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Abstract—The demand for real-time data services is in-
creasing in many large-scale distributed real-time applica-
tions including advanced traffic control, global environment
control, and the nation-wide electric power grid control.
However, providing quality-of-service (QoS) for data services
in such large-scale and geographically distributed environ-
ment is a challenging task. In particular, both unpredictable
communicational delays and computational workloads of
large-scale distributed systems can lead to large number of
deadline misses. We have designed a distributed real-time
database architecture called DRACON (Decentralized data
Replication And CONtrol), which enables QoS guarantees
for large-scale distributed real-time applications. DRACON
couples cluster-based replica-sharing and a decentralized
control structure to address communication and compu-
tational unpredictability, simultaneously. The cluster-based
replica-sharing mechanism not only enables scalable and
bounded-delay access to remote data with high probability,
but also decouples clusters to have less interaction, allowing
a decentralized, thus scalable, QoS control structure. The
simulation study demonstrates that DRACON’s decentral-
ized QoS control structure combined with a decentralized
replica-sharing structure provides robust and predictable
QoS guarantees in a highly scalable manner.

Index Terms—distributed real-time database, feedback con-
trol, data replication.

I. INTRODUCTION

Recent years have seen the emergence of large-scale

distributed real-time embedded (DRE) systems, which

includes advanced traffic control, global environment

control, irrigation network control, and the nation-wide

electric power grid control. For many of these systems,

providing real-time data services is essential since they

need to handle large amounts of data in real-time to

satisfy the timing constraints from physical processes and

events. The issues involved in providing predictable real-

time data services in centralized or small-scale distributed

database systems have been studied and the results are

promising [1] [2]. However, we are not aware of re-

search results for providing data services with Quality-of-

Service (QoS) guarantees in large-scale distributed real-

time database environments.

In large-scale distributed environments, it is challenging

to provide data services with QoS guarantees while still

meeting temporal requirements of transactions. One main

difficulty lies in long and highly variable remote data

access delays. Unlike small-scale systems, which utilize
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highly deterministic local-area networks, large-scale DRE

systems in wide geographical areas have to use a network

that is shared by many participants for cost-effectiveness.

A second major challenge involves the complex interac-

tions among a large number of nodes, which can incur

unpredictable workloads for each node. For instance, a

local node may experience a dramatic load increase during

cascading disturbance in power grids. A third challenge is

the data-dependent nature of transactions or tasks. End-to-

end QoS can be achieved only when both timely access to

remote data and timely computation are guaranteed. For

example, QoS management schemes that do not consider

the timely access to remote data [3] [4] can not provide

the eventual QoS guarantees in DRE systems, in which

large number of nodes have complex remote data access

patterns.

In this paper, we propose a distributed real-time

database (DRTDB) architecture called DRACON (Decen-

tralized data Replication And CONtrol), which guarantees

QoS in a highly scalable manner. In particular, DRACON

features a scalable replica-sharing mechanism that enables

not only bounded-delay remote data access, but also a

decentralized, thus scalable, QoS control structure. The

contributions of this paper are three-fold:

1) a replica-sharing mechanism that guarantees

bounded-delay access to remote data with high

probability,
2) a decentralized feedback control architecture to

control unpredictable workloads both locally and

globally, and
3) an extensive evaluation of the proposed approach

through simulation in the context of wide-area

power grid control.

To the best of our knowledge, this is the first paper on

scalable QoS management in DRTDBs, which considers

both communicational and computational unpredictability

of large-scale DRE systems. Previous approaches either

ignore the data-dependent nature of tasks/transactions in

providing QoS guarantees [3] [4], or are not scalable [2].

Data replication can help database systems meet the

stringent temporal requirements of real-time applications

[2]. A node can access local replicas, which are updated

periodically for freshness, without long communication

delays. However, naı̈ve replication approaches such as

full replication, which is commonly found in small-scale

distributed database systems, can incur high computa-

tional and communicational overhead as the system size
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scales up, leading to a large number of deadline misses.

In DRACON, nodes are partitioned into clusters for

high scalability, in which replicas are shared by member

nodes of the cluster, instead of having a local replica

at each node. Each node of a cluster is responsible for

maintaining a fair share of replicas. Further, the replica-

sharing clusters are constructed such that the intra-cluster

communication delay to access the shared replicas is

bounded with high statistical guarantees. This clustering

algorithm is implemented and tested on PlanetLab [5], a

world-wide distributed Internet testbed. The result demon-

strates that, despite the variability of wide-area networks,

delay bounds can be guaranteed with a high probability.

Even though the replica sharing technique in DRA-

CON decreases the replication overhead significantly as

will be shown in the Evaluation section, replication

still incurs non-negligible overhead, making the system

sensitive to workload unpredictability. To deal with this

problem, DRACON provides a decentralized and hier-

archical control technique that guarantees tight deadline

miss ratio under unpredictable workload. In particular, the

workload control structure of DRACON is decentralized

into replica-sharing clusters. Since all remote data access

requests from a node are handled within the cluster,

clusters have less interactions with each other and are

decoupled. This decoupling enables highly scalable de-

centralized control structure in DRACON.

