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Abstract— Current generation embedded systems are ca-
pable of running applications that were realm of desktop
systems a few years ago. Along with sophisticated processors,
affordable storage due to NAND flash continues to be
one of the enabling technologies driving the proliferation
of embedded systems. NAND flash has its idiosyncrasies
(eg: bulk erase, wearleveling) which results in a non-
linear and unpredictable read/write access times. In case
of application domains such as streaming multimedia and
real-time systems, a deterministic read/write access time is
desired during design time.

We propose a novel NAND flash translation layer called
GFTL that guarantees fixed upper bounds (worst case
service rates) for reads and writes that are comparable to
a theoretical ideal case. Such guarantees are made possible
by eliminating sources of non-determinism in GFTL design
and using partial block cleaning. GFTL performs garbage
collection in partial steps by dividing the garbage collection
of a single block into several chunks, thereby interleaving
and hiding the garbage collection latency while servicing
requests. Further, GFTL guarantees are independent of
flash utilization, size or state. Along with theoretical bounds,
benchmark results show the efficacy of our approach. Based
on experiments, GFTL requires an additional 16% of total
blocks for flash management. A proof for additional blocks
required is provided for a general case. GFTL service
guarantees can be calculated from flash specifications. Thus,
with GFTL a designer can determine the service guarantees
and size requirements apriori, during design time.

Index Terms NAND flash, Embedded Systems, Stor-
age, QoS, Determinism, Real-Time, File Systems

I. INTRODUCTION

The proliferation of embedded systems has led to wide
spread use of NAND flash as a storage medium. 1.
While the use of flash memory for secondary storage
in mobile embedded systems has been known for over
a decade [9], large scale adoption has only been possible
recently due to affordable cost. With lowering cost per
GB, NAND flash is poised to be used in newer application
domains [13][14]. For example, the One Laptop Per Child
(OLPC) project, Canon’s HD camcoder use NAND flash
as the only non-volatile storage medium[16][5]. While the
economics of price has been favorable, the use of NAND
flash in mission critical and real-time applications that
demand determinism, has been a challenge due to NAND
flash idiosyncrasies.

1There are two kinds of flash memories − NOR flash and NAND
flash. NOR flash is mostly used for small amounts of code storage.
NAND flash is widely used as a data storage

NAND flash has certain unique characteristics that are
atypical of either RAM or hard disk drives. Specifically,
NAND flash does not support in-place updates, i.e., an
update (re-write) to a page (the minimum of write) is
not possible, unless a larger region containing the page
(known as a block) is first erased. Erase operation on
a block is an order of magnitude slower, making it
undesirable. Further, a block has a limited erase lifetime
(typically 100,000) after which a block becomes unusable.
Such characteristics require special handling of NAND
flash by using either a dedicated file system or wrapping
the NAND flash with a layer of hardware/software known
as the flash translation layer or FTL (Figure 1). The FTL
performs three important functions (i) Exports a view of
NAND flash that resembles a disk drive, thereby hiding
the peculiarities of NAND flash. Thus, an FTL translates
a read/write request from the file system (sector) into a
specific 〈block, page〉 of the NAND flash; (ii) Reclaims
space by erasing obsoleted blocks (due to out of place
updates), also known as garbage collection; (iii) Performs
wearleveling to make sure that blocks across a flash get
evenly erased.
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Figure 1. (a) NAND FTL converts OS view of sectors to NAND (block,
page), (b) FTL consisting of a low-end processor and RAM

NAND flash management (wearleveling, garbage col-
lection) is workload dependent resulting in asymmetric
read/write times. Therefore, typically FTLs do not provide
service guarantees. For instance, consider a scenario in
which an FTL is busy performing garbage collection
over several blocks. During this time period I/O requests
experience a high latency. Such latency may be tolerable
for single-threaded applications. However, as we move to-
wards newer application domains, a deterministic service
guarantee becomes desirable to run applications.

In this paper, we propose a NAND flash translation
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layer called as GFTL (for Guarantee Flash Translation
Layer) that provides strict service guarantees for reads and
writes that are close to an ideal case (to be described in
Section 3). GFTL achieves this using a two fold approach.
First, it uses a mapping from sectors to pages on flash
that eliminates any dependency on flash utilization or
state (i.e., provides determinism). Second, it uses partial
block cleaning to hide the flash management latencies.
Partial garbage collection is a scheme where the basic
unit of garbage collection is a single block. Further, the
garbage collection of each such block is divided into
smaller states such that the garbage collection and the file
system read/write requests are interleaved, resulting in a
responsive systems that hides garbage collection latency.
The following are contributions of this paper −

(i) An FTL that provides strict service time guarantees
for reads and writes independent of the workload, utiliza-
tion or the state of NAND flash. The FTL is validated
based on file system benchmarks and substantiated with
proof of deterministic guarantee for a general case.

(ii) Partial garbage collection, where the garbage col-
lection of a single block is divided into chunks that are no
greater than the largest non-interruptible flash operation;
thereby providing a responsiveness that is close to a
theoretical limit.

II. PRELIMINARIES

A NAND flash consists of multiple erase blocks. Each
such erase block is further divided into multiple pages, a
page being the minimum unit of data transfer (read/write).
Associated with each page is a spare area known as the
Out Of Band (OOB) area, primarily meant to store the
Error Correction Code (ECC) of the corresponding page
(also used to store meta-data such as inverse page table).
A page is 512 bytes for older, small block NAND flash
and 2 KB for newer large block NAND flash.

