
Software Components Assembly with an
Appreciated QoS

Abdallah CHOUARFIA and Mebarka YAHLALI
Computer Science Department, USTO-MB University

Oran Algeria
 Chouarfia@univ-usto.dz , Yahlai@univ-usto.dz

Abstract – The objective of CBSE (Component-Based
Software Engineering) is the development of big software by
integrating of existing components. The traditional concept
of applications development by writing code was replaced
by the assembly of prefabricated components. The goal of
the assembly is to reach a coherent application from a set of
software components. We present in this article a method
enabling the evaluation of the quality of software
components assembly. This method allows us choosing the
best components’ composition in order to obtain the system
required by the user in term of quality (non-functional
needs).

Index Terms – Software Components, Assembly,
Quality model, Quality of assembly, quality factors,
quality criteria, quality metrics.

I. INTRODUCTION

 The components approach is relatively recent in the
history of software engineering, it appeared around the
middle of the nineties in reply to the limits of object-
oriented design approach. It introduced a new method for
the design of software applications. This method called
CBSE (Component-Based Software Engineering), it is
based on the composition (assembly) of prefabricated
software entities, latter called components. This
composition is carried out by connecting the components’
interfaces to provide services, clients request a service via
its interfaces.
 The component composition is currently syntactic and
so it poses many problems such as the quality evaluation
of assembly to choose the best composition.
 This article presents a quality evaluation method of
software components assembly. To do so, the section 2
presents an outline on software components, section 3
synthesizes the software components assembly and
section 4 relates to the quality of components assembly,
in which we present the quality model used as well as the
suggested method of quality evaluation.

II. SOFTWARE COMPONENTS

A. Component definition

 Nowadays, there is not a standard definition of what is
a software component, even if several component models
are today commercial standard and products. However,

one of the definitions most often quoted is given by
Szyperski and Pfister [1]:
"A Software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A Software component can be
deployed independently and is subject to composition
by third parties".
 The software components can be classified as follows:

• Blackbox: The customer does not know any detail
beyond the interfaces and their specifications.

• Whitebox: The whitebox implementation is
entirely available and can be studied in order to
increase its comprehension. We can find in the
literature, the term of Glassbox. When the
distinction is made, that means that the whitebox
allows the implementation handling whereas the
Glassbox allows simply the study of
implementation.

• Graybox: Only a controlled part of the
implementation is visible.

B. Component structure

A software component has mainly three elements [2]:

1. Functional interfaces and configuration
properties: The required functional interfaces
must be satisfied when a component instance is
created so that this latter can be used through the
provided interfaces. The configuration properties
allow the configuration of a component authority
(for example, change the name of a button).

2. Control interfaces (provided/required): are the
set of methods which allow managing the
component instances’ life cycle during the
execution. These methods are intended to be
called by the execution environment of the
components model.

3. Dependences and deployment properties: the
dependences are specific to each implementation
of a component. They must be satisfied at the
deployment time of a component class to allow its
use.

 The deployment properties 1 are defined on the
implementation level, they are used to configure the
common characteristics of instances.

1 The deployment properties are similar to a variable "class" in object
approach

516 JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009

© 2009 ACADEMY PUBLISHER

1

1

4

4

4

2

2
3

3

Deputy offered
services

Deputy required
services

Associated specifications

4

4

III. SOFTWARE COMPONENTS ASSEMBLY

 According to [3], the component assembly presents
two aspects:

• Ensemblist aspect of assembly (assembly
composition).

• Communication aspect between components
(interactions between components).

The dependency relationships between the components'
interfaces are (cf. Fig1):

1. Offered services dependencies: indicate the links
between visible offered interfaces of the
composite as well as interfaces offered by
components which are members of the composite.
In this case, the offered specification of the
composite, made visible, is identical to the offered
specification of a component member (delegation
principle).

2. Required services dependencies: indicate the links
between required interfaces of members of
components and the visible interfaces of the
composite (delegation principle).