The evaluation results demonstrate that QoS can be

provided only if both timely access to remote data and

timely processing of data even with transient overloads

are guaranteed. The study shows that DRACON’s de-

centralized replication and control scheme gives a robust

and controlled behavior of DRTDBs in a highly scalable

manner.

The rest of the paper is organized as follows. Section 2

presents the power grid monitoring and control problem

to illustrate the challenges posed by large-scale DRE

systems. In Section 3, the system model is presented. The

design of DRACON is described in detail in Section 4.

Section 5 shows the details of the simulation settings and

presents the evaluation results. Related work is discussed

in Section 6 and Section 7 concludes the paper and

discusses future work.

II. LARGE-SCALE POWER GRID CONTROL PROBLEM

In this section, we consider the large-scale monitoring

and control problem of a power grid as a concrete example

to illustrate the challenges of large-scale DRE systems.

The power grid is a complex large-scale distributed

system; in North America, the power grid involves about

3,500 utility organizations [6]. Regional power control

centers owned by power companies maintain and control

the flow of electricity over the grid, supplying elec-

tricity to meet the demand. Since power utilities are

physically inter-connected to other power utilities, an

overload or disconnection at one power system can result

in a cascading effect as shown in 2003 blackout [6].

This close coupling between distributed power systems

requires coordination between regional control centers in

wide-area to provide a better understanding of the grid-

wide situation.

However, current wide-area control schemes are rudi-

mentary. Some wide-area control schemes such as re-

medial action schemes (RAS) have been developed, but

they depend on dedicated point-to-point communication,

which can not be a general scheme because of high

cost and inflexibility. Therefore, it is anticipated that an

Internet-like network will emerge in the coming decade

for wide-area power grid control [7]. One of the key chal-

lenges in using such Internet-like wide-area networks for

critical infrastructures is long end-to-end communication

delay and high variability. Several wide-area monitor-

ing/control architectures have been proposed to address

the communication delay problem in such Internet-like

networks [8] [7].

Furthermore, coping with grid-wide situation can not

be achieved by ‘fast’ communications only. It requires

real-time data processing and analysis of large volume

of sensor data to make a timely control decision. Tradi-

tionally, real-time databases (RTDBs) have been a key

component that enables real-time data processing and

analysis in SCADA/EMS(Supervisory Control and Data

Acquisition/Energy Management System) for power grids

[9] [10]. It is not unusual to have between 50,000 and

100,000 telemetry/measurement points in a control center

database. Measurements are often taken or derived values

computed at intervals on the order of 2 seconds apart.

This leads to a relatively large database with dynamic

data modifications and entry [10]. Grid-wide situation

monitoring and control require these local RTDBs to

cooperate by exchanging monitoring information in wide-

area, forming a large-scale distributed real-time database

(DRTDB). However, one major challenge in such a large-

scale DRTDB is that complex interaction between local

RTDBs can incur unpredictable workloads, which is an-

other source of deadline misses.

We use this large-scale wide-area power grid control

problem throughout the paper.

Finally, note that DRACON is not intended to replace

current local data exchange and control mechanism such

as SCADA. DRACON complements them when a large

number of control centers are networked in a geographi-

cally wide-area.

III. DISTRIBUTED REAL-TIME DATABASE MODEL

In this section, an overview of our DRTDB model is

discussed.

A. Data and Transaction Model

In our data model, data objects can be classified

into two classes, temporal data and non-temporal data.

Temporal data are sensor data from physical world and

updated periodically by update transactions. In contrast,

non-temporal data do not change dynamically with time.

For instance, in SCADA/EMS update transactions are

invoked to update temporal data when sensor values are
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read from remote terminal units (RTUs); the temporal data

from RTUs includes data such as voltage, line frequency,

phase angle of the phaser, status of equipment, and

so forth. Temporal data objects have validity intervals.

Validity intervals are used to maintain the temporal con-

sistency between the real-world state and sensor data in

the database. A sensor data object Oi is considered valid,

or fresh, as long as (current time− timestamp(Oi)) <
avi(Oi), where avi(Oi) is the absolute validity interval

of Oi.

User transactions are periodic or aperiodic queries

issued by applications to analyze the system status,

which involves both temporal data from sensors and non-

temporal data. For example, applications of SCADA/EMS

perform operational analysis such as power flow analysis,

transient stability analysis, and on-line safety analysis by

issuing queries to underlying RTDBs [9] [10]. Unlike

traditional e-commerce applications, data freshness and

timeliness of queries are more important than data in-

tegrity in DRE systems. To this end, ACID properties of

transactions are often relaxed [11].

B. Distributed Database Model

In this paper, we consider a DRTDB which consists

of a group of local databases connected by an wide-area

network. Each local database is called a node and it is the

centerpiece that enables the collection and analysis of a

large amount of critical sensor data in a local control and

automation system.