Three basic operations can be performed on a NAND
flash. An erase operation “wipes” an entire erase block
turning every byte into all 1s i.e., 0xff. A write operation
works on either a page or an OOB area, selectively turning
desired 1s into 0s. A read operation reads an entire page
or an OOB area. Updates (re-writes) are out-of-place i.e.,
directed to a different page unless the entire block is
erased. Table I depicts NAND flash specifications for the
basic operations.

TABLE I.
NAND FLASH DATA SHEET SPECIFICATIONS

Characteristics Samsung 16MB Samsung 128MB
Small Block Large Block

Block size 16384 (bytes) 65536 (bytes)
Page size 512 (bytes) 2048 (bytes)
OOB size 16 (bytes) 64 (bytes)
Read Page 36 (usec) 25 (usec)
Read OOB 10 (usec) 25 (usec)
Write Page 200 (usec) 300 (usec)
Write OOB 200 (usec) 300 (usec)

Erase 2000 (usec) 2000 (usec)

The above properties of NAND flash result in out-of-
place updates and garbage collection. A page P starts off
in a free (erased) state. Once data is written into page P ,

its state changes to a valid state. However, an update (re-
write) to page P is not possible. In order to overcome this
limitation, an update is made out-of-place i.e., to another
page Q that is in free state. Following this, the state of
page P changes from valid → obsolete and the state of
page Q changes from free → valid.

Garbage collection is the process of reclaiming space
by erasing the blocks that contain obsolete pages. Note
that not all pages in a block might be obsolete, hence
garbage collection takes care of moving valid pages into
a different block before erasing the whole block. Due to
the out-of-place updates and garbage collection, it is not
possible to have a fixed association between a sector and
a 〈block, page〉 .

There are two possible mappings between a sector
and a 〈block, page〉 . A page based mapping where a
translation table maps each sector to a 〈block, page〉
pair. However, the size of translation table can become a
limiting factor as flash size increases. In order to deal with
such a problem, a block based translation layer is widely
used. For instance, in one of the popular block based
translation layers known as NFTL [3], a sector is divided
into a virtual block and an offset. The virtual block maps
to a physical block (known as the primary block) on the
NAND flash. In case of a rewrite (or if the primary block
is full), a new physical block called a secondary block
is chosen to perform the writes. When the two blocks
become full, an operation known as fold merges the
primary and the replacement blocks into a new primary
block and freeing the old primary and replacement block.
Garbage collection is invoked either when the NAND
flash runs out of space (which does a fold across several
blocks) or using a heuristic. Interested reader can find
more details on mapping and garbage collection heuristics
in [10] [6]. For the rest of the paper, the term flash refers
to NAND flash. Table II denotes the terminology used
throughout the paper (to be described in later sections)

TABLE II.
TERMINOLOGY

Symbol Definition
Twrpg Time to write a page and OOB area
Trdpg Time to read a page
Trdoob Time to read an OOB area
Ter Time to erase a block
π Pages per block
N Number of blocks
L Length of the write pending queue

III. PROBLEM FORMULATION

We model I/O request (incoming from file system to
the FTL) as a real-time task τ = {p, e, d} where p is the
periodicity, e is the execution time and d is the deadline.
Without loss of generality, we assume that p is equal to
d. We have two kinds of tasks: a read request task τr =
{pr, er}, and a write request task τw = {pw, ew}. pr and
pw denote “how often” a read or write request arrives from
the file system. er is the time taken to search for a given
sector, read the corresponding 〈block, page〉 of the flash,
and return a success/failure to the file system. Similarly,
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ew is the time taken to write a sector to a given 〈block,
page〉 . The bounds on p and e are determined by the
FTL. Specifically, a lower bound on p (denoted by L(p))
determines the maximum request arrival rate that an FTL
can handle. The worst case execution time, i.e., an upper
bound on e (denoted by U(e)), determines the worst case
rate at which requests are serviced by the FTL. For a file
system, U(e) represents the average memory access time
(AMAT) for read/write and L(p) represents the maximum
rate at which requests are issued to the flash.

We now present a hypothetical ideal case that serves as
a baseline for comparison. In an ideal case, the read/write
access takes constant time. The bounds on U(e) for such
an ideal case is shown in Table III, i.e., there are no
additional flash management overheads other than the
actual page read/write 2.

A flash needs to perform flash management (wearlevel-
ing, garbage collection) which involves erasing atleast
one or more blocks. Note that, Ter is the longest atomic
operation on a flash, i.e., when a block is being erased,
the flash is locked and hence non-interruptible. Therefore,
Ter is the limiting factor that decides the inter-arrival time
(periodicity) of requests. Therefore, in an ideal case, L(p)
is at least Ter. The latency due to Ter could be hidden by
having buffers in the RAM. However, while this solution
works in an average case, in a worst case scenario (i.e.,
when every access results in a block erase), one would
require an infinitely large buffer in RAM as the arrival
rate would exceed the service rate. This leads us to the
following axiom:

“In the presence of flash management in a single chip
flash, the block erase time Ter provides the lower bound
on inter-arrival request time”.

TABLE III.
SERVICE GUARANTEE BOUNDS

Bounds Ideal GFTL
U(ew) Twrpg Twrpg

U(er) Trdpg + Trdoob πTrdoob + Trdpg

L(pr) L(pw) Ter Ter+max{U(ew), U(er)}

Although non-realtime block based FTLs like NFTL
provide a write time close to Twrpg in an average case,
flash management results in a drastic, unpredictable vari-
ation. Figure 2 depicts this scenario for a set of synthetic
benchmarks. Note there are two distinct variations on the
y-axis due to folds and garbage collection.

