralization. The central
idea of our approach is to not consider the middleware
services as passive components doing a narrow task, but
to be – to a certain extent – independent entities that

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 657

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.654-663

Figure 2. Middleware architecture with service agents. The agents
run on several hardware nodes (shown as grey rectangles), which are
logically connected by the middleware core. The application as well as
the service agents always communicate through the core, never directly.

compete for available jobs, trying to optimize their own
performance within the local environment of the node
they are running on. By doing this, the services also
improve the performance of the whole system.

Because CARISMA’s services exhibit a certain intelli-
gence and act independently, we call them service agents,
and we consider our middleware a multi-agent system
(Figure 2). The agents in this system compete for jobs the
applications need to have processed. Therefore, the only
role the middleware core plays in organic management
is providing the infrastructure for agent coordination,
whereas all configuration decisions are made by the
services themselves. We will use a well-known multi-
agent coordination mechanism in order to implement an
optimal job allocation strategy.

VI. USING CONTRACT NET FOR JOB ALLOCATION

For our system, we need a real-time task alloca-
tion mechanism that gives us results quickly and with
a deterministic upper time bound, but also allows for
run-time optimization. A generic, simple and intuitive
mechanism that can be used for allocating tasks is an
auction. Auctions are often used in other (non-computer
science) domains as well whenever something needs to be
contracted out. In our case, the application offers jobs that
it needs to have carried out, and suitable services use the
afforementioned cost/benefit calculation to determine a
“price” for performing the given job within the requested
restraints. The service which can do the task for the lowest
cost is awarded the job.

Within the domain of multi-agent systems, an auction-
ing mechanism called Contract Net [31], [32] is a well-
researched high-level protocol for distributed negotiation.
We have evaluated this protocol and later extensions, and
its application to our special case of allocating jobs to
service agents, already in detail in [7]. Here, we give
only a short overview of the actual mechanism as it is
employed in CARISMA. The basic cycle of the allocation
of a job is depicted in Figure 3.

A few things are important to note, and we will summa-
rize them here. First of all, this mechanism is suitable for a

Figure 3. Job allocation scheme. The first three steps describe the
auctioning mechanism. In the fourth step, the result of processing the
job is sent back to the application. Not shown here is the (optional)
recontracting of jobs between agents, which may happen after the initial
allocation to optimize longer running tasks.

real-time environment. By choosing sensible deadlines or
expiration times, one can ensure that a negotiation cycle is
completed after a given amount of time. If the deadline for
collecting bids has been reached, the middleware chooses
the service agent with the best offer at that time, and
discards bids that arrive after that. Contract Net is an
anytime algorithm, meaning that once a valid state has
been reached (i.e., at least one bid has arrived), waiting
longer will only improve the situation, but never worsen
it. The algorithm thus can wait as long as the deadlines
allow, and return with the best result until then any time.
If no bid arrives in time, the middleware returns a failure
to the application, which can then handle the situation.

This mechanism is an example for self-configuration,
because if at all possible within the given constraints,
it will find a working job allocation scheme. It is also
example for self-optimization: A longer running job can
be recontracted again, and if the benefit of moving to
another service agent (possibly on another node with bet-
ter resource availability) outweighs the cost of migration,
the job can be reallocated, thus improving the state of the
system as a whole. Recontracting or delegating jobs can
also be enforced by changing conditions, such as a node’s
battery running low. As shown in [33], Contract Net can
reach a global optimum if auctioning between multiple
agents as well as of several jobs at once is allowed. By

658 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.654-663

periodically re-evaluating the current task allocation and
agent distribution, and appropriate reactions, the system
will adapt to a changing environment. In addition, the
middleware core can start or shut down service agents
on particular system nodes as needed in order to improve
scalability and optimize work load.