Each node maintains all or most data in main-memory

for fast response time and high predictability.1 Each node

hosts a set of temporal data objects and non-temporal data

objects. To overcome long data access delays to remote

data objects, data objects can be replicated in a local

node. Once a replica is made for a remote data object,

it is updated periodically by the primary node, which

maintains the original copy of the data object. In this

paper, we assume only temporal sensor data are replicated

and updated periodically since effective temporal data

dissemination is the key issue. The replication model

follows single primary, multiple replica strategy; write

operations can occur only on the primary of the data

object.

This DRTDB approach provides several key advantages

over ad-hoc distributed data management schemes. The

temporal data dissemination through replication enables

each control center to make a globally consistent control

decision, which is hardly achievable without transactional

support from DRTDBs. Moreover, the standardized data

access interfaces such as SQL can facilitate the inter-

operability between heterogeneous nodes.

C. Major QoS Metric

In our DRTDB model, the main QoS metric is deadline

miss ratio. The miss ratio is defined as:

1This model can be extended to include I/O with added complexity
as in our previous work [12].

MR = 100 ×
#tardy

#tardy + #timely
(%), (1)

where #tardy, and #timely represent the number of

transactions that have missed and met their deadlines,

respectively. Since database workloads and access pat-

terns of transactions vary dynamically, it is reasonable to

assume that some deadline misses are inevitable.

IV. APPROACH

In this section, we present the design of DRACON that

provides data services with QoS guarantees for large-scale

DRE systems.

A. DRACON Architecture
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Figure 1. The architecture of one DRACON node.

Figure 1 shows the architecture of one node of DRA-

CON. The architecture has 3 layers, remote data access

layer, QoS enforcement layer, and real-time DBMS layer.

The remote data access layer enables transparent ac-

cess to remote data within a bounded communication

time. Remote temporal data are replicated locally to

provide timely access to them. However, to avoid the high

cost of full replication in large-scale distributed systems,

the system is partitioned into clusters, and member nodes

of each cluster share replicas of the cluster, instead of

having respective local replicas. A local replica of remote

data is made only if a replica is not found in the cluster

that the node belongs to. Each node of a cluster is

responsible for maintaining a fair share amount of replicas

of remote data. The fair share amount of replicas for

each node is controlled by the QoS enforcement layer

to guarantee the desired QoS.

To guarantee the desired deadline miss ratio even in the

presence of unpredictable workloads, QoS enforcement

layer exploits two feedback control loops. A key intuition

that affects the architecture of the feedback control loops

is that the dynamics of DRACON manifest two different

time-scales. At each node, fast dynamics are observed.

These dynamics arise from changing data access patterns.

At the global system level, slower dynamics are observed.

They arise from changing global load distribution. There-

fore, DRACON’s feedback control architecture has two

sets of control loops, local and global ones. In particular,
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since the cluster-based replica-sharing decouples clusters

and decreases the interaction between clusters, DRA-

CON’s global control structure is decentralized into each

cluster, making DRACON highly scalable. The global

control information is exchanged only among member

nodes of each cluster.

The real-time database (RTDBMS) layer does typical

real-time transaction handling; the incoming transactions

are dispatched and processed by the transaction handler.

The transaction handler consists of a concurrency con-

troller (CC), a freshness manager (FM), and a scheduler

(SC). In the SC, update transactions are scheduled in the

high priority queue while user transactions are scheduled

in the low priority queue. Update transactions are either

updates from local sensors to local data objects or updates

from primary nodes to replicated temporal data objects.

Within each queue, transactions are scheduled using Ear-

liest Deadline First (EDF). The FM checks the freshness

before accessing a data object using the corresponding

avi. If the data object is not fresh, user transactions

accessing the data object are blocked until the data object

is updated.

B. Bounded-Delay Communication

In a distributed real-time system like the power grid,

which interacts with physical processes and events, the

latency of data propagation from one node to the other

should be predictable and bounded in time to make a

timely control decision. For example, the power grid

monitoring and control in wide-area requires that status

information from a control station should be delivered to

other control stations in a bounded time to prevent cas-

cading disturbances. However, deterministic delay bound

guarantees are virtually impossible to achieve in Internet-

like networks. Instead, we try to achieve delay bounds

with a high probability.

In DRACON, the temporal data is delivered indirectly

from a source node to a destination node via a node

that has a replica of the original data. Therefore, the

total propagation delay, TD(ni, nj), of temporal data

from a source node ni to a destination node nj in a

different cluster is the sum of inter- and intra-cluster

communication delay as shown in Equation 2.

TD(ni, nj) = Comminter + Commintra(nj), (2)

where Comminter is the inter-cluster communication

delay and Commintra(nj) is the intra-cluster communi-

cation delay of the cluster that node nj belongs to. Figure

2 shows inter- and intra communication delays with 2

replica-sharing clusters.