The motivation behind GFTL is to reduce this variation
thereby enabling flash to be used in real-time applications.
GFTL guarantees (Table III) a worst case execution time
for writes that is as good as an ideal case and a worst case
execution time for reads that is marginally ((π−1)Trdoob)
larger than an ideal case. Further, GFTL provides service
guarantees for requests that have an inter-arrival time
[L(p)] that is only slightly larger than an ideal case while
performing garbage collection. Next section explains the
technical details behind providing guarantees in Table III.

2For simplicity, we do not include the flash controller processor
execution time as it is at least an order of magnitude lesser than a
typical flash access time

Figure 2. Write time variation for NFTL

IV. TECHNICAL APPROACH

GFTL is a block based approach. A sector is treated
as a logical address and a logical block is derived from
the most significant bits of the logical address (Figure 3).
A block mapping table is used to map a logical block to
a physical block on the flash. For a given flash with N
blocks, there is a 1 : 1 mapping between the logical blocks
and the physical blocks, resulting in N entries in the block
mapping table. Further, GFTL requires an additional Q
blocks for a write queue.
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Figure 3. GFTL Data Structures

A. GFTL Writes

The first write to a given virtual block is written to
a free physical block. Due to a 1 : 1 mapping, a free
physical block is guaranteed to be available. Once a
physical block is found, pages are written sequentially
starting from page 0. The sector number is written in
the OOB area and serves as an inverse page table. Note
that the advantage of writing pages sequentially is that
GFTL can be adopted to the newer MLC NAND flash
which imposes a restriction on random page writes within
a block. After π writes, the physical block becomes full.
The full physical block is added to a garbage collection
queue called as GCQ. Additional writes that map to a
full physical block are written to pages in the write queue
(shown as dark gray in Figure 3). The write queue serves
as a buffer for writes from the time a physical block
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becomes full until that physical block is garbage collected.
A write queue tail serves as the index to the next available
page in the write queue. There is only one write queue
for the entire flash, thus, there exists a write queue map
which maps the logical address (sector) to a 〈block, page〉
of the write queue. Write queue blocks that do not have
any valid pages (i.e., no logical address in write queue
map points to a given write queue block) are added to
the GCQ to be erased in future. A write queue block
can become obsolete if its pages either got rewritten to a
different block in the write queue or the block to which
the pages belonged to have been garbage collected.

A write either goes to the next available location
pointed to by the index field of block mapping table
(Figure 3) or into the write queue in case of a full physical
block. In either case the time taken is constant i.e., Twrpg .
Due to the 1 : 1 mapping between virtual and physical
blocks, a physical block is guaranteed available for the
very first write. Further, in case of a full block, the
size of write queue is such that a page is guaranteed to
be available. (to be shown in subsection “Write Queue
Limit”). Thus, both the best and worst cast AMAT for
writes is Twrpg .

Algorithm 1 depicts the write operation of GFTL. The
algorithm takes as input the sector number and a pointer
to a buffer to be written. Lines 5 − 9 updates the in
memory buffer if the sector to be written belongs to
a block that is being garbage collected. Lines 10 − 24
depict the more general case. The nandwrite function
is a low level function that writes to the flash. Lines
25 − 28 depict the partial garbage collection process.
The do fsm invokes the next state (or step) of partial
garbage collection process. This process is described in
more details in the GFTL flash management subsection.

Algorithm 1 GFTL write
1: writesect(sector, buffer)
2: Input: Sector sect, Buffer buf
3: Output: return status
4: vba ← sector/blocksize
5: if (fsm.state = READ ∨ ERASE) ∧ fsm.blk = vba then
6: cached ← true
7: writebuffer(buffer); // Write to RAM O(1)
8: goto PARTIALGC
9: end if

10: if ¬ cached then
11: pba ← blockmap[vba].block // RAM lookup O(1)
12: if pba = NULL then
13: pba = find free blk() // RAM lookup O(1)
14: nandwrite(pba, 0, buf) // Write to flash O(Twrpg)
15: goto PARTIALGC
16: end if
17: if pba.status = BLOCK FULL then
18: pba ← writequeue.block
19: page ← writequeue.tail
20: else
21: pba ← blockmap[vba].index
22: end if
23: nandwrite(pba, page, buf) // Write flash O(Twrpg)
24: end if
25: PARTIALGC:
26: if GCQ.size > 0 then
27: do fsm() // Invoke partial GC FSM for next state
28: end if
29: return status

Algorithm 2 GFTL read
1: readsect (sector, buffer)
2: Input: Sector sect, Buffer buf
3: Output: return status
4: if sector ∈ writequeue then
5: pba ← writequeue[sector].block
6: page ← writequeue[sector].page
7: else
8: pba ← blockmap[vba].block // RAM lookup O(1)
9: for all page ∈ pba do

10: nand read oob(pba, page, oob) // O(π × Trdoob)
11: if sector = oob.sec then
12: nand read page(pba, page, buf) // O(Trdpg)
13: end if
14: end for
15: end if
16: if GCQ.size > 0 then
17: do fsm() // Invoke partial GC FSM for next state
18: end if

B. GFTL Reads

A read to a given sector is first searched in the write
queue map since it holds the most recent copy. In case
of a write queue map miss, the block mapping table is
used to determine the physical block corresponding to the
sector. The OOB area of the physical block is searched
backwards starting from the page pointed to by the index
field of the block mapping table. The search is done
backwards to determine the most recently written copy
of the sector.