3. Inter-component dependencies: which are links of
assembly between required interfaces and offered
ones. In general, there is dependency relationship
between offered services and required ones.

4. Intra-component dependencies: which are created
to support the implementation dependencies
between offered interfaces and required ones of a
component.

Figure 1: Dependence relationships between the components’
interfaces

IV. SOFTWARE COMPONENTS ASSEMBLY QUALITY

 Provided quality is the principal concern of the user.
It does not have a consensual definition which would be
appropriate for all the fields to which it applies.

Some is the context, quality covers with the non
functional properties of a data-processing entity. The
level of quality is characterized by the particular "values"
of the non functional properties.

A. Factors, criteria and metric of quality

• Factor: Characteristic of the software which
contributes to its quality [4]. It relates to the use
characteristics linked to:

 Exploitation Environment.
 Monitoring and Maintenance Environment.

The factors translate the external vision [5].
• Criteria: Attribute of the software, a factor can be

evaluated via this attribute [4]. They are :
 Oriented developer.
 Components of quality factors.
 Linked to metrics.

The quality criteria concern the characteristics of use
according to the intern vision (software structure) [5].

• Metric: The quality criteria are connected to
metrics which are a posteriori measurements.

There are three types of metrics to measure the attributes
[6]:

1. Presence: This metric identifies, that an attribute
is present in a component or not. It is described
by "Boolean" type.

2. IValues: This metric is used to indicate the exact
values. It is described by "Integer" type.

3. Ratio: This metric is used to describe
percentages.

B. Component quality model

 Table 1 shows the component quality model classified
into two classes:

• The quality characteristics which can be observed
at runtime.

• The quality characteristics which can be observed
during the life cycle.

TABLE 1. COMPONENT QUALITY MODEL

Characteristic
s

Sub-Characteristics
(Runtime)

Sub-Characteristics
(life Cycle)

Functionality Accuracy
Security

Suitability
Interoperability
Conformity
Individual contents

Reliability Faults Tolerance
Recoverability Maturity

Usability Configurability Understability
Operability

Efficiency
Time Behavior
Resource Behavior
Scalability

• Functionality: This characteristic expresses the

ability of a component to provide required
services,

• Reliability: This characteristic expresses the
ability of a component to maintain a specified
level of performance,

• Usability: This characteristic expresses the ability
of a component to be understood, learned, used,
configured, and executed,

• Efficiency : This characteristic expresses the
ability of a component to provide appropriate

JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009 517

© 2009 ACADEMY PUBLISHER

<definition>::"DEFINE_QUALITY " <qual-defi>'.' <error> 1
<qual-defi> ::<qual-defi> ',' <carac-defi > 2

 | <carac-defi > 3
<carac-defi> :: <ident> '='<subs-caracs> 4
<subs-carcs>::<num-val> 5

 | '{' <subs-carac> '}' 6

<subs-carac>::<subs-carac> ',' <sub-carac> 7
 | <sub-carac> 8

<sub-carac> ::<ident> '=' <attributs> 9
<attributs> ::<num-val> 10

 | '{' <attribut> '}' 11

<attribut> ::<attribut> ',' <attribut1> 12
 | <attribut1> 13

<attribut1>::<ident> '=' <val-num> 14
< val-num>::<num> ',' <num> 15

< num>::<chiffre>+ 16

< ident> :: <lettre>(<lettre>| <chiffre>)* 17

<lettre> :: a | b | c | . . . | z | A | B| C| . . . | Z 18

<error> :: 'ERROR =' <val-num> 19

<chiffre>::0| 1 | 2 | 3 | . . . | 9 20

performance, relative to the amount of resources
used,

• Maintainability: This characteristic describes the
ability of a component to be modified,

• Portability: This characteristic is describes as the
ability of a component to be transferred from one
environment to another,