Since a temporal data of one node can be replicated

by any node in the system, Comminter is the communi-

cation delay between any arbitrary nodes of the system,

and it is the global property of a given communication

network; the bound on Comminter is not affected by a

cluster construction mechanism. However, the bound on

Commintra(N) of an arbitrary cluster N is determined

Inter-cluster delay

Intra-cluster delay

replica holder of n1

Cluster A Cluster B

n1

Figure 2. Clusters and inter/intra delays.

by the member nodes of the cluster. Commintra(N) is

bounded by d with probability p:

p ≤ Pr {Commintra(N) ≤ d} , (3)

where

d = max
ni,nj∈N,

(p quantile of measured delays btw. ni and nj) .

(4)

Therefore, clusters should be constructed to guarantee

that the partitioned clusters satisfy the requirement of

an application on its data propagation delay bound. In

general, the bound on Commintra of a cluster is inversely

proportional to the size of the cluster. However, the

computational and communicational overhead increases

proportionally to the number of clusters as will be shown

in the Evaluation section.

In power grids and other wide-area DRE systems,

the requirement on the data propagation delay is highly

related to the geographical distance between two nodes

since the travel speed of physical disturbances is linearly

proportional to the geographical distance. For example,

disturbances travel at the speed of 500km/sec in power

grids [13]. Therefore, the geographical distance should be

considered in constructing clusters. This requirement can

be stated as follows:

TD(ni, nj) + α ≤ TP (ni, nj), (5)

=
distance(ni, nj)

disturbance propagation speed
(6)

where TD(ni, nj) is the data propagation delay be-

tween the two nodes, TP (ni, nj) is the traveling delay

of physical disturbance between the two nodes, and α
is the additional overhead to process the data including

actuation latency. Intuitively, this requirement tells that

status data should be delivered and processed faster than

the propagation of a physical disturbance.

Given this requirement, the system is partitioned into

a set of clusters using Algorithm-1 when the system is

deployed. In Algorithm-1, clusters are recursively par-

titioned into smaller clusters until each cluster satisfies

application’s requirement. In line 4 – 12, two nodes with

the greatest ratio of communication delay to disturbance

traveling delay, or
TD(ni,nj)

TP (ni,nj)
, are chosen, and the remain-

ing nodes are attached to the closer one based on the same

criteria. In the resulting replica-sharing structure, the total

number of clusters should be much smaller than the total

number of nodes. Otherwise, the replica-sharing via clus-

tering has no gain; in such situation, each pair of nodes
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Algorithm 1: GeoSpeedPartitioning(cluster N )

Input: distances between arbitrary two nodes
Input: measured delays between arbitrary two nodes
if all pairs (ni, nj) in N satisfy Equation 5 then1

continue;2

else3

select ni and nj with the greatest
TD(ni,nj)

TP (ni,nj)
;4

N1 = {ni} ; N2 = {nj};5

N = N − {ni, nj} ;6

foreach node n in N do7

if
TD(n,ni)
TP (n,ni)

≤
TD(n,nj)

TP (n,nj)
then8

N1 = N1 ∪ {n};9

else10

N2 = N2 ∪ {n};11

end12

end13

GeoSpeedPartitioning(N1);14

GeoSpeedPartitioning(N2);15

end16

should have a dedicated communication link. However,

this is unlikely even with the current Internet as will be

shown shortly. The worst-case running time of Algorithm-

1 is O(n3) when N1 and N2 are highly unbalanced on

every recursion. However, the average case running time

is O(n2 log n), and we do not further optimize the

algorithm since it runs once when the system is first

deployed. We assume that future Internet-like networks

for critical infrastructures will be less dynamic than the

current Internet once they are deployed. In a network with

highly time-varying characteristics, Algorithm-1 should

be extended to include post-adjustment capability with

dynamic network probing. We leave this as our future

work.

1) Delay Bounds in Wide-Area Networks: We demon-

strate the communication delay bounds that can be

achieved in the current Internet with the proposed cluster

partitioning. This also shed light on the feasibility of

the proposed approach in future Internet-like networks.

Algorithm-1 is implemented and tested on PlanetLab [5]

with 64 nodes from 26 institutions in eastern United

States. Before running Algorithm-1, the communication
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Figure 3. Communication latency between arbitrary two nodes

latencies between arbitrary two nodes were probed for

24 hours at every 30 seconds; the communication latency

was measured as the half of the roundtrip latency. Figure

3 shows the probability distribution of communication

latencies between arbitrary two nodes. This graph shows

that 99.999% of communication between any arbitrary

two nodes take less than 250ms. The size of data packet

has little impact on communication latency. The result

indicates that the tight delay bounds for Comminter is

250ms with 99.999% statistical guarantees. The measured

delays between arbitrary two nodes were provided as in-

puts to Algorithm-1. Instead of setting a specific require-

ment on the propagation delay, a cluster with the longest

intra-cluster delay bound was partitioned recursively until

we had 8 clusters.

