
Flexible Business Process Integration for Clusters
of Small-Medium Sized Enterprises in

Heterogenous Environment

Bo Jiang
College of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou, China

Email: nancybjiang@zju.edu.cn

Yun Ling
College of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou, China

Email: yling@mail.zjgsu.edu.cn

Abstract—Industry clusters-groups of geographically
proximate enterprises in the same industry are a striking
feature of the geography of economic activity and greatly
impact the overall economic development. However, most of
them are low-cost-based clusters that are composed of
small-medium enterprises which needs social electronic
services and flexible business process integration. In this
paper, we present an on-demand information service
platform for small-medium enterprise clusters and propose
loosely-coupled service-oriented business process integration
scheme for this platform. Several key techniques such as
business application definition language and graphical
representation for integration in heterogenous environment,
packaging and executive strategy for integrating services,
dependency set and context of integration service, and
mapping translation based on synonymous semantic
definition are proposed. Professional services can be
provided via this platform to promote the enterprises’
innovative ability and help business to gain competitive
advantages. The platform and the related techniques have
been applied in realistic textile industrial clusters.

Index Terms—industry clusters, business process
integration, web service composition

I. INTRODUCTION

Today’s economic map of the world is dominated by
what are called clusters [1]. Industrial clusters have not
only become basic framework of regional economy, but
also main form of spatial arrangement of global economy.
It is known that clusters may help small-medium
enterprises (SME) that concentrated to produce neighbor
effect and social effect to gain competitive advantages.
The question is how the small-medium enterprises, who
based themselves upon lower phase of technology
gradient, identify and attain the outer information and
technology resource to strengthen their own capabilities
with the background of global industry transfer. The issue
has become more and more important for the industrial
clusters of small-medium enterprises, especially in the
developing countries.

According to the generalization of enterprise cluster
and the analysis of their current situation and existing
problems, from the angle of information administration,

many problems arising in those small-medium enterprises
need to be solved. Small-medium enterprises should
share information and services. Therefore, providing
information service platform and integrate social and
corporate electronic services may solve the problems.
Many experts [2, 3] research on the architecture and
integrated environment of virtual enterprises. Based on
information service integration, it is very crucial to
quickly integrate business process among small and
medium-sized enterprises (SMEs) in cluster. However,
corporate business process integration is always carried
out under the environment of heterogeneous geographical
distribution, software and hardware platform. Former
integration solutions, such as DCOM, CORBA, Java
RMI, etc., are complicated to realize, and relate to
specific platform and language [4]. Their integrations
take time and vigor, and cannot meet the “instant”
integration demands of small and medium-sized
enterprises in cluster. Web service composition, by
binding two or more existing services into a new one, is
emerging as a promising technology for supporting large-
scale, sophisticated business process integration in a
variety of complex e-science or e-business domains. With
highly dynamic nature of the internet, automated
composition approaches have been the most promising
methods to be applied in real world contexts. Currently,
there exists different research efforts on service
composition; such as Petri net based composition
approaches [5], AI planning-based approaches [6, 7],
context and non-functional properties-based approaches
[8, 9, 10]. However, despite the merits and the
importance of existing algorithms for service composition,
they can hardly meet the requirement of quick integration
in heterogenous environment.

In this paper, we present a business process integration
framework and related schemes based on dynamic web
services for quickly and automatically creating process
models for resolving dynamic distributed business
integration problems for small-medium enterprises in
heterogenous environment. E_BPEL, a suitable
definitional language for business application
environment of cluster SMEs and related graphical

JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009 315

© 2009 ACADEMY PUBLISHER

representation are proposed, which supports dynamic
service through semantic web services. Related
packaging and executive strategy for integrating services
is presented. Further, based on dependency set and
context of integration service that we proposed, executing
state and relevancy of web services instances are
maintained. To find and integrate qualified services more
effectively, mapping translation based on synonymous
semantic definition in heterogenous environment is
proposed. The framework and schemes are realized and
utilized by the organization of textile industry cluster.

This paper is as follows: Section 2 depicts the
information service platform model for clusters of small-
medium enterprises. Section 3 discusses the technique of

business process integration based on dynamic web
services integration. Finally, Section 4 concludes the
paper.

II. INFORMATION SERVICE PLATFORM MODEL FOR
CLUSTERS OF SMALL-MEDIUM ENTERPRISES

To solve the problems that caused by the shortage of
socialized information service in the development of the
cluster, we construct an open and service-oriented
supporting platform. As shown in Fig. 1, the system is
divided into 3 functional levels: basic service facilities,
public service, and integrated service.