The page corresponding to a read is found either in the
write queue map or in the physical block pointed to by
the block mapping table. A read from the write queue
will result in one OOB read and one page read. A read
from block mapping table on the other hand will result
in π OOB reads in the worst case followed by the actual
page read. Therefore, the best case AMAT for reads is
Trdpg + Trdoob and the worst case is πTrdoob + Trdpg

(Table III).
Algorithm 2 depicts the read operation of GFTL. The

algorithm takes as input a sector number and an empty
buffer to be read. Lines 4 − 6 depict the case when the
sector to be read belongs to a block that is currently being
garbage collected. Lines 7 − 15 depict the case when a
sector is searched sequentially in the flash depending on
the block map. Lines 16−18 invoke the do fsm function
which is same as in the write algorithm.

Algorithm 3 depicts the do fsm function. This algo-
rithm does the state transition between read, write and
erase such that the duration of each call is equal to time
Ter. The current page that was left off (during read/write)
at each call is stored in global memory to restart at the
following page at next invocation of the do fsm call. The
details of saving and restoring the current page pointer
are implementation specific and left out for brevity and
keeping the algorithm generic.

C. GFTL Flash Management

The only flash management performed in GFTL is
based on partial block cleaning which takes care of both
garbage collection and wear leveling. The idea behind
partial block cleaning is to perform garbage collection on
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Algorithm 3 GFTL FSM
1: do fsm (sector, buffer)
2: Input: Sector sect, Buffer buf
3: Output: return status
4: if GCQ.size = 0 then
5: state ← idle
6: return state // Remain in idle state
7: end if
8: if state = read then
9: for all pg = current, pg ∈ [current + range] do

10: nandread(blk, pg, buf) // Read for Ter time
11: end for
12: if current = end of page then
13: state ← write // Switch next state after π reads
14: end if
15: return state
16: end if
17: if state = write then
18: for all pg = current, pg ∈ [current + range] do
19: nandwrite(blk, pg, buf) // Write for Ter time
20: end for
21: if current = end of page then
22: state ← erase // Switch next state after π writes
23: end if
24: return state
25: end if
26: if state = erase then
27: nanderase(blk)
28: end if
29: state ← idle
30: return state

a single block at a time. Further, each such single block
garbage collection is divided into “partial” steps such that
the time taken to perform each step is no longer than the
longest atomic flash operation i.e., Ter. The partial steps
are interleaved between servicing read/write requests. The
garbage collection of a single block, say Bi, amounts to
the following phases:

(i) Block Read: In this phase, the pages that belong
to Bi are first read from the write queue followed by
reading the remaining valid pages out of the block Bi. In
a worst case, this step can result in reading (π−1) pages
from the write queue followed by π OOB reads of Bi

to search the remaining valid page. Thus, the worst case
time is (2π − 1)Trdoob + πTrdpg .

(ii) Block Write: The pages that were read in phase 1
are written to a free block, say, Bnew. In a worst case, π
pages will be written in a worst case time of πTwrpg .

(iii) Block Erase: Block Bi is erased in time Ter.
The idea behind partial block cleaning is to divide the

block read and block write phases into partial steps, each
of which is of a duration equal to Ter as shown in Figure
4(a). Let α = d(2π − 1)Trdpg/Tere denote the number
of partial steps into which a read phase can be split as
multiple of Ter. Similarly, β = dπTwrpg/Tere denotes the
number of partial steps that a block write can be broken
into. Thus partial block cleaning divides the three block
cleaning phases into (α+1+β) steps, each of a duration
equal to the erase time i.e., Ter.

The core of GFTL acts as a real-time executive that
implements the finite state machine shown in Figure 4(b).
As shown in Figure 4(a), GFTL first dispatches any
read/write request followed by performing a step of partial
block cleaning (if the GCQ is non-empty). This approach
lets GFTL provide read/write service guarantees shown in

Table III while accepting requests at a rate equal to L(p).
The order of performing partial garbage collection is read
followed by write followed by erase. This order (Figure
4(b)) ensures that data integrity in case of abrupt power
failure i.e., data is written first before doing an erase.

The wearlevel is taken care of GFTL due to a round
robin approach to allocating free blocks. This approach
reduces data structure overhead in selecting a free block.
However, more sophisticated approaches such as moving
blocks based on age can be implemented (by inserting
blocks into GCQ) to further improve the wearlevel. Also,
wear level can be implemented independent of GFTL
using an approach similar to Ubifs i.e., a layer that acts as
a volume manager for the flash and hides the complexities
of wear level and bad block management from the FTL
[4]. There exists substantial research in this area, hence
we chose not to delve into it.

Over a period of time, blocks that belong to the write
queue need to be erased. This is due to the fact that every
page that belongs to a write queue block has been garbage
collected. GFTL determines such blocks by scanning the
write queue map. If a write queue block (other than the
write queue block which is currently being written to) has
no pointers pointing to it from the write queue map, the
block is added to GCQ. The cost of garbage collecting a
write queue block is only Ter.