C. Components assembly quality

C.1. Quality specification of software component

 Currently, there is no work concerning the quality
specification of software components. What exists relates
to QoS.
 QML language makes it possible to describe the QoS
constraints of software components, but it is not possible
to specify what the service can be really provide. To fill
this lack, we present in what follows a syntax for
specification of software components quality. The
advantage of the latter is that it can be used with any
quality model.
Syntax Description[8]: Figure 2 presents suggested
syntax. The quality definition <qual-defi> consists of a
sequence of characteristics definition <carac-defi>, a
characteristic is presented by an identifier <ident> which
can have a numerical value or be presented by a set of
sub-characteristics <subs-carcs>. In the same, a sub-
characteristic can have a numerical value or be presented
by a sequence attributes form <attributes>, an attribute
<attribut1> is presented by a numerical value.

Figure 2: Quality Specifiication Syntaxe

Exemple :

DEFINE-QUALITY
Reliability = {
 Fault-Tolerance ={ Mechanism availability =0,6 ,
 Mechanism Efficiency =0,4}
 },

Usability = {
 Configurability ={ Configuration Effort =0,3 },
 }.
Error=0,01

C.2. Quality of components assembly

 Let us assume that:

• S: the system requested by the user, S can be built
by assembling the software components.

• F: a set of non-functional characteristics (Factors)
fixed by the user.

F= {fi /i=1. .N}
• A: a set of attributes relating to F.

A= {aj/j=1.. m}
 The system S is the result of software components
assembly taking into account the quality characteristics. It
can be represented as follows:

S=∑ ci/i=1. ..l /F
 Such as: ∑ represents the assembly symbol. ci:
components

• SR: a set of the real systems SRk resulting from
the various compositions of existing components.

• FRk: a set of characteristics provided by SRk.
• ARk: a set of attributes relating to FRk.

ARk={arkj/j=1..m}
Each component ci has a set of non-functional parameters,
which are represented by he attributes vector: Vci

Vci= (vi1, vi2, vi3,, vim)
Where vij represent the quality attribute j of the
component i.
 It can exist a case where several software components
compositions (several SR) lead to the functional needs for
the desired system S [7] however the goal is to choose the
best system in term of quality
 The steps of the proposed method [8]:

Step 1:
 Consists in fixing the value of desired quality (Qd) by
specifying:

• Various criteria and attributes of quality.
• Importance of each criteria (and attribute)

compared with another.
Step2:
 Construction of the application by assembling the
suitable software components (to determine all possible
compositions (all SRk/ k=1. .g)) ,g being the number of
possible compositions
Step 3:
 Evaluate the provided quality (Qr) by each system
then compare it with the desired one.
Step 4:
 Choice of the optimal application:
 Each real application (SRK) has αK / αK= |Qd-
QrK|, where QrK is the quality provided by the system
SRK. SRK is the optimal application if αK= Min |Qd-QrK|
 The problem is articulated around two axes which are:
 1. The evaluation of provided quality.
 2. Production of the total value of quality.

518 JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009

© 2009 ACADEMY PUBLISHER

C.2.1. QuaLITY EVALUATION
 The real properties of system SR (FR elements) can be
derived from the properties of its components ci. Thus an
attribute arj of a vector AR can be represented as follows:

arJ= ϑ vij/i= 1. .l

Where ϑ is evaluation function of the quality (additive
rules, concave rules…). If an attribute aJ

 does not exist
in the quality attributes vector of the component ci
(Vci). A Null value is associated to this attribute.

C.2.2. Production of the total quality value
 In order to answer the second question, we use ROC
(Rank Order Centroides) concept [9]. The centroides of
the classification constitute a means to converting rows
(1st, 2nd, 3ed) into notes or weightings which are numerical
values.
 If n is the number of attributes, the weighting of the
attribute K is:
 (∑i=k (1/i))/n
i.e. the production of the total quality of a software
system implies:
 1. The classification of the criteria (and the attributes)
according to their importance.
 2. The conversion of the rows into weighting using
ROC.