VII. GUIDING ORGANIC MANAGEMENT:
CAPABILITIES

Task allocation as described in the previous section
should happen autonomously, without human intervention
or configuration. However, the service agents need some
guidance, because dependencies between tasks or between
agents or the need for particular resources and hardware
limitations on particular nodes restrict the configuration
space for an agent. For example, if a task needs a certain
resource locally, an agent can only offer to process it if
it sits on a node that has that resource available. Or, a
particular agent can only run on a node that has a certain
hardware sensor attached. Or an agent might require
another service running on the same node in order to
perform certain functions or run at all. In order to define
such restraints and dependencies, a mechanism is needed
that guides the system’s self-configuration in a way that
does not require manual intervention after initial setup. In
particular, the following properties are desirable:
• Many dependencies and restraints are application-

specific. Thus we need a generic mechanism that is
separated from the middleware implementation such
that the application developer (or even the user) can
define them as needed.

• The same is true for describing the hardware con-
figuration. A node’s operating system must be able
to communicate its hardware setup (such as attached
sensors and actors) to the middleware in a way that
is flexible and extensible. It must not be necessary to
recompile or reconfigure the middleware if e.g. a new
type of hardware device is available; an application
service that supports this device should be able to
recognize its existence and to make use of it without
explicit support by the middleware.

• The mechanism should be transparent to the appli-
cation. In particular, it should not matter for the
application where (on which node and by which
service agent) a task is executed, as long as it is
executed at all. Of course, the application needs to
be able to specify the requirements for processing a
task.

• The mechanism needs to be real-time capable.
Our approach for guiding organic management in
CARISMA is based on what we call capabilities. Roughly
speaking, a capability c is a globally unique, possi-
bly application-specific identifier representing a particular
feature, ability or resource. More formally, we have a set
C containing all known capabilities, hence c ∈ C. Most
of the time we will consider sets of capabilities, taken
from the power set P(C). Furthermore, on a given node,
we have a set R of hardware resources (such as sensors or

actors) and a set A of service agents. The subset A0 ⊂ A
shall denote agents currently not running on the node,
whereas A1 ⊂ A is the set of currently executing agents.

A hardware resource r ∈ R provides a set Sprov
r ∈

P(C) of supported capabilities. A service agent a ∈ A, on
the other hand, usually requires a certain set of capabilities
Sreq

a ∈ P(C) to run. Moreover, a running service agent
might provide additional capabilities Sprov

a ∈ P(C) to
the node it is executed on.

This allows the specification of dependencies between
services, such that a service will only be started on a
node if another service is already running on that node,
or formally, an agent b ∈ A0 can be started on the node
if and only if

Sreq
b ⊂

(⋃
a∈A1

Sprov
a ∪

⋃
r∈R

Sprov
r

)
.

The management of capabilities of a node’s resources
and agents then boils down to performing set operations,
and since we are targetting the real-time domain, we need
to consider if those can be implemented efficiently. In
particular, the middleware core needs to join sets and it
needs to test if one set is a subset of another. For removing
capabilities from sets, subtraction is needed.

A very time-efficient implementation represents capa-
bility sets by bitstrings, with each bit representing a
given capability that is either present or not. In this case,
the afforementioned set operations boil down to bit-wise
logical operations that can be done efficiently in constant
time. Let S and T ∈ P(C) be capability sets, and s
and t the corresponding bitstrings. Then the following are
equivalent:

Set operation Logical operation
S ∪ T s ∨ t
S − T s ∧ ¬t
T ⊂ S ? (s ∧ t) = t ?

If the core maintains a capability set containing all
offered capabilities (by joining Sprov for all resources
as well as started services), it can check if a given
service agent can be started in constant time. Removing
a service, however, can only be done in constant time
if we can assume that a capability cannot be provided
by more than one resource or agent; only then can we
use set substraction to remove the provided capabilities
from the global set. Otherwise, the core needs to check all
remaining providers for that capability, so this operation
needs linear time (in the number of resources and running
agents). Because such a clean-up operation can be handled
by a helper thread in the background, this does not pose
a problem.

One drawback of this mechanism is the fact that the
global number of capabilities must be known beforehand
(at compile time) in order to guarantee constant time
operations; otherwise, one needs to provide for dynam-
ically growing capability sets. Another drawback is that
the representation of a capability set is not the most space

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 659

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.654-663

efficient. If we have n capabilities in the system, we need a
bitstring of length n to represent a capability set regardless
of the number of elements contained. A single capability,
however, can be represented as an integer number and
mapped to its corresponding bit using a list of bitmasks
for set operations.