The resulting replica-sharing clusters has 300km inter-

cluster distance at a minimum. In power grid, this implies

that it takes at least 600ms for the electric disturbance to

propagate to neighbor clusters. The average intra-cluster

delay bounds of the 8 clusters is 181ms with 99.99%
probability. Therefore, the propagation delay bounds of

data from a node to the other in a different cluster is

431ms(= 250ms + 181ms) with 99.99% probability.

This implies that the indirect access to temporal data

through replica-sharing does not violate the requirement

on the data propagation delay as long as an application

requires data propagation delay no less than 431ms. For
example, it is feasible to take control action to avoid

cascading electric disturbance between clusters as long

as overhead for data processing and actuation takes less

than about 169ms since it takes 600ms on average for

a disturbance to propagate to a neighbor cluster in the

stated geographical setting.

C. Decentralized QoS Control

In this section, we design feedback control loops for

DRACON. The goal of the feedback control loops is to

maintain the desired deadline miss ratio and utilization

both locally and globally.

1) Local QoS Control: At each node, there are a local

miss ratio controller and a local utilization controller as

shown in Figure 4. The local feedback controllers are

responsible for tracking the QoS set points set by global

controllers, MRL and UL, and ensuring that transactions

have a minimum miss ratio and the node remains fully

utilized.

Each node has a desired deadline miss ratio, MRL,

and a desired utilization, UL, as its specification from the

node’s global miss ratio and utilization controllers.[\]^_`aa [bc̀ dedfcgdh ijklmggdg_[n op _[qcr
(a) Miss ratio controllerstuvwxyzy{|xy}~�}~x�}z ������}�w� �� w�x�
(b) Utilization controller

Figure 4. Local controllers.
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At each sampling instant, the local miss ratio controller

takes the current miss ratio, compares them with the de-

sired miss ratio, and computes the local workload control

signal, ∆WMR, which is used to adjust the utilization

at the next sampling period. The local utilization control

loop takes the similar control action as the local miss ratio

controller. Employing a utilization control loop is to avoid

a trivial solution, in which all the miss ratio requirements

are trivially satisfied by under-utilizing the system. At

each sampling instant, we set the current control signal

∆W = Minimum(∆WMR, ∆WU ) to support a smooth

transition from one system state to another.

The target utilization from the local controller is

achieved by switching between the on-demand update

scheme and the immediate update scheme for selected

temporal data objects. The candidate data objects of this

dynamic update-mode switch are selected based on the

communication delays between a primary node ni and its

replica holder node nj of data object Oi. The avi(Oi)
should be large enough for Oi to be still fresh even

when the data object is updated on-demand as shown in

Equation 5.

Comminter + Commintra(nj) + β < avi(Oi). (7)

In the equation, Comminter + Commintra(nj) is the

communication delay for on-demand update, and β is the

expected processing time to retrieve Oi at the primary

node. Since the communication delay bounds of any two

arbitrary nodes are known with high statistical guarantees

from the system partitioning procedure, we can get the

set of candidate data objects, Ocand, which satisfy the

above condition. When the estimated load adaptation from

the update-mode switch of data object Oi is Uc(Oi), the
maximum adjustable load is

∑

Oi∈Ocand
Uc(Oi). After

the candidate data objects for the update-mode switch are

selected, the notion of Access Update Ratio (AUR) for a

data object Oi is applied as follows to select target data

objects:

AUR[i] =
Access Frequency[i]

Update Frequency[i]
. (8)

AUR models the ratio of the benefit (Access Fre-

quency) to the cost (Update Frequency) of Oi. It is

clear that data objects with high AUR should be updated

aggressively; if they are out-of-date when accessed, po-

tentially multiple transactions may miss their deadlines

waiting for the updates. Therefore, data objects are con-

sidered in the order of smaller AUR for update mode

switch.

In the design of controllers, each local RTDB is

modeled as an first-order time-invariant linear model,

and proportional integral (PI) control law is used for

controllers. The details of our local controller design

procedure can be found in [12].

2) Global QoS Control and Load Balancing: In DRA-

CON, replicas are shared by cluster member nodes; hence,

the nodes in the same cluster have closer interactions.

These close interactions in a cluster incur a changing load

distribution. Global controllers at each node balance this

load distribution.

At each global sampling period, global controllers

exchange utilization/miss ratio information with other

member nodes in the same cluster to calculate the average

miss ratio, MRA, and utilization, UA. The global control

outputs of each node are determined from the following

difference equations:

MRL(k) = MRL(k − 1) + KM (MRA − MR(k − 1)). (9)

UL(k) = UL(k − 1) + KU (UA − U(k − 1)). (10)

The global control outputs, MRL(k) and UL(k), are
the set points for the local miss ratio controller and the

local utilization controller, respectively. The controller

gains, KM and KU , determine the characteristics of

the controllers. Note that global control information is

exchanged only among cluster members since cluster-

based replica sharing decouples each cluster from the

others. Furthermore, the control information delivery time

is highly predictable since the communication delay in an

arbitrary cluster c is bounded by Commintra(c) with high
statistical guarantees.����� �� ��������� ������� ��� ¡ ��¢£¤�¡ ¡��¥