D. Write Queue Limit

In order to determine the write queue limit (i.e., the
limit on L), we consider a worst case write request arrival
sequence. The following is a worst case write request
arrival sequence: N × π write requests arrive such that
each request is to a unique page. Thus, at the end of N×π
write requests, we have a full flash. Now, each subsequent
request will start filling the write queue. Note that if each
request filling up a write queue belongs to a unique logical
block, garbage collecting such write queue block cannot
be started until each block whose page is written to the
write queue block has been reclaimed. For example, if
a write queue block Qi has π pending writes that be-
long to unique logical blocks {B1, B2, ..., Bπ}, the write
queue block Qi cannot be reclaimed (garbage collected)
until each block in {B1, B2, ..., Bπ} has been reclaimed.
Therefore, the worst case sequence of logical blocks to
which writes arrive are {0, 1, 2, ..., N − 1, 0, 1, 2, ..., N −
1, ...} (Figure 6 “Block Numbers Arrival Sequence”). This
results in each write queue block being filled with π
pending writes, each of which belongs to a unique logical
block. Therefore, a write queue block cannot be reclaimed
until π blocks are first garbage collected (i.e., worst case
for a write queue block). Thus, the write request grows
at a rate equal to 1/L(p) (Figure 6 “Arrival Rate”).
However, every (α+β +1)×L(p) time units, a block is
garbage collected (Figure 6 “Service Rate”) resulting in
a net growth of write queue (Figure 6 “Theoretical Write
Queue Length”). In this case the arrival rate 1/L(p) is
greater than the service rate 1/(α + β + 1)L(p) (Figure
6) leading to an infinite queue length. However, in our
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Figure 4. Partial Block Cleaning and FSM

Input params

NAND 
Simulator

FTLs

Trace

Results

Stats

Simulation Framework/proc/flashUSB FAT32

Benchmarks

Linux Kernel

rd/wr sector#

Figure 5. Setup

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250  300

G
ro

w
th

 (
W

rit
e 

Q
ue

ue
 L

en
gt

h)

Time (Requests)

L = N x (kappa + 1)/2

Theoretical Write Queue Length

Write Queue Length
Block Numbers Arrival Sequence (ramp function)

Service Rate
Theoritical Write Queue Length

L = N x (kappa + 1)/2
Arrival Rate

Figure 6. Write Queue Length Growth

worst case arrival model, after N writes, every incoming
write request already has at least one other pending write
in the write queue that belongs to the same logical block
as the incoming write. Similarly, after 2N writes, every
write request has 2 pending requests that belong to the
same logical block. Thus, with time, the growth of the
write queue length decreases every N requests reaching
a steady state value (Figure 6 “Write Queue Length”).
Specifically, the write queue length reaches a maximum
value of L = [N × (α + β + 1)/2] after which the write
queue attains a steady state. Figure 6 depicts the growth
of write queue buffer with L(p) = 1. The following proof
provides a limit on the upper bound of the write queue
length. The proof is derived for the worst case arrival
sequence mentioned above (i.e., the write queue pages
fill up such that each page belongs to a different logical
block and the distance between two pages in the write
queue that belong to the same block is N ).

In Figure 6, the ramp function denotes the growth of
write queue in terms of the logical block numbers. The
actual growth is denoted by the curve entitled “Write
Queue Length”. Assuming κ = (α + β + 1), the service
rate is given by y(x) = x/κ.

Every κ interval, a physical block Bi is reclaimed.
Since the block Bi is reclaimed, every page p | p ∈
writequeue ∧ physical block(p) = Bi is also rendered
obsolete. Every N th interval, the number of such write
queue pages | p | (that are rendered obsolete) increases
by 1 until κ times. This can be seen as the intersection of
“Service Rate” and the ramp function in Figure 6. After
κ times, the growth of the write queue reaches a steady
state as the number of pages that are rendered obsolete
i.e., | p | equals κ. Therefore, the write queue length
reaches a steady state where it grows by an amount κ

and then decreases by the same amount every κ intervals
due to multiple pages in the write queue being rendered
obsolete.

Thus, the upper bound on the length of the write queue
can be obtained by summing the growth of write queue
(given the arrival rate) and the decrease in write queue due
to partial garbage collection. The write queue increases
monotonically in the worst case. The decrease due to
block cleaning is given by intersection of the service rate
with the ramp function. The first intersection is found at
y = x/κ for x = N . The second intersection is found at
y = 2x/κ for x = 2N and so on. The summation until
the steady state gives the worst case bound on the write
queue length L:
End of 1st interval L1 = N − bN/κc
End of 2nd interval L2 = N − b2N/κc
...
End of κ− 1th interval Lκ−1 = N − b(κ− 1)N/κc

Summing, Σκ−1
i Li = (N×(κ−1))−(N×(κ−1)/2)

ΣL = N × (κ− 1)/2
To this summation, we add N additional entries to

accommodate the floor function rounding off as a buffer.
Thus, the upper bounds on write queue limit is

L = N × (κ− 1)/2 + N
= N(κ + 1)/2

Although L is greater than N (total blocks), the actual
write queue length in terms of the number of additional
blocks is [N(κ + 1)/2]/π as each block can store π
pending writes. Thus, for a given flash the write queue
length (L), can be calculated at design time by inspecting
the flash specs and independent of workload or flash state.

V. EXPERIMENTAL SETUP

Figure 5 shows our experimental setup. A USB flash
disk, formatted as a FAT 32 file system was connected to a
PC running Linux kernel 2.6.16. The kernel was modified
to sniff low level file read/write requests being issued
to the USB flash and log the requests (sector, read/write
operation) into /proc/flash. A series of benchmarks
were run to generate trace data. The trace, along with
input parameters (block size, page size, etc) is fed to our
simulation framework.