If the real-time constraints and hardware resources
allow for a more complex implementation, one could
also use a more dynamic approach, for example using
a hierachical tree structure containing named capabilities,
where each node acts as a namespace for its children.
A capability is then described by its path starting from
the root of the tree. The most prominent advantage of
such an approach is that it is dynamically extensible; the
number of known capabilities needs not to be known be-
forehand, and the use of namespaces allow for arbitrarily
(application-specific) named capabilities without the risk
of collisions. However, this data structure does not allow
for constant-time processing of sets. Because CARISMA
is intended to support hard real-time and operates within
an embedded system with limited resources, we have
opted for the bitstring implementation, and we will revisit
this issue in Section X-C.

VIII. COMBINING CAPABILITIES WITH SERVICE
AGENTS

For the auction mechanism employed in CARISMA,
it is vital that a service agent be able to compute a
sensible cost/benefit function for processing a task. Such
a function should consider the cost of using needed
resources, and also capture quality-of-service parameters
(such that the price for processing a task depends on the
quality of the result). Thus, it makes sense to attach cost
information directly to the capabilities. This means, that
using a resource is mapped to “using” a capability, and the
provider of that capability (e.g. CAROS or another service
agent) determines an appropriate cost value. Of course,
the same is true for delegating subtasks to other agents,
which also would be mapped to using the corresponding
set of capabilities. Quality-of-service parameters can be
attached to the cost inquiry. Therefore, the total cost for
processing a given task is composed of the cost of the
needed resources and subtask processing, represented by
the corresponding capabilities.

A. Example

A short example shall clarify how capabilities work.
Consider the front lighting of a car. A car has headlights,
turn signals and foglights. Suppose that each individual
light is controlled by a service agent that can turn it on
and off, and hence provide blinking and steady lighting.
Each light can illuminate the road or signal a turn in the
direction of its location;4 but obviously, the quality a given
light can achieve for both tasks varies. For illuminating
the road, one would of course use the headlights. But what

4Location (i.e. left or right side of the car) can be described by
capabilities as well, but for the sake of brevity, we ignore this here

happens if they break? Then it would still be better to use
the foglights rather than to not illuminate the road at all.
If both head- and foglights break down, we could still use
the turn signals for at least a little bit of light. Similarly it
works for signaling a turn; if a turn signal does not work
anymore, we would prefer using the foglight instead over
not signaling at all, and so on.

In this scenario, all service agents controlling a light
can both illuminate and signal to various degrees; hence,
all service agents offer both these capabilities to the
lighting control application. By attaching varying costs
to using them, however, they can influence the task
allocation in an optimal way: If the headlight agent
offers the “illuminate” capability for the lowest price, the
middleware will always choose it for that task, until the
agent breaks down and is no longer available. In this case
the next-cheapest agent will be chosen, which should be
the foglight agent, and so on.

This example shows how the task allocation within
CARISMA can be influenced by the service agents,
and ultimately the application developer designing the
cost scales for using capabilities, without the need to
change anything in the middleware core or the auctioning
mechanism. Thus, our requirement for the mechanism to
be generic rather than needing application-specific details
is met.

IX. INTEGRATING CARISMA AND CAROS

It turns out that capabilities also play a most impor-
tant role in integrating global organic management, i.e.
CARISMA’s service agents, with node-local organic man-
agement within CAROS. We will now see that CAROS
can influence global organic management by using capa-
bilities as a lever between itself and the middleware.

The organic management implemented in CAROS has
been described in detail in [26], and we will only summa-
rize the basic principles in a very concise and simplified
manner as far as it concerns the interaction of the middle-
ware layer’s organic manager with the individual nodes
(Fig. 4).

CAROS employs a two-staged organic management
approach. On the lower level, small management units,
so-called Module Managers, each manage a small set of
system parameters, usually tied to a specific hardware or
software module. Module managers receive raw monitor-
ing data and can directly change the system parameters
they manage. If a decision cannot be made on this lowest
level, pre-interpreted monitoring data in a generic format
is forwarded to the upper level, the node-local organic
manager, which can make decisions based on node-wide
status information.