(a) Global Miss ratio control¦§©̈ ª« ¨¬­®¯̄«° ±²³´µ¶ ·¸¹º» ¹¸¼½¾¸» »¸¸¿
(b) Global Utilization control

Figure 5. Block diagram for the global system

The interaction between local and global controllers is

modeled by simplifying a local feedback control loop into

an identity transfer function. This simplification of the

local feedback control loop is possible since a local feed-

back control loop has several orders of magnitude faster

dynamics than a global control loop.2 When a system has

multiple dynamics, the fast mode of the system can be

discarded for model simplification [14] [15]; this enables

modeling of a complex system. With this technique, the

global system can be modeled as shown in Figure 5. In

the figure, the blocks with an identity transfer function

are local feedback control loops. Intuitively, modeling

a local feedback control loop into an identity transfer

function means that a QoS set point (MRL or UL) from a

global controller is achieved instantaneously by the local

2In our evaluation, the sampling intervals of local and global control
loops are 1 second and 10 seconds, respectively.
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controller and the state is maintained until the next global

sampling period. In the above block diagrams, the poles

of closed loops are 1
Km+1

and 1
KU+1

, respectively. A

discrete system is stable if and only if the poles of the

closed loop are inside a unit circle [16]. Therefore, the

closed loops for the global system in Figure 5 are stable if

positive values for the controller gains, KM and KU , are

selected. The final controller parameters are determined in

consideration of other desired characteristics of the closed

loop system such as a settling time and an overshoot.

Once target miss ratio and utilization are set for local

controllers, they are tracked by local controllers at each

node. However, the maximum achievable load adjustment

from a local control loop can be limited by data freshness

requirements; the update mode of a data object can be

switched to on-demand update only if Equation 7 is

satisfied. The remaining workload adaptation is achieved

by migrating replicas between cluster member nodes. At

each global sampling period k, the amount of load that a

node i needs to transfer (or to receive), ∆TWi(k), is the
difference between the required load adaptation to achieve

the new set points, ∆Wi(k), and the local controller’s

maximally achievable load adaption, AWi(k):

∆TWi(k) = ∆Wi(k) − AWi(k). (11)

If ∆TWi(k) is positive, the node is overloaded and it

can not be fully controlled by its local controller. There-

fore, some replicas are migrated to neighbor nodes, which

have a negative ∆TW (k), until ∆TWi(k) becomes less

than or equal to zero. Since local target set points,

MRL and UL, are determined to track the average miss

ratio and the utilization of cluster nodes,
∑

i |∆TWi(k)|
approaches zero, making each cluster balanced.

V. EVALUATION

In this section, we describe the simulation settings and

present the results of the performance evaluation. The

objective for our evaluation is to study the performance

impact of coupling the replica-sharing scheme with the

decentralized QoS control algorithms under unpredictable

communication delays and workloads. In the experiments,

we consider a QoS specification for each node, which

limits the average deadline miss ratio below MRL that is

set by the global controller at each node.

A. Simulation Settings

For the simulation, we have chosen system parameter

values that are, in general, representative of wide-area

power grid monitoring and control [10]. The general

system parameter settings are given in Table-I. Figure

6 shows a modeled power grid that has 64 regional

control centers, or nodes. The nodes are partitioned into 8

clusters. The clusters are geographically located in a 4×2
equal-spaced grid, and the distances between neighbor

clusters are 400km. This geographic setting is similar to

Eastern Interconnect of US power grid, and it is used

Parameter Value

# nodes 64

# clusters 8

Inter-cluster distance 400 Km - 1265 Km

End-to-end network delay Pareto Dist.

# temporal data 10,000/node

Temp. data update freq. 2 seconds

Temp. data AVI 4 seconds

Update Trans exec time. 2 ms

TABLE I.
SYSTEM PARAMETER SETTINGS.

Parameter Value

Exec. time Uniform(0.5 - 2)ms

Exec. time Est Error Normal(20%,10%)

Temporal data #/Trans. Uniform(1,8)

Deadline ∝ distance

TABLE II.

USER TRANSACTIONS SETTINGS.

to derive approximate end-to-end communication delay

parameters and proper transaction deadlines. Each node

has 10,000 monitoring points and 500 remote terminal

units (RTUs); each RTU manages 200 monitoring points.

Data is collected by scanning each RTU every 2 sec-

onds. One polling of a RTU updates 200 temporal data,

which correspond to monitoring points. Because of the

confidentiality and the large volume of data, these raw

data from sensors can not be delivered directly to other

control centers, which might be run by competing utility

companies. Instead, the temporal data are analyzed by

periodic aggregate queries, which derive additional 50

summarized status data every 2 seconds [7]. Only the

derived status data are replicated between nodes for wide-

area grid control.
The settings for the user transactions workload are

given in Table II. User transactions analyze the system
status, which includes power flow status , transient sta-
bility, and safety [9] [10]. The execution time for one
operation is between 0.5 ms to 2 ms. The deadline of a
user transaction t at node n is:

deadlinet = min
ni∈N

(TP (n, ni)) , (12)

where N is a set of primary nodes of the replicated

remote data objects that the transaction t is accessing; The
further the distance from n to the primary node of the data

object, the longer deadline is given for the transaction.