Figure 1. Information service platform model.

(1)Basic service facilities: by making use of TCP/IP, it

shields the physical connection characteristics and
provides transparent information communication service.
The distributed heterogeneous information and data bases
are packaged according to the criteria of distributed
computing. By the way of service, synchronous mutual
operation at object level in the network environment is
realized. At the same time, the basic service level
provides the elementary domain name service, directory
service, transaction service, component object service
and message service for the platform.

(2)Public service: it provides the enterprises a common
set of public services, such as search engine, data driven
service, network security service, file sharing service,
cooperation tool supporting, resource sharing service,
information integration service, system connection
service, standard interface service, environmental engine,
QoS engine and registration engine.

(3)Integration service: two main resources of
enterprises are application service and data service.
Application service provides software resources for the

networks, while data service provides accessible database
resources. The platform integrated service level realizes
the registration, issue, query, modification, tailor, and
configuration for the information and application
resources. Application integrated service realized web-
based encapsulation, directory service and the
registration, issue, query, modification and call of the
application resources which are based on standard
interface technology. And they complete the management
and configuration of the resources based on workflow
technology. Data integration service covers information
model management, shared data management, data
manipulation management, information integration
management, data relation management, knowledge
structure management and so on.

By adopting component-based functional model, the
development of the application system in enterprises will
be much more flexible and can construct and configure
different application system according to different
requirement and scale. Thus it is not necessary for each
network information service using all service

316 JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009

© 2009 ACADEMY PUBLISHER

components. They can make use of only the lower-layer
components rather than the higher-layer components.

III. BUSINESS PROCESS INTEGRATION BASED ON
DYNAMIC WEB SERVICES

Web services technology has irrelevance of platform
and language, while service components are loosely
coupled. Web services technology has enabled
enterprises to release themselves, but also to find out
potential partners dynamically. More importantly,
through web service, cooperative enterprises realize
cross-platform and instant business process integration in
deed. This is realized by combining the characteristics of
cluster SMEs, and studying the dynamic integration of
web service.

Generally speaking, present research of web service
integration is based on traditional integration mechanism
of workflow, for example, WISE system, WebTransact
and so on. These researches only adopt management
methods of workflow during the web service integration.
However, we must consider that, �

 Traditional workflow is mostly operated in a
predictable and repetitive way, while web
service integration in cluster SMEs has to be
highly dynamic. Every day, as for a certain
service needed by enterprise clusters, some
newer and better services may appear. Hence, as
for some parts of integrated process, appropriate
services should be searched dynamically during
operation, and should be instantly integrated into
the process.

 Every web service in the integration is fully
autonomous module, and external process does
not have more control ability over it. Therefore,
complicated transaction processing mechanism
in present workflow cannot be directly applied
to the transaction processing of web service
integration.

 Stateless feature of web service requires the
integrated system to maintain relevance for the
operation of integration service.

 Proper security management is very important.

Therefore, process integration based on the dynamic
integration of web service requires that, �

 Integration service is easy to deploy, and is put
into use as soon as possible;

 Dynamic search and binding of cooperative
service is permitted during the operation of
integration service;

 Feasible transaction processing and safety
control are available.

In order to meet above-mentioned requirements, we
put forward a business process integration framework
based on the dynamic integration of web services.

A. Business Process Integration Framework
The realization of business process integration based

on dynamic web services integration meets the following
demands:

(1) Composition services are easily to be deployed and
used quickly.

(2) Finding and binding of the cooperative service
dynamically when the integration services is running.

(3) Provide feasible transaction process and security
control.

Figure 2 shows the business workflow integration
based on the dynamic web service composition.

The structure provides supports for each phases,
definition, deploying, executing supervision,
management and so on. The functional models are as
follows:

Definition block of integration service: it provides
support for the definition of integration service, and
analyzes the definition then stores it into service base.

Figure 2. Business workflow integration based on dynamic web service.

JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009 317

© 2009 ACADEMY PUBLISHER

Service base: stores analyzed conformity service
definition.

Web service wrapper: wraps the user-defined service
into common web service, provides the operation and
realization in the service and bring forth the
announcement and deploy of web service.

Executive engine: execute the requested samples,
access the operations in the service base, and call the web
service node which takes part in the process.

Dynamic service agent: handle the binding request
during the execution of dynamic service. The function
covers dynamic inquiry, optimum selection and the
switch and call of dynamic service messages.