As it turns out, this approach integrates very well with
the capability-based approach for global organic man-
agement in CARISMA. A special service agent (called
HAL agent, for Hardware Abstraction Layer) manages
the interaction between CARISMA’s core and CAROS.
Its main task is translating the specific hardware features
into capabilities, and to attach a sensible cost/benefit

660 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.654-663

Figure 4. Integration of node-local and global organic management.
The shaded parts are components of the HAL service agent, while white
boxes belong to local organic management.

function to using a given capability in order to influence
the global organic management by way of the affore-
mentioned auctioning mechanism. To accomplish that,
the HAL agent registers itself as a module manager
for the system parameters that can be monitored and/or
influenced by the middleware layer.

On the middleware level, using a capability will gener-
ally require the usage of node resources. The module man-
ager for a given resource attaches a cost scale to using that
resource. In addition, system parameters might need to be
adjusted. For example, using a capability might require a
certain amount of processing power, which in turn might
require to increase the node’s processor frequency. On
the node level, any actor that changes system parameters
also has a cost scale attached. Changing a parameter,
or a combination of parameters, will improve or worsen
the node’s state; for example, increasing the processor
frequency in order to offer required computing power also
increases energy consumption and system temperature
and therefore the overall cost value of the action. In order
to influence the global organic management, the node’s
cost scales are integrated by the HAL agent and attached
to the capabilities to be used by the global auctioning
mechanism. Summarizing this, the cost/benefit function
for using a given capability is derived from both the
cost scales for the needed resources and for changing the
node’s state.

On the other hand, the HAL agent can also register its
own actors on the node level, thus allowing the node’s
organic manager to actively influence global organic
management. For example, one actor might be “move this
service from this node to another”. The attached cost scale
would reflect the possible alternative locations for running
the given service (obtained as the result of an auctioning
round). Another possibility might be to change quality-
of-service (QoS) parameters of a running service in order
to improve the node’s state; the cost scale the HAL agent
provides for this actor would reflect the incurring quality
degradation on a global level.

This shows that within the architecture proposed in
the CAR-SoC project, both global and local organic
management can interact in various ways. Capabilities

allow mapping global properties to local resources and
system parameters and vice versa. This diversity in im-
plementation of organic features will be very interesting
to explore; in particular, how to fine-tune the balance
between the global and local organic managers, since
both levels can influence the other’s decisions passively
(by modifying cost values) or actively (by performing
actions).

X. IMPLEMENTATION

CARISMA is currently in the implementation phase.
We are limited to using C, because the TriCore 2 toolchain
we use in CAR-SoC does not provide a predictable run-
time behavior for C++, which would be needed for hard
real-time. System functionality is provided by CAROS,
which offers an interface similar to (a subset of) POSIX.

For the initial phases of development, we have written
a high-level (CAROS API compatible) simulator that
allows for simulating multiple networked nodes with
different configurations that can be changed at run-time
(for example for simulating defects). The underlying hard-
ware and CAROS itself are not simulated however; we
currently work with per-node and per-service capabilities
that represent virtual hardware. Hence, we cannot use
this simulator for evaluation of real-time capabilities or
real-world hardware issues. As of now, we haven’t fully
implemented organic management and the HAL service,
both of which rely heavily on the actual hardware and
the organic management of CAROS. We have, however,
started porting our code to the CarCore SystemC model
running an actual CAROS instance, which will allow
for the evaluation of CARISMA’s real-time behavior as
well as the integration of global and per-node organic
management. For now, we would like to highlight some
details of our current implementation.

A. Job and Message Handling

As explained in Section IV-B, CARISMA uses Mes-
sage Passing for communication between service agents
and the core. Jobs are special messages sent between
the core and service agents; other message types include
asynchronous invocation of service functions by the mid-
dleware core, or vice versa. All message types use a stan-
dard data format, including fields for the (globally unique
and locatable) sender and intended receiver, optionally a
job or transaction ID reference (such that a message can
be referred to a job that is currently processed by the
receivers), and a priority. A message can carry an arbitrary
payload.