We used the following benchmarks representing a va-
riety of workloads. The Andrew benchmark [11] consists
of five phases involving creating files, copying files,
searching files, reading every byte of a file and compiling
source files. The Postmark benchmark measures perfor-
mance of file systems running networked applications like
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e-mail, news server and e-commerce [12]. The iozone
benchmark [15] is a well known synthetic benchmark.
We ran iozone to do read, write, rewrite, reread, random
read, random write, backward read, record rewrite and
stride read on file sizes ranged from 64KB to 32MB in
strides of 2×. Besides these standard benchmarks, we
used our own benchmark called consumer. The consumer
benchmark simulates flash activities commonly used in
consumer electronics devices such as image manipulation,
data transfer, audio and video playback.

A set of benchmarks were run in sequence to generate
a file system trace. The first trace, called the synthetic
trace was generated by running the following sequence:
format flash → andrew → postmark → iozone. Similarly,
consumer trace was generated by formating a flash fol-
lowed by running the consumer benchmark. In order to
perform a rigorous evaluation of GFTL, each read/write
in the trace was simulated with a periodicity of L(p) i.e.,
there is no idle period. Further, the synthetic trace consists
of 4.3 million writes and 27, 841 reads and the consumer
trace consists of 125, 596 writes and 76, 479 reads. The
flash size at 100% utilization for synthetic trace is 136
MB and 260 MB for the consumer trace. The simulations
are based on values for large page flash (Table I).

TABLE IV.
BENCHMARK CHARACTERISTICS

Benchmark Reads Writes Sect Range
Format 15 36 0 - 533
Andrew 2 3126 1 - 2867

Postmark 412 21153 2 - 10000
Postmark long 23694 1238135 1 - 65543

IOzone 3713 3089393 1 - 65588
Consumer 76749 125596 1 - 125060

VI. RESULTS

Table V depicts a summary of runs for the two traces
based on varying utilization and pages per block (π).
The first two columns under ēwr and ērd denote the
average write and read access times (AMAT) for each
run of the trace. Similarly, emax

wr and emin
rd denote the

maximum and minimum recorded AMAT. The standard
deviation is denoted by σe

wr for writes and σe
rd for reads.

The effectiveness of wearleveling is measured using wear
index denoted by wi. wear index is a quantitative measure
of wearlevel calculated as (σerase/N)×100, where σerase

is the standard deviation of the number of erases per
block. σerase takes into account the “variation” in number
of times a block is erased. To take into account the size of
flash in determining wearlevel, we used σerase/N as an
indicator of wearlevel.Note that a flash with larger number
of blocks has better wearlevel than a flash with smaller
number of blocks for a fixed σerase. Therefore, we chose
σerase/N as an indicator for wearlevel.

GFTL incurs overhead due to the write queue. This
overhead is measured as the percentage increase in flash
size denoted by column entitled ∆ in Table V. The
following observations are made based on Table V: (i)
As mentioned in Table III, the maximum write time is
equal to Twrpg . The average write time is less than Twrpg

TABLE V.
GFTL PERFORMANCE

π ēwr emax
wr σe

wr ērd emax
rd σe

rd wi ∆
% usec usec usec usec %

Sy
nt

he
tic

50
16 244 300 116 231 425 119 0.43 16
32 217 300 133 428 825 239 1.11 14
64 212 300 136 789 1625 474 3.05 14

100
16 244 300 116 231 425 119 3.29 16
32 217 300 133 428 825 239 8.17 14
64 212 300 136 789 1625 474 14.2 14

C
on

su
m

er 50
16 299 300 11 237 115 425 0.00 16
32 299 300 13 237 425 115 0.01 13
64 299 300 14 836 1625 462 0.01 12

100
16 299 300 11 237 425 115 0.01 16
32 299 300 13 437 825 231 0.02 13
64 299 300 14 836 1625 462 0.02 12

because some of the writes occur during the FSM state
change resulting in being written to a block buffer (written
later on to the flash and accounted in partial garbage
collection time). The maximum read time depends on
pages per block for a given flash. This is due to the fact
that larger π implies longer chain of OOBs to read. The
maximum values observed are equal to πTrdoob + Trdpg

which is equivalent to searching the entire block for a
given page. The standard deviation for reads also shows a
similar trend i.e., increasing with larger π (ii) The average
read/write service times ( ¯erd/ ¯ewr) are independent of the
flash utilization. This result departs from conventional
approaches such as NFTL where the AMAT varies as
the flash utilization increases. The standard deviation
is higher in case of the synthetic trace because of the
rewrites and rereads made to the flash by the iozone
benchmark. Note that if a block is in the middle of
partial garbage collection, additional reads and writes are
serviced by the in memory block buffer resulting in an
almost zero service time. This leads to the high variation
in the average values. (iii) The wearlevel index depends
on the flash utilization and the number of pages per block,
π. As the flash utilization increases, blocks get recycled
more often. However, blocks that are read-only are not
erased leading to the large gap between minimum and
maximum values. This shows as an increase in the wear
index. (iv) The value of ∆ reflects the additional blocks
used by GFTL to maintain the write queue. This value was
calculated (and used in simulation) based on the equation
L = N × (κ + 1)/2. Given the lowering cost per GB of
NAND flash, such an overhead is tolerable.