Exception handler: deals with the abnormal problems
such as the error of service call, the failure of dynamic
binding. It also includes event process, journal and
recover and so on.

Authorizing controller: check up the ID and limits of
authority of the users, provides security protection
mechanism, and execute necessary encryption and
decipher.

Supervisor: supervises the execution of the system,
provides the elimination of short-time service examples
and recovery of fault at system level.

Extended UDDI registration base: in addition to
normal function of UDDI registration base, it supports
the announcement of semantic web service.

 Definition and Release Process of Integration
Service

With graphical tools, users give out graphical
representation of integration service. When saving,
graphical representation is transformed into document
schema definition language. At the generation phase of
integration service, this document is resolved. The
resolving includes as follows.

Integration service, which is expressed by definition
language, shall be converted to service library
equivalently, and be saved, in order not to resolve the
document schema definition language during
implementation.

Relevant integrated web service is generated according
to the definition of service, including the operation of
web service and corresponding WSDL document.

Meanwhile, this web service is deployed, and released
to the extended UDDI registry. This procedure is marked
with solid line in the diagram.

 Execution Process of Integration Service

Execution process of integration service is shown with
broken line in the diagram. When a certain web service is
invoked, service request is resolved; the system
determines invoked web service instance, and sends it to
execution engine of integration service. According to the
definition in service library, execution engine will invoke
relevant web service that is deployed in the participant’s
site. In face of dynamic binding service during operation,
the engine sends a request to dynamic service agent.
According to user’s definition in the extended UDDI
registry, dynamic service agent searches for qualified
service, chooses the optimal invocation, and returns the
execution result to the engine. During the operation of
integration service, potential exceptions are reported to
exception handler, which is in charge of corresponding
recovery and compensating operations.

B. Definition of Integration Service
The first step is to determine the definition of

integration service. IBM and Microsoft have jointly
raised Business Process Execution Language for Web
Services (BPEL4WS or BPEL in short). At present, this
has become an industry standard for definitional language
of web service integration. Though BPEL provides a
perfect mechanism for web service integration, BPEL has
its disadvantages. BPEL only supports the static binding
of existing web services. The binding between process
and service is recognized to be a known condition, so
BPEL doesn’t have good support for dynamism. It is very
difficult to use the large and complicated BPEL in
ordinary application environment of cluster SMEs.
Therefore, we must simplify BPEL, enhance its support
for dynamic service through semantic web services, and
construct a suitable definitional language for application
environment of cluster SMEs, which can be named
e_BPEL. e_BPEL can offer graphical representation of
integration service definition.

 Basic components of integration service
definition

As is shown in Figure 3, integration service definition
is illustrated by graphics. Besides starting point and end-
point, the process of integration service definition also
include transition line, service invocation and message
container. (Data lines in the diagram do not really exist in
graphic representation.)

Figure 3. Basic structure of integration service definition.

Starting

End-point

Transition line

Service invocation

Data line

Message container

318 JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009

© 2009 ACADEMY PUBLISHER

(1) Message container is a container of all messages
in overall integrative service, including the
changes of data state in the process, receiving and
sending of messages.

(2) Transition line. Complex control structure of the
process is realized by setting the attributes of
transition line and service calling point. Service
process defines 2 types— unconditional
transition and conditional transition.
Unconditional transition only shows the sequence
of 2 service invocations; conditional transition
sets relevant attributes of transition line,
stipulating that the process can finish this
transition only after meeting these conditions.
Through conditional transition and unconditional
transition, many common structures are defined,
such as sequence, selection and parallel, etc.

(3) Service calling point defines invoked action
service. The definition of service calling point
usually comprises service type, binding
information of service and compensating
operation. Binding information of service
includes operation name to invoke service,
binding address of service, input and output
parameters of service operation, etc.

 Types of integration service

According to the type of invoking operation,
integration service falls into receiving of asynchronous
messages, service invoke and result replay; according to
dynamism, there are static binding node, multi-binding
node and dynamic binding node.

(1) Receive. Business process blocking is waiting
for matching messages.

(2) Invoke. Business process invokes
participants’ one-way or request-response
operation.

(3) Reply. Business process sends messages, and
recovers the received messages of Receive.

(4) Receive corresponds with Reply. When the
name and address binding of Reply are the
same with that of foregoing Receive, this
Reply is considered to correspond with that
Receive. The process accepts input through
this Receive, and outputs its response through
corresponding Reply.

(5) Static binding. Bind address of invoked
service has been determined in the process.