Messages are stored in and delivered through priority
queues. Our priority queue implementation assumes that
the maximum number of elements stored in such a queue
is known and fixed at its creation; the necessary space
is then preallocated. This is a requirement in a real-time
setting, and also it allows us to use an efficient heap-
based implementation. Inserting a message, removing the
message with highest priority and increasing an arbitrary

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 661

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.654-663

stored message’s priority all operate in O(log n), where
n is the number of stored elements. This allows us
to provide a sensible upper time bound for processing
message queues.

The middleware core on each node maintains a global
(node-wide) priority queue for incoming messages, and
one additional queue for every running service, which
stores its yet unprocessed messages (a message inbox).
Services can post messages to the local CARISMA core;
they are first stored in a node-wide priority queue. A
separate helper thread processes the messages in order
of priority. If the receiver resides on the same node, the
message is forwarded to the receiver’s own message queue
(which is a priority queue as well). If the receiver resides
on a different node, the message is sent away to the
receiving node. If a message could not be delivered after
reaching its expiration time, it will be removed from the
queue and discarded, possibly generating an error reply.

B. Service Management

One of the main tasks of CARISMA’s core is basic
service management, i.e. localizing, loading, running and
terminating service agents, delivering messages between
them, and so on. To make implementing service agents
as straightforward as possible, it is desirable that there be
a common interface or skeleton for accessing a service’s
interface. Since we are limited to C, we cannot use object-
orientation. However, CAROS supports loading shared
libraries called modules at run-time. Such modules can
have their own symbol namespace, a feature we use to
avoid symbol collisions between services. This allows us
to define some standard functions every service agent
needs to provide, such as init() or run(), as well as
access functions for the sets of required and provided
capabilities. On loading of a service module, the core
resolves those symbols and stores the resulting pointers in
a data structure together with some more metadata about
that service. For functions a service does not provide, a
default implementation is used instead, which avoids code
duplication for common functionality.

Throughout the system, a service can be identified
and all its information accessed via a pointer to that
data structure, hence such a pointer is used as a service
handle whenever a service needs to be addressed. This
avoids costly copying of data. Because all needed symbols
are resolved on load (during a phase where all needed
resources are allocated too, which cannot be done in
real-time in any case), subsequent accesses to the service
agent’s methods are fast and predictable.

CAROS modules can be executed in a separate thread.
The default implementation for the main function of a
service agent provides an event loop that blocks until
a message arrives, and calls the appropriate message
handler on receipt. This kind of event-based programming
avoids the need for synchronization and hence is very
suitable in a real-time context, since the middlware core
will never actively interrupt a running service.

Of course, the tradeoff for not using interrupts is
that timely processing of incoming messages cannot be
guaranteed, in the sense that the middleware core cannot
usually know if the receiving agent is currently busy with
processing other tasks rather than checking its message
queue. Therefore, another mode of operation are passive
services, which do not have their own event loop (or
even their own thread), but rather provide hooks that
are actively called by the middleware core. This is more
lightweight, but also introduces issues with concurrency
and real-time behaviour. A hybrid variant is a service
agent allowing interrupts while featuring an event loop
and active behavior. It depends on the needs of the
application which of these possibilities should be used
for a given service.

C. Capabilities

As described in Section VII, capability sets can be
implemented in a time-efficient (albeit not necessarily
space efficient) manner using bitstrings, where each bit
position represents the presence of a given capability.
In CARISMA, the size of capability sets is a global
constant that needs to be set at compile time. A single
capability, however, is represented by an integer number.
The mapping between this integer and the corresponding
bit in the set is done using a lookup table of bitmasks. A
capability can be added to, removed from or tested for in
a capability set in constant time. In particular, this allows
for quick checking if a given service can run on a given
node, or if a given job can be processed by a given service.
Thus, we can check the necessary preconditions quickly
before invoking the more costly auctioning mechanism.