This reflects the disturbance propagation delay (TP ) in

the power grid. At each node, the user transactions arrive

according to a Poisson distribution and the average arrival

rate is shown.

The parameter values of end-to-end communication

delays between nodes are estimated using the Planet-

Lab experiments in Section 4.2. Pareto distributions are

chosen to model the end-to-end communication delays

since the distribution has been shown effective to model

the high variability of wide-area networks [17]. Different

pairs of PlanetLab nodes with different geographical

distances are chosen to reflect the geographical impact
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Figure 6. The modeled power grid.

on end-to-end communication delays. The optimization-

based fitting tool of Matlab was used to fit the end-

to-end delay observations to Pareto distributions. The

network delay is assumed to be not affected by the data

size since our PlanetLab experiments show no significant

delay difference between different data sizes. In the

simulation, the overhead of running controllers is not

modeled since the controllers are simple enough to ignore

the computation cost. The sampling periods are set to 1

second and 10 seconds for local controllers and global

controllers, respectively.

All simulation results are based on at least 10 runs and

the 95% confidence intervals are less than 10% of the

mean values.

B. Baselines

To evaluate our approach (DRACON), we compare the

performance of DRACON with three baseline algorithms.

• Full replication (Full): All temporal data objects

are fully replicated to each node. No replica sharing

is used.
• On-demand (OnDemand): Temporal data objects

are not replicated, but accessed on-demand.
• DRACON without feedback control (DRACON-

NoFC): Temporal data are replicated using the

cluster-based replica-sharing scheme. However, no

feedback control scheme is applied for QoS man-

agement.

C. Performance Evaluation Results

1) Varying Loads: In this set of simulations, we ap-

ply workloads from 80 transactoins/sec to 240 transac-

tions/sec per node. The miss ratios and utilization of

DRACON and baselines have been observed. As shown in

Figure 7, the full replication shows the worst performance.

Even for the least workload, it has 100% utilization and

miss ratio; the measured load was more than 300%. In

large scale distributed applications, full replication can

not be considered for this high overhead. In contrast,

OnDemand has the lowest overhead. Even for the highest

workload, its utilization is lower than 80%. However,

OnDemand has almost constant 10% deadline miss ra-

tio regardless of the workload. These deadline misses

are caused by communication delays, not by system
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Figure 7. Varying loads.

overloads. DRACON achieves the best performance in

terms of both the miss ratio and throughput. The cluster-

based replica sharing mechanism of DRACON-NoFC and

DRACON incurs about 30% increased load than OnDe-

mand. When the workload is less than 130 trans./sec, the

increased load does not overload the system. However, in

DRACON-NoFC, as the workload increases to more than

130 trans./sec, the increased load from the replica sharing

begins to overload the system, hence incurring deadline

misses. In DRACON, the increased loads from the replica

sharing are effectively controlled by the feedback control

loop. The feedback control loop of DRACON keeps both

the miss ratio and utilization as specified via dynamic

update-mode switching and cluster-level load balancing.
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Figure 8. Pareto distributions (Xm = 5msec).

2) Varying Communication Latency and Variability:

We repeat the same experiment of Section 5.3.1 with

different shape parameters, k of Pareto distributions. The

original location parameters, Xm, of the Pareto distribu-

tions are used without change. Figure 8 shows the CDFs

of the Pareto distribution with different shape parameters

when Xm is 5.3 In Figure 8, the CDF with k = 1.41
represents the current Internet observed from PlanetLab.

Figure 9 and 10 are the results when the shape parameter,

k, is changed to 1
2
times and 100 times of the original

shape parameters, respectively. The settings represent two

extreme cases. When k = original k × 1
2
, the network

suffers from long end-to-end communication latency with

high probability. In contrast, when k = original k×100,
the network has almost constant end-to-end communi-

cation latency. As shown in Figure 9 and Figure 10,

DRACON still achieves the best performance compared to

3Since the variance of a Pareto distribution is infinite when k ≤ 2,
the variability of a distribution can not be described with its variance
[17].
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Figure 9. k = original k × 1
2
.
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Figure 10. k = original k × 100.

the baselines approaches; it shows the lowest miss ratios

in both cases. When k = original k × 1
2
, DRACON has

about a 20% miss ratio regardless of the workloads. These

deadline misses from communication delays are inevitable

in networks with such long communication delays. If the

communication network shows such high variability and

end-to-end latency, it can not be considered for wide-area

distributed monitoring and control applications.

When k = original k × 100, the miss ratios of

both OnDemand and DRACON are almost zero. This

implies that OnDemand is the best choice since it incurs

the least communication/computation overhead without

causing deadline misses. However, the end-to-end de-

lay characteristic of the hypothesized network is hardly

achievable in Internet-like wide-area networks.