(6) Multi-binding. Bind address of invoked
service is not a unique value, but a group of
address. This group of services offers
operations with equivalent functions.

(7) Dynamic binding. Invoked service is not
bound in detail. There is only description
information of this service and operation. The
service is bound during the process execution.

An integration service process starts from Receive, and
ends with Reply or Invoke. Any types of service calling

points are in the middle. When a process ends with
Reply, it means that integration service will probably get
synchronous response. Otherwise, when the execution
result is returned asynchronously, the process needs to
invoke the proper message receiving operation of result
recipient. It should be pointed out that not all Receive
operations have corresponding Reply, for example,
asynchronous response waiting for an Invoke in the
process.

Generally speaking, there is mainly static binding
service in the process, where the provider of this service
point has been determined. However, under some
circumstances, it is improper to give a definite binding.
For example, the same role in cluster SMEs may find
several participants; but when all participants may not be
able to dispose the service entirely, the process can define
multi-binding at corresponding service calling points, and
bind the invoked service operations to the implementation
of these participants. During invoking, the process
distributes service load evenly and invoke all bindings in
turn; or the process invokes service load of every binding
point according to a certain priority. In this way, the
integration service process achieves better load balance
and higher response speed. Moreover, it is helpful to
search the optimal service dynamic binding during the
execution of process.

C. Packaging and Executive Strategy of Integration
Service

 Generation of integration web service

In order to put integration service into use more
quickly, the system deploys and releases the integration
service as a separate web service, and generates
corresponding web service according to user’s definition
of integration service. This service offers 2 types of
operation, that is, request-response type and one-way
operation. The system generates operations according to
following rules.

(1) Request-response type operation. If Receive
node defined by integration service has its
corresponding Reply node, this node is
packaged into a request-response type
operation to generate web service. When
invoked, this operation returns the result at
once. Input message of the operation is the
input information defined by Receive node,
while output message is the output
information defined by Reply.

(2) One-way operation. If Receive node defined
by integration service doesn’t have its
corresponding Reply node, this Receive node
is packaged into a one-way operation. One-
way operation only has input, and its input
message is the same as the input of Receive
node. This kind of operation always serves as
asynchronous message port for recipients of
integration service.

In this way, integration service releases Receive,
all accepting nodes of asynchronous messages, as the
operation of web service. Through this web service,

JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009 319

© 2009 ACADEMY PUBLISHER

consumers (service users of cluster SMEs) invoke
corresponding integration service; by invoking the
operation of this web service, participants of
integration service (cluster SME members) pass
asynchronous messages of integration service.

 Maintenance of executing state and relevancy

It is worth noting that above-mentioned web service is
generated based on the definition of integration service.
According to the model of integration service, the system
generates and deploys a corresponding web service; it is
not true that an instance of integration service generates a
web service. Meanwhile, web service itself is stateless,
and doesn’t maintain relevant information of two separate
invocations; two operations of web service are also
independent, and invoke operations of web service in any
order. However, as for an integration service, many
instances are operating at the same time. As a result,
when a message comes, the system must decide to create
a new instance, or start an existing instance, and ensure
that the message is sent to the correct instance of
integration service. The life cycle of an instance starts
from the creation of the instance, and ends with the
revocation of the instance (the task is finished normally,
or ends with fault). During this stage, the system must
maintain the data and executing state of this instance.
Within the life cycle of an instance, execution of the
instance may pause for asynchronous messages. When
the message comes, the system must start corresponding
instance, and restore to the operating state before the
pause, including the value of data and executing state of
integration service process. Within the text integration
framework, we make use of dependency set and context
of integration service, so as to solve these two problems.

(1) Dependency set. Dependency set is a message
attribute, or a group of message attributes in
the message container. According to values of
these attributes, the system execution can
accurately distinguish different instances of an
integration service. For example, a buyer/seller
integration service process can use the order
numbers as dependency set. According to
order numbers, the system decides to start a
new instance, or continue an existing instance
for the trade.

(2) Context of integration service. Context of
integration service (context in short) maintains
history data information and executing state of
instances, and thus guarantees continuity and
consistency of instance execution in
integration service. When an instance of
integration service is created, a relevant
context instance is generated, and the context
changes with the status of service instance.
When running instance pauses for
asynchronous messages, context of the
instance record current data and executing
state, including operation nodes to be invoked
at the next step, etc. When the waited
asynchronous message arrives, corresponding
service instance is activated; the system
utilizes context information of this instance,

and recovers its operating state. The structure
of service context is as shown in Figure 4.