XI. CONCLUSION AND FUTURE WORK

In this paper, we have presented our middleware
CARISMA, which is part of the CAR-SoC project [24].
This project extends the focus of organic computing
to the hardware by developing an embedded hard-real-
time system supporting autonomic computing principles.
CARISMA closely interacts with the local (per-node)
organic management to create a robust self-configuring,
self-optimizing and self-healing distributed system. We
use an agent-based approach, using intelligent service we
call service agents, for providing organic management
on the middleware level. For implementing decentralized
task allocation, we use an auctioning mechanism based
on Contract Net, a coordination mechanism well known
in the realm of multi-agent systems. We can describe
dependencies between service agents and resources in
a generic way by using what we call capabilities. We
are integrating both the global and the per-node organic
management by mapping such capabilities and attached
cost functions to local monitors and actors.

Besides furthering the implementation of CARISMA,
including porting it to and evaluating it on CAROS
running on a SystemC simulator (and finally on real
hardware), there are still several interesting aspects to ex-
plore. One of the most interesting issues requiring future

662 JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.654-663

research is the mapping of resource requirements to a cost
scale that allows for sensible organic management. This
work mostly influences the design and implementation
of the HAL agent that acts as a bridge between the
locally running CAROS instance and the middleware. It
also is central to the integration of both levels of organic
management.

Other aspects of ongoing and future research include
the communication between several nodes and the evalu-
ation and possible enhancements of the auctioning mech-
anism, such as inter-agent and multi-job renegotiations.
Transaction management and redundancy are important
for providing robustness and the possibility of implement-
ing certain aspects of self-healing, such as transparent
recovery from failures. Last but not least, the efficient
migration of running service agents between nodes, in
particular such containing large state information, is a
non-trivial issue that requires further research.

REFERENCES

[1] W. W. Gibbs, “Software’s chronic crisis,” Scientific American,
pp. 72–81, Sept. 1994.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” IEEE Computer, pp. 41–50, Jan. 2003.

[3] P. Horn, Autonomic Computing: IBM’s Perspective on the State of
Information Technology. IBM Research, Armonk, NY, Oct. 2001.

[4] C. Müller-Schloer, C. v.d. Malsburg, and R. P. Würtz, “Or-
ganic computing,” Aktuelles Schlagwort in Informatik Spektrum,
pp. 332–336, 2004.

[5] H. Schmeck, “Organic computing – a new vision for distributed
embedded systems,” in Proc. of the Eighth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC’05), pp. 201–203, IEEE Computer Society, 2005.

[6] VDE/ITG/GI, “Positionspapier Organic Computing: Computer und
Systemarchitektur im Jahr 2010,” 2003.

[7] M. Nickschas and U. Brinkschulte, “Using multi-agent principles
for implementing an organic real-time middleware,” in Proc.
10th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC’07), (San-
torini, Greece), pp. 189–195, IEEE Computer Society, 2007.

[8] M. Nickschas and U. Brinkschulte, “Guiding organic management
in a service-oriented real-time middleware architecture,” in Proc.
of the Sixth IFIP WG 10.2 International Workshop (SEUS 2008)
(U. Brinkschulte, T. Givargis, and S. Russo, eds.), Software
Technologies for Embedded and Ubiquitous Systems, pp. 90–101,
Springer, Oct. 2008.

[9] F. Kluge, J. Mische, S. Uhrig, and T. Ungerer, “Car-SoC – towards
an autonomic SoC node,” L’Aquila, Italy ACACES 2006 Poster
Abstracts, July 2006. Academia Press, Ghent (Belgium).

[10] Object Management Group, Common Object Request Broker Ar-
chitecture: Core Specification, version 3.0.3 ed., Mar. 2004. Abruf:
März 2006.

[11] G. Eddon and H. Eddon, Inside Distributed COM. Microsoft
Programming Series, Redmond, WA, USA: Microsoft Press, 1998.

[12] D. S. Platt, Introducing Microsoft .NET. Redmond, WA, USA:
Microsoft Press, 2001.

[13] Sun Microsystems, Inc, “Java remote method invocation documen-
tation,” 2004.

[14] IBM, “Autonomic computing.” Online Resource. Accessed: March
2006.

[15] Deutsche Forschungsgemeinschaft, “DFG SPP 1183 Organic Com-
puting.”

[16] J. Becker, K. Brändle, U. Brinkschulte, J. Henkel, W. Karl,
T. Köster, M. Wenz, and H. Wörn, “Digital on-demand computing
organism for real-time systems,” in ARCS Workshops, vol. 81 of
LNI, pp. 230–245, GI, 2006.