Figure 7 shows the distribution of execution time
and partial GC in a given period. The total length of
a histogram represents a single period i.e., L(p). The
“Rd/Wr request” bar denotes the average service time i.e.,
ē. The remaining time is spent doing either partial GC
or being idle (i.e., when GC queue is empty). Though
GFTL guarantees an arrival rate equal to the length of
the histogram, a fraction of partial GC time is spent
idle because the guarantees are calculated based on worst
case scenario. For the given traces, the sum of service
time and partial GC is less than the Ter. This idle time
decreases with increasing π as the value of κ increases
which implies that the number of states in the FSM
(Figure 4) also increases leading to longer time spent
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Figure 8. Write Queue Length Growth Simulation

in GC. Note that in case of the consumer benchmark,
the amount of time spent in performing partial GC is
negligible compared to L(p). Though the consumer trace
represents a larger flash size the number of read/writes
performed is less than the synthetic trace. The efficacy of
GFTL is shown by keeping the flash busy for time that is
close to the largest non-interruptible time, Ter (Figure 7)
while still giving applications a service time that is close
to ideal and independent of the flash utilization (Table V).

Figure 8 analyzes the overhead of GFTL in terms of
write queue length. The x-axis is the number of runs
simulated and the y-axis shows the growth of write queue
length L. Initially, the write queue grows at a rate that
is close to the incoming request rate and after every N
requests, the slope decreases to a final “steady state”.
During this state, the write queue length varies depending
on the value of N and π. Figure 8 shows the growth for a
specific large page flash from Table I. The growth depends
on the values of Ter, Twrpg and Trdpg . Specifically, the
larger the difference between the block erase time and the
block read/write time, the larger the value of L as GFTL
would require more states due to large α and β depending
on how many “chunks” of block erase time can the reads
and writes be divided into.

Figures VI and VI compares GFTL and NFTL in terms
of read/write performance. The variation in write times is
more than an order of magnitude less for GFTL due to
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partial block cleaning. The maximum write time of GFTL
is constant as opposed to NFTL. The maximum read time
is proportional to the number of pages per block i.e., π.
This is due to the fact that reads requires a sequential
read of the OOB area until a desired sector is found. The
average overhead calculated across the traces and across
all page, block size combinations is 16%.

Table VI depicts the representative read/write energy
characteristics of GFTL. The columns in Table VI depict
varying pages per block. The rows depict the read and
write energy per access averaged over the entire simula-
tion runs.

TABLE VI.
AVERAGE ENERGY PER ACCESS

Benchmark Synthetic Synthetic Consumer Consumer
(π = 32) (π = 64) (π = 32) (π = 64)

Energy Read 14565 35363 7952 10289
Energy Write 43993 48090 10195 14612

The numbers here depict the energy consumption for
Samsung large block flash (Table I). With Vcc = 3.3V
and I = 10mA, we have − energy consumption of read
page, Erd = 825nJ ; energy consumption of write page,
Ewr = 9900nJ ; and energy consumption of erase page,
Eer = 66000nJ . In case of GFTL, the increase in going
from a smaller π to a larger π is significant for reads due
to the energy consumed in searching the OOB areas. Also,
there is a wide disparity between the energy consumption
in case of synthetic trace versus consumer trace. The
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synthetic trace stress the flash in terms of heavy rewrites
resulting in larger energy consumption. The consumer
trace represents a more realistic situation.

In case of GFTL, the energy consumption is indepen-
dent of the utilization i.e., in case of both 50% and 100%
flash utilization, the energy consumption remains same.
This is due to the fact that GFTL adopts a “proactive”
garbage collection approach versus a “reactive” approach
in case of NFTL and other traditional flash translation
layer. This results in GFTL energy consumption being
higher than traditional FTLs for under utilized flash mem-
ories. One approach to reduce the energy consumption in
GFTL is to have adaptive garbage collection depending
on flash utilization.

Since embedded systems are used as devices, they are
expected to have a short start up time and do not go
through a shutdown process that is typical of desktop
systems. GFTL initialization affects the startup time.
Specifically, in case of GFTL, three data structures need
to be initialized − (i) block mapping table, (ii)write
queue map, and (iii) GCQ. The block mapping table
can be built by scanning the OOB area of each block.
In order to provide a fast startup time, the write queue
map and the GCQ can be written to a specific location
in the flash before shut down. This would lead to a
startup time equal to d(N × 8)/pagesizee × Trdpg +
d(L×16)/pagesizee×Trdpg +π×Trdpg and a shutdown
time equal to d(N × 8)/pagesizee × Twrpg + d(L ×
16)/pagesizee × Twrpg + π× Twrpg . Note that the three
summations in the startup times are for the time to write
the block mapping queue where each entry is 8 bytes;
time to write the write queue map where each map entry
is 16 byte; and the time to write the GCQ contents. In the
case of an abrupt (improper) shutdown, the entire OOB
area needs to be scanned during startup resulting in a
longer startup time. The worst case startup time in such
a case is given by N ×Trdoob +L×Trdoob. The first part
of the summation scans the first OOB area of each block
in the flash to determine the inverse page mapping; the
second part of the summation scans all OOB area of the
L blocks to reconstruct the write queue map. The GCQ
can be built while scanning for the block mapping table.

For example, in case of 1GB flash with 2K page
having flash characteristics from Table I, the following are
the startup and shutdown times − normal startup would
take 13.6 msec to build the in memory data structures,
shutdown would take 163 msec. In case of an abrupt
power down, the startup would take 1.84 sec since the
block mapping table and write queue map would be
reconstructed by scanning the entire flash.

VII. GFTL FOR SOFT REAL-TIME WORKLOADS

GFTL incurs additional overhead in terms of space
overhead and energy consumption due to the “reactive”
approach in order to meet the strict timing requirements.
In this section, we discuss two independent strategies
that can be adopted for non-real time (soft real-time

tasks). Such a case is useful for media applications where
occasional deadline miss is not considered catastrophic.