Service instance
number

Instance number of
message container

Operation node for
the next step

Figure 4. Structure of service context.

Service context doesn’t maintain the data of instance

directly, but carries out indirect maintenance by referring
to the message container of the instance. As has been said
before, data changes of operating service instance are all
reflected by message container. When service pauses for
asynchronous messages, the value of message container
is saved in database enduringly, and thus data information
of service context is lasting. When the service instance is
restarted, service context makes use of new received
messages, and renews relevant values of the message
container.

It should be pointed out that though service context
contains the information of next-step operation nodes, the
system doesn’t really invoke next-step operation nodes
according to this information. This information is to
validate, because the system generates operations of
integration web service according to the definition of
integration service. In terms of executing the integration
service, operations of integration web service are entry
points for asynchronous messages at all stages of
executing the integration service. Operations themselves
contain positional information during the execution of
integration service. Therefore, according to invoked web
service operations, the system is able to decide the next
step action inside the integration service. However,
statelessness of web service cannot ensure that instances
are always invoked in the correct order. Consequently,
when one operation of integration web service is invoked,
the system compares this operation with next-step
operation nodes in service context of the instance to be
started. In the case of disagreement, this instance will be
inhibited from starting, and a failure report will be sent to
the system.

When the operation of a web service is invoked, the
actual executing process is shown in Figure 5.

In this way, the system turns the integration service
into a separate web service, and acquires simple and
immediate deployment. Besides, integrated web service is
deployed to any server that supports web service, and
thus makes full use of some supporting functions of the
server, for example, message management, etc.

D. Strategies of Dynamic Service Management
 Structure and functional module of dynamic

service agent
Dynamic service management is realized mainly

through dynamic service agent in the system. During
operation, on the basis of service description, the agent
searches, binds and invokes proper service. Within the
integrated framework implementation, we use DAML-S
to describe the web service to be dynamically bound,
resort to the semantic description ability of DAML-S, and

320 JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009

© 2009 ACADEMY PUBLISHER

find qualified services more accurately and effectively.
Isomerism exists between found service and the service
defined by integration service, such as synonymous
methods, parameters and so on, so proper mapping
translation is necessary during operation.

Figure 5. Operational process of web service.

Figure 6 is structure chart of dynamic service agent. Its

main functional modules include as follows.

Figure 6. Structure of dynamic service agent.

(1) DAML-S/UDDI matcher. According to DAML-S

service description, this DAML-S/UDDI matcher searches

for qualified service in the extended UDDI service
registry.

(2) Selector of optimal service. According to service
matching degree, expenses and response time, etc., this
selector ranks found service set.

(3) Service container. Service container saves the
detailed binding of found services, as well as XSLT
document, which records mapping relation between found
service and the service defined by the process.

(4) Agent execution engine carries out the invocation of
dynamic service.

 The implementation of dynamic service agent

The implementation of dynamic service agent is as
follows.

(1) Before executing a dynamic service calling point,
the execution engine of integration service
requests a dynamic agent instance first.

(2) Dynamic agent instance inputs service
description into a DAML－S/UDDI matcher,
and the matcher searches for qualified service in
the extended registry.

(3) The matcher ranks found services in the selector
of optimal service, and then inputs the rank and
mapping XSLT file of every service into the
service container.

(4) When this dynamic service calling point is being
executed, the execution engine of integration
service invokes generated dynamic agent
instance to execute.

(5) Dynamic agent starts agent execution engine,
and the latter takes out a service binding from
the service container in turn. If not usable, the
service is deleted from the service container; and
the next one is invoked, until the service
container becomes empty (when the service
agent reports to the system the failure of
“dynamic service binding”), or until a service is
invoked successfully. During operation, dynamic
agent carries out heterogeneous solutions based
on attached XSLT document.

(6) Dynamic agent returns the result of service
invocation to the execution engine of integration
service.

In order to improve efficiency, the system can require
service agent to store the service container permanently.
During operation, service agent may directly use the
service in permanent container, in order to quicken the
response; or the system may clearly request dynamic
search, and let the service agent search for the newest
service.