[17] W. Trumler, J. Petzold, F. Bagci, and T. Ungerer, “AMUN: An
autonomic middleware for the smart doorplate project,” Personal
Ubiquitous Comput., vol. 10, no. 1, pp. 7–11, 2005.

[18] W. Trumler, Organic Ubiquitous Middleware. PhD thesis, Univer-
sität Augsburg, 2006.

[19] H. Kasinger and B. Bauer, “Combining multi-agent-system
methodologies for organic computing systems,” in Proceedings of
the 16th International Workshop on Database and Expert Systems
Applications (DEXA’05), IEEE Computer Society, 2005.

[20] M. Mamei and F. Zambonelli, “Self-organization in multi agent
systems: A middleware approach.,” in Engineering Self-Organising
Systems, pp. 233–248, 2003.

[21] G. D. M. Serugendo, M.-P. Gleizes, and A. Karageorgos, “Self-
organization in multi-agent systems,” Knowl. Eng. Rev., vol. 20,
no. 2, pp. 165–189, 2005.

[22] F. Picioroagă, Scalable and Efficient Middleware for Real-Time
Embedded Systems. A Uniform Open Service Oriented, Micro-
kernel Based Architecture. PhD thesis, Université Louis Pasteur,
Strasbourg, Dec. 2004.

[23] M. Nickschas, “Konzeption einer Anwendungsschnittstelle für eine
echtzeitfähige Middleware mit Selbst-X-Eigenschaften,” Master’s
thesis, Universität Karlsruhe (TH), Sept. 2006.

[24] S. Uhrig, S. Maier, and T. Ungerer, “Toward a Processor Core
for Real-time Capable Autonomic Systems,” in Proceedings of
the 5th IEEE International Symposium on Signal Processing and
Information Technology, pp. 19–22, Dec. 2005.

[25] J. Mische, S. Uhrig, F. Kluge, and T. Ungerer, “Carcore: A smt
microcontroller with virtually unbounded thread number.” Zur
Veröffentlichung vorgesehen, 2008.

[26] F. Kluge, S. Uhrig, J. Mische, and T. Ungerer, “A two-layered
management architecture for building adaptive real-time systems,”
in Proceedings of the 6th IFIP Workshop on Software Technologies
for Future Embedded & Ubiquitous Systems (SEUS 2008), 2008.

[27] F. Kluge, J. Mische, S. Uhrig, and T. Ungerer, “An Operating
System Architecture for Organic Computing in Embedded Real-
Time Systems,” in Proceedings of the 5th International Conference
on Autonomic and Trusted Computing (ATC-08), (Oslo, Norway),
Springer, Jun 2008.

[28] U. Brinkschulte, J. Kreuzinger, M. Pfeffer, and T. Ungerer, “A
scheduling technique providing a strict isolation of real-time
threads,” in Seventh IEEE International Workshop on Object-
oriented Real-time Dependable Systems (WORDS 2002), Object-
Oriented Real-Time Dependable Systems, Jan. 2002.

[29] M. Pacher, A. von Renteln, and U. Brinkschulte, “Towards an or-
ganic middleware for real-time applications,” in Proceedings of the
Ninth IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing, 2006.

[30] A. S. Tanenbaum and M. van Steen, Distributed Systems. Princi-
ples and Paradigms. New Jersey: Prentice Hall, 2002.

[31] R. G. Smith, “The contract net protocol: High-level communica-
tion and control in a distributed problem solver,” IEEE Transac-
tions on Computers, vol. C-29, pp. 1104–1113, Dec. 1980.

[32] G. Weiss, ed., Multiagent Systems. A Modern Approach to Dis-
tributed Artificial Intelligence. Cambrigde, MA: The MIT Press,
1999.

[33] T. W. Sandholm, “Contract types for satisficing task allocation: I
Theoretical results,” in AAAI Spring Symposium Series: Satisficing
Models, (Stanford University, CA), pp. 68–75, Mar. 1998.

JOURNAL OF SOFTWARE, VOL. 4, NO. 7, SEPTEMBER 2009 663

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.7.654-663