3) Load Balancing: In this experiment, we evaluate the

load balancing function of DRACON. The performance

of DRACON is compared with the following baseline

algorithm, in addition to DRACON-NoFC (discussed

previously).

• DRACON with local feedback control (DRACON-

LFC): Nodes employ only local feedback con-

trollers in addition to the cluster-based replica shar-

ing scheme.

The bursts begin at the 50th second and the 150th

second and each one lasts for 50 seconds. Figure 11

shows the transient behavior of the node and the standard

deviation of miss ratios of the cluster that it belongs to,

respectively. The standard deviation measures the perfor-

mance differences between the cluster nodes. The lower

the standard deviation value, the more balanced the sys-

tem loads are. As shown in the figures, both DRACON-

NoFC and DRACON-LFC remain unbalanced throughout

the workload burst periods; with DRACON, the system

becomes balanced within 10 seconds. DRACON-LFC
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Figure 11. Load balancing

decreases the miss ratio using dynamic update-mode

switching. However, there is a limitation in this scheme

since switching the update-mode is a plausible option

only for data objects with long absolute validity intervals;

oblivious update-mode switching for the data objects with

short absolute validity intervals could incur more deadline

misses in updating stale data on-demand. In DRACON,

further load control is achieved by migrating replicas to

underutilized nodes of the same cluster.
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Figure 12. Per node overhead.

4) Scalability: Our final set of simulations evaluate the

scalability of DRACON. We increase the number of nodes

in the system exponentially. Since the total number of

nodes is the product of the number of clusters and the

number of member nodes per cluster, the system size can

be varied in two ways:
• CASE-I: We keep the number of clusters fixed at 8

and then increase the number of member nodes per

cluster from 1 to 16.
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• CASE-II:We keep the number of member nodes per

cluster fixed at 8 and then increase the number of

clusters from 1 to 16.

We apply 70 user transactions/second per node, and the

feedback controllers are turned off to observe the uncon-

trolled load changes as the number of nodes increases.

Figure 12 shows the CPU utilization as the number of

nodes increases. We can see that the replication overhead

in DRACON is not proportional to the number of nodes

but to the number of clusters; the overhead remains

almost constant when the number of clusters is fixed.

CASE-I and CASE-II represent two extreme cases, the

best case and the worst case, respectively, in terms of

the scalability. In reality, the overhead of DRACON lies

between the two as CASE-III, in which the overhead

increases rather slowly. As shown in Section 4.2, the size

of each cluster determines its intra-cluster communication

delay. Therefore, the number of clusters should be chosen

to strike a good balance between the replication overhead

and the data propagation delay.

However, the proportional increase of overhead to the

number of clusters can be a problem in extremely large

scale systems. When a larger number of clusters is re-

quired to guarantee a certain intra-cluster communication

delay bound, we may need a hierarchical approach that

groups a set of clusters, which have close interactions,

into a higher level of cluster. We reserve this as our future

work.

VI. RELATED WORKS

Traditional replicated relational database systems focus

on the problem of guaranteeing strong consistency to

replicated data. Although strong consistency provides

convenient programming model, these systems are limited

in scalability and availability [18]. Moreover, they do not

support timeliness of transactions [19] [20].

Distributed real-time databases (DRTDBs) have drawn

research attention in recent years [21] [2]. Instead of

providing strong logical consistency, DRTDBs focus on

data freshness and timeliness of transactions. However,

most previous DRTDB work target small-scale systems.

DRACON is based on these previous DRTDB work.

However, we extend it to large-scale systems in wide-area

network environments.

Several distributed feedback control schemes [15] [3]

[4] have been proposed for DRE systems to provide

QoS in unpredictable operating environments. However,

these approaches are not directly applicable to DRTDBs,

because they do not consider DRTDB-specific issues

such as the data freshness. Moreover, these approaches

consider only the unpredictability of computation load,

ignoring communication latencies. DRACON considers

both of them for robust QoS guarantees.

VII. CONCLUSIONS AND FUTURE WORK

DRACON has been designed to provide a highly

scalable data service with QoS guarantees in large-scale

DRE systems. DRACON features a replica sharing mech-

anism that enables bounded-delay access to remote data

in a highly scalable manner. Furthermore, the replica

sharing resolves the complex interactions between nodes

by decoupling clusters, allowing a decentralized, hence

scalable, QoS control structure. Using an extensive simu-

lation study, DRACON is shown to achieve a significant

performance improvement compared to several baseline

algorithms in guaranteeing the desired deadline miss ratio

in large-scale and wide-area network environments.

We plan to extend this work in several ways. One

direction is to extend the cluster formation algorithm of

DRACON so that clusters can be post-adjusted while

the system is running as opposed to the current static

approach. Another direction is to support more hierarchies

for higher scalability. The interaction of controllers at

multiple hierarchies poses an interesting research question

that we plan to investigate.
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