Example
Let:

• S a software system.
• The performance and the accuracy are the factors

of this system.
• It is considered that the total accuracy is the most

important factor, and total performances are the
least important factors.

 In this case, weightings are calculated as follows:
 Accuracy: w1= (1+1/2) /2=0.7500
 Performance: w2= (0+1/2) /2=0.2500
 Now, we calculate weightings for each attributes set
concerning these two factors.
 Supposing that:

• The three attributes of performance are:
 1. Research performances.
 2. Starting performances.
 3. Recording performances.

• The research performances are the most important.
 Weightings are then presenting as follows:
 Research performances:

w1 = (1 + 1/2 + 1/3)/3 = 0.6111
 Starting performances:

w2 = (0 + 1/2 + 1/3)/3 = 0.2778
 Recording performances:

w3 = (0 + 0 + 1/3)/3 = 0.1111
• The two attributes of accuracy are:

 1. Global accuracy.
 2. First-screen accuracy.

• We decide that global accuracy is more important
than the first-screen one.

 These weightings are calculated as follows:
 Global accuracy: w1 = (1 + 1/2) /2 = 0.7500
 First-screen accuracy: w2 = (0 + 1/2) /2 = 0.2500

Factors Attributes arj values Factors Values

Performance
(0.2500)

Starting
Performances

(0.2778)
.4567

(0.2778) (0.4567)
+
(0.6111) (0.2567)
+
(0.1111) (0.4567)=
0.3045

Research
performances

(0.6111)
.2567

Recording
Performances

(0.1111)
.4567

Exactitude
(0.7500)

Top-result
accuracy

(0.7500)
.2567 (0.7500) (0.2567)

+
(0.2500) (0.0900)
=
0.2150

First-screen
accuracy

(0.2500)
.0900

Total quality

(0.2500) (0.3045)
+
(0.7500) (0.2150)
=
0.2374

V. CONCLUSION

 This article presents a quality evaluation method of
components assembly. The problems are articulated
around two axes, on the one hand how to evaluate the
provided quality, on the other hand how to produce the
total quality value.
 ROC concept is used to produce the total quality value.
This concept aims at the comparison of the software
systems by producing a single numerical value
representing total quality.
We used the quality model suggested in [6], this latter is
based on ISO 9126 with some adaptations for the
components.
 Considering the importance and the volume of work,
we limited the evaluation of quality to a component.

REFERENCES

[1] C.Szyperski and C. Pfister, “COP’96 Workshop Repor”,
June 1996, International Workshop on Component-
Oriented Programming, University of Linz, Austria.

[2] Humberto CERVANTES, “Towards a components directed
services model to support the availability dynamic“,
Doctoral Thesis, 29 March 2004, University of Joseph
Fourier, GrenoubleI.

[3] ACCORD project, “Abstract model of components
assembly by contracts”, Deliverable 1.1-4, June
2003.,France.

[4] A.Beugnard, “Introduction to the software genius # 3”,
course support, 1998, ENST Bretagne.

[5] C. Million-Rousseau,”Test, quality and maintenance”,
Course, 2006, University Polytechnic school , University
of Savoie.

[6] Alexandre.A and Eduardo.S and Silivio.R, “Quality
Attributes for a Component Quality Model”, 2006, 10th
International Workshop on Component Oriented
Programming (WCOP), Scotland.

n

JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009 519

© 2009 ACADEMY PUBLISHER

[7] Bart.G.A and Rogis.F and Salah.S, “Substitution Model
for software components”, mars 2006, Workshop on
software evolution in partnership with LMO 2006, Nimes.

[8] Chouarfia Abdallah, Yahlali Mebarka, “Software
Component Qualité” , January 4-6,2008, 9th International
Business Information Management Association
Conférence Marrakech, Morroco.

[9] Stillwell, W.G, D.A.Seaver, and W. Edwards,
“A comparison of Weight Approximation Techniques in
Multi-attribute Utility Decision Making.”,1991, 62-77.

520 JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009

© 2009 ACADEMY PUBLISHER