E. Other Management Strategies
Besides above-mentioned management mechanism of

integration service, the system built on integrated
framework should introduce some other management
mechanisms, including

(1) Transaction management. It offers executing
mechanism of exception handling and transaction
processing. In the case of exceptions, exception handler
carries out relevant transaction processing according to

Extract dependency set

Determine the service instance

Acquire the service context

SOAP request message

Validate the operation

Report the exceptions Renew the data container

Run the instance

Request
parser Extended

UDDI registry

DAML-
S/UDDI
matcher

Selector of
optimal service

Service
container

Agent
execution

engine

Return result

JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009 321

© 2009 ACADEMY PUBLISHER

the definition of process, and performs compensating or
recovery operation. Transaction processing adopts 2
mechanisms, that is, single-point service compensation
and service compensation of business area. Single-point
service compensation is to define clear compensating or
recovery operation for a single service; service
compensation of business area is to define an overall
compensating process for a section of process.

(2) Safety control. SOAP header message signature is
invoked by web service to validate the identity of the
invoker. Key information of messages is encrypted. XML
and role-based access control mechanism is in place to
enhance the safety control.

(3) System monitoring. Operating state of every
integration service instance can be viewed. Overdue
service running instances can be revoked manually, for
example, an overdue running instance waiting for
asynchronous message. Monitoring module also provides
recovery for system-level failure.

IV. CONCLUSIONS
With the development of information technology and

industry clusters of small-medium sized enterprises, it is
significant to develop a network information service
platform and dynamic business process integration. The
flexible business process integration framework and
schemes that support dynamic service integration are
presented and proved can promote the integration
flexibility and efficiency for small-medium clusters in
heterogenous environment. Furthermore, related
techniques are applied in texttile industry clusters. The
development of the information service platform for
clusters of small-medium enterprises in heterogeneous
and the flexible business process integration will greatly
promote the development of the small-medium
enterprises clusters.

ACKNOWLEDGMENT

We are grateful for the foundation support by Zhejiang
Provincial Natural Science Foundation of China under
Grant No. Y106734.

REFERENCES

[1] Michael E. Porter, “Clusters and the new economics of

competition,” Harvard Business Review, Boston, Vol. 76,
1998, pp. 77-90.

[2] Kaijun Ren, Xiao Liu, et al, “A QSQL-Based collaboration
framework to support automatic service composition and
workflow execution,” Proc. of Grid and Pervasive
Computing Workshops, July 2008, pp. 87-92.

[3] Xiaofei Xu, Decheng Zhan, “The development of dynamic
alliance and integration supporting system,” CIMS,
2003(1), pp. 9-13.

[4] Piccinelli G., Zirpins, C., Lamersdorf W., “The FRESCO
framework: an overview,” Proceedings of the 2003
Symposium on Applications and the Internet Workshops.
IEEE Computer Society (2003), pp.120-126.

[5] Dmytro Zhovtobryukh, “A Petri Net-based approach for
automated goal-driven Web Service composition,”
Simulation. 83(1), 2007, pp. 33-63.

[6] Evren Sirin, et al., “ HTN planning for Web Service
composition using SHOP2,” Journal of Web Semantics,
1(4), 2004, pp. 377-396.

[7] Incheon Paik, et al., “Automatic Web Services composition
using combining HTN and CSP,” Proc. of the Seventh
International Conference on Computer and Information
Technology. Fukushima, Japan, October 2007, pp.206-211.

[8] Swaroop Kalasapur, et al., “Dynamic service composition
in pervasive computing,” IEEE Transaction on Parallel
and Distributed Systems, 18(7), 2007, pp. 907-918.

[9] Danilo Ardagna, et al., “Adaptive service composition in
flexible processes,” IEEE Transaction on Software
Engineering, 33(6), 2007, pp. 369-383.

[10] Michael Mrissa, et al., “A context-based mediation
approach to compose semantic Web Services,” ACM
Transactions on Internet Technology, 8(1):, 2007, pp. 41-
43.

Bo Jiang was born in 1970. She received the PhD degree in
Computer Science from Zhejiang University, China, in 2007.

She stayed in Ubiquitous Computing Research Laboratory
(UCRL) Zhejiang University as a postdoctoral researcher since
2008. She is also an associate professor in College of Computer
and Information Engineering, Zhejiang Gongshang University,
P.R.China. Her current research interests include Electronic
Commerce, CSCW, artificial intelligence and ubiquitous
computing.

Bo Jiang is a member of IEEE.

Yun Ling was born in 1962. He received the Master degree
in Computer Science from Zhejiang University, China.

He is a professor in College of Computer and information
Engineering, Zhejiang Gongshang University, P.R.China. His
current research interests include Electronic Commerce,
Wireless Sensor Network.

322 JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009

© 2009 ACADEMY PUBLISHER