A. Threshold based Partial Block Cleaning

GFTL performs an aggressive (proactive) block clean-
ing independent of the flash utilization. In case of a flash
that is under utilized during the entire lifetime of the
flash, such an aggressive block cleaning can be avoided.
The partial block cleaning can be triggered if the number
of blocks in the GCQ exceeds a certain threshold. This
results in better energy utilization and increased life time
of the flash at the cost of increased flash utilization. The
FSM in Figure 4 would require changes to the “Idle”
state from |GCQ| = 0 to |GCQ| > Threshold i.e.,
initiate partial block cleaning only if the current length
of the GCQ exceeds a certain threshold of the total GCQ
length i.e., N(κ + 1)/2. Implementing a threshold of
80% resulted on an average of 4% reduction for every
write access to the flash and an increase of 1.4% for
every read access to the flash across the entire Consumer
benchmark. Note that the increase in read access is due
to the fact that since less number of blocks are garbage
collected, read access has to look up a larger number of
OOB areas. However, since the percentage of reads is at
least an order of magnitude less than writes (Table IV),
the slight increase in read times is tolerable compared to
lower energy in writes.

B. Priority Garbage Collection Queue

In this technique, the garbage collection queue is rear-
ranged during the “Idle fsm” state such that the most dirty
block is the first one in the queue instead of the first in
first out policy used by GCQ. The advantage in using this
approach is that the write length queue grows less slowly
as dirty pages are reclaimed faster when using a priority
queue versus using a FIFO. However, the disadvantage in
this approach is that the garbage collection queue needs
to be sorted during every stage of the “idle” state in the
FSM (Figure 4). Instead of sorting the entire GCQ, it is
possible to use an approximate priority queue by dividing
the GCQ blocks into buckets depending on the percentage
of dirty pages in each block.

VIII. RELATED WORK

While there have been several block based FTLs, the
real time aspect of NAND flash was first investigated by
[7]. The authors proposed an innovative approach towards
using a garbage collector thread (instance) for each real
time task. The garbage collector thread has a execution
time of (π−α)×(Trdpg +Twrpg)+Ter+cpu time). Note
that, each garbage collector invocation is takes at least
(π − 1)(Trdpg + Twrpg) + Ter) time (ignoring cpu time)
in the best case. In our approach, the overhead of partial
GC is Ter in the worst case. Moreover, with GFTL we
do not associate an additional GC task thereby avoiding
overhead. [7] requires file system support for special ioctl
calls. GFTL can be run on top any unmodified file system.
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Results from [7] are based on two tasks T1 = (3, 20)
and T2 = (5, 20) resulting in creation of two GC tasks
G1 = (22, 160) and G2 = (22, 600) at 50% utilization.
The execution time of GC thread is comparable to 10
times Ter. GFTL on the other hand provides a delay that
is around Ter. Moreover, we provide a rigorous where
each request is considered a real-time task along with
high utilization.

In [1], the authors address soft real-time issues by
modifying the file system. The techniques in [1] focus on
commonly used access patterns and not strict guarantees.
In [10], the authors survey a wide range of garbage
collection algorithms as part of their study. However, the
garbage collectors are not aimed at real-time systems. An
exhaustive research on flash memories for real time sys-
tems was done by [17]. The conclusions in [17], supports
our motivation for the lack of real-time, deterministic
guarantees for flash.

Dedicated flash file systems such as JFFS2, YAFFS2
are not designed for real-time systems [18] [8]. JFFS2
does garbage collection on a need basis. Only one block
is erased when required. This leads to a minimum la-
tency equal to Ter + πTwr and the additional overhead
of reading valid pages. The YAFFS2 garbage collector
on the other hand switches to an aggressive garbage
collection when the file system is low on free erase blocks.
Aggressive garbage collection in YAFFS2 looks at a large
region compared to its default garbage collection. This
can lead to latency of the order of several seconds in case
the flash is highly utilized. Thus both flash file system
depend on either the state or the utilization of the flash in
order to perform garbage collection. GFTL on the other
hand decouples garbage collection with workload or state
of the flash. Moreover, due to the fact that GFTL is a flash
translation layer, a regular block based file system can be
run on top of GFTL. There has been recent development
in the area of real-time Java. Notably, an approach from
IBM research called the metronome [2] uses an approach
similar to GFTL. However, garbage collection in Java
has the advantage of not having to displace out of place
updates since the updates are done in RAM. Also, due to
the out of place update nature, GFTL needs to provide
guarantees on the length of write queue which is not
required for Metronome.

IX. CONCLUSION

We presented GFTL, an FTL geared towards providing
deterministic service guarantees for real-time systems.
Specifically, GFTL provides O(1) write time and a read
time that takes π (pages per block) searches of the flash
OOB in the worst case. Benchmark results from a syn-
thetic trace and a trace representing common embedded
and multimedia applications were used to evaluate the
efficacy of GFTL.

Partial block cleaning lets requests arrive at a rate
comparable to Ter, the block erase time, which is a
theoretical limit on responsiveness of a flash. Benchmark
results show that GFTL sticks to the theoretical limits

independent of the flash utilization or state. GFTL lets
a developer calculate the service guarantees and size
requirements from the flash specifications during design
time. The flash overhead from experiments is 16% on
average. The comparisons made against NFTL (with
increased size) and previous work on real-time garbage
collection show the efficacy of our approach. In summary,
GFTL enables a highly responsive flash with strict guar-
antees. Thus, GFTL decouples flash response time from
flash utilization or input access pattern.
